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Sample WorldView-3 imagery for San Juan Mountains, Colorado

Random forest models quickly classifty unseen areas demonstrating both the portability
open-source workflow to train machine learning models for classifying and increased utility of pre-trained models in this production-style workflow.

very-high-resolution panchromatic and multispectral imagery from Leveraging high performance computing resources, classification products can be
commercial vendors (DigitalGlobe and Planet). generated at scale for large archives of very-high-resolution image data.
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This work presents a preliminary semi-automated,

Adaptive model selection based
on available imagery
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These pixels often contain signals from e Insulates ground surfaces & DigitalGlobe, Inc.

multiple land cover types, resulting in
. . . . regulates temperature
the mixed pixel problem, which requires

spectral unmixing models to obtain
fractional snow-covered area (fSCA).

Above: Spatial and spectral resolution and spectral comparison between
Landsat 8 and WorldView-3. Image © 2019 DigitalGlobe, Inc.

Meter-Scale Validation

Preliminary comparison work between Landsat 8 and
WorldView-3 suggests very-high-resolution imagery can serve
as a validation for coarse-resolution classification and fSCA
products.

e Determines when and where
snowmelt can occur’

Takeaways

e Semi-automated approach adaptively trains and selects models

Widely-used fSCA products from MODIS
and Landsat 8 (more recently) incorporate  ® One indicator for fire season

these types of routines. severity 2

Initial results in the test area shown in the bottom panel showed
that Landsat 8 imagery classified 16.3% more snow than . :
WorldView-3 (83.6% vs 67.3% of total area). Most of this to reduce manual intervention

disparity was attributable to overestimates from the mixed pixel e Very-high-resolution classifications produced by single models
effect (see bottom right). : :
can serve as validation for coarser products

e Workflow generates classification products at scale

Training dataset

Training regions for land cover classes
were created using panchromatic and _ ‘ R
multispectral WorldView-3 imagery. Above: example training regions for each land cover class
Regions were distributed throughout  (snow, snowin shade, and vegetation). Imagery © 2018
: : DigitalGlobe, Inc.

the test image with classes between
97,000-140,000 total pixels each. For this generation of models, spectral differences

- between land cover classes was maximized, resulting in more
pistribution of  [ERAL homogeneous, spectrally distinct classes.

Next Steps

e Incorporate additional data layers (elevation, texture,

training regions

Training Spectra Left: Training spectra :
oon for subset of land microwave datasets)
cover classes. “Shade”
1.4 . . . . . .
HHH I £ denotes snow in e Build more robust models by refining training classes
12 1] shade. Note that all A . oy 18 4 e, | e
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g atmosphere location of training regions delineated ~ Upper left and middle panels: Pixels classified as snow within the training area for Landsat 8 (left:
E | reflectance. in reql.. Corresponding random forest bronze) and WorldView-3 (middle: blue). White-bordered insets show locations of panels a-c. Right e Create time series for SCA and |and cover cha nge
g 06 classification on the right. Imagery © panel: Mixed pixel panel with WorldView-3 snow pixels in blue overlaying a single Landsat 8 snow
=L 2018 DigitalGlobe, Inc. pixel in bronze (top). Corresponding WV-3 image (bottom) reveals snow and forest cover.
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