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1 All code for data collation, model calibration, hindcasting, analysis, and visualization can be found on Github at 
the following repository URL: https://github.com/GLEON/Bayes_forecast_WG/tree/eco_apps_release; 
DOI:10.5281/zenodo.3878781 
2 All input datasets used for this study can be found at the Environmental Data Initiative (EDI) Data Portal 
(https://environmentaldatainitiative.org/) and are listed on page 2 of this supplement as well as cited in the 
manuscript text with permanent DOIs. 

https://github.com/GLEON/Bayes_forecast_WG/tree/eco_apps_release
https://environmentaldatainitiative.org/
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3 This publication is currently in the staging, or draft, environment of the EDI repository. The current draft may be 
accessed by navigating to https://portal-s.edirepository.org/nis/home.jsp and searching for the package identifier 
edi 18. 

https://github.com/GLEON/Bayes_forecast_WG/tree/eco_apps_release
https://doi.org/10.6073/pasta/3e325757f0e981d91cd297f257f05f55.%20Accessed%202020-05-16
https://portal-s.edirepository.org/nis/home.jsp
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Text S1: Data processing for potential environmental drivers of G. echinulata density 

 The majority of the environmental covariate data tested as potential drivers of G. 

echinulata density required processing before being used as driver data for Bayesian state-space 

models.  

Growing degree days were calculated for each sampling day using water temperature 

from Onset loggers at our nearshore sampling site according to the following equation 

(McMaster and Wilhelm 1997): 

(Tmax  +  Tmin)

2
−  Tbase     (eqn. 1) 

 where Tmax is maximum daily temperature, Tmin is minimum daily temperature, and Tbase 

is the temperature below which G. echinulata cannot grow, which we assigned as 4°C for our 

calculations. 

We used water temperature profiles from the GLEON buoy thermistor chain to calculate 

Schmidt stability, a measure of thermal stratification strength that indicates the amount of energy 

required to homogenize temperature across the water column (Idso 1973). Schmidt stability 

calculations were performed using the R package rLakeAnalyzer (Winslow et al. 2019). The 10-

min. Schmidt stability data were aggregated to daily summary statistics for days where at least 

75% of observations were present for that day.  

Following observations that wind can promote nearshore G. echinulata scums by 

facilitating aggregation of colonies in littoral areas (Cyr 2017), wind speed and wind direction 

data were tested as potential environmental drivers. For 2009-2010 and 2013-2016, 10-minute 

averages of 1-sec. wind speed and wind direction data were aggregated to hourly means. For 

2011-2012, average wind speed and wind direction were not available, so 10-min instantaneous 

readings were used and also aggregated to an hourly mean. Using the hourly mean wind 
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direction data, we added an indicator variable coded as 1 for wind directions that could feasibly 

have blown G. echinulata colonies in the direction of our study site our study site (S to NW 180-

359°), while wind blowing in the opposite direction was coded as 0 (0-179°). We aggregated the 

hourly wind speed data to daily mean, median, minimum, maximum, and standard deviation if at 

least 50% of observations were present for that day. The wind direction indicator variable data 

were aggregated to a daily mean which ranged from 0-1 depending on the proportion of hourly 

wind measurements blowing towards Site 1 each day.   

Hourly NLDAS-2 solar radiation data were aggregated to daily sum, mean, standard 

deviation, median, minimum, and maximum values. 
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Text S2: Selection of environmental covariates for Bayesian state-space models   

Based on our expectations as to which environmental covariates could be important for 

driving Gloeotrichia density from our knowledge of cyanobacterial dynamics in eutrophic lakes 

(e.g., Barbiero and Welch 1992, Istv́anovics et al. 1993, Karlsson-Elfgren et al. 2005, Carey et al. 

2014, Cottingham et al. 2015), we performed a standardized selection process to determine 

which environmental covariates and summary statistics of those covariates to include in 

Bayesian state-space models. To select covariates, we conducted Spearman’s correlations 

between summary statistics of candidate environmental covariates and log-transformed G. 

echinulata density between 2009 and 2014 (Table S2). We conducted correlations using multiple 

summary statistics of the following covariates: water temperature, Schmidt stability, 

precipitation, wind speed, wind direction, shortwave radiation, photosynthetically active 

radiation (PAR), and growing degree days. We used the Spearman’s rho of these correlations to 

guide which environmental covariates and the specific summary statistic to use in developing 

Bayesian state-space models. 

For each environmental covariate, we conducted correlations for a suite of different 

summary statistics, including the mean, minimum, and maximum values as well as the standard 

deviation of the covariate for each sampling day. We also conducted correlations for each of 

these summary statistics at one-day to one-week lags from the day of sampling when data 

permitted, as well as for the difference in an environmental covariate from one week to the next 

to account for antecedent conditions or rapid changes in environmental covariates, according to 

previous findings that antecedent conditions or changes in conditions such as water temperature 

and Schmidt stability can affect cyanobacterial growth and phytoplankton community structure 

(Bormans et al. 2005, Madgwick et al. 2006). For water temperature, we further conducted 
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correlations using moving averages for 3-14 days prior to each sampling day. Finally, if initial 

data visualization indicated that environmental covariates exhibited a quadratic relationship with 

log-transformed G. echinulata density and therefore did not meet the assumption of 

monotonicity for a Spearman’s correlation, we used a quadratic R2 threshold of | R2 | ≥ 0.3 for 

covariate selection; this occurred for growing degree days (Fig. S1). The full list of covariate 

summary statistics can be viewed in Table S2. 

After completing all correlations, we assessed which environmental covariate summary 

statistics to include in our Bayesian state-space models using Spearman’s rho from 2009-2014. 

We eliminated any covariate summary statistics for which |Spearman’s rho| was less than 0.3. 

We arrived at this threshold because 0.3 was approximately twice the |mean rho| across all 

covariates (|mean rho| = 0.14). If multiple summary statistics for a particular environmental 

covariate had a |Spearman’s rho| that was greater than or equal to 0.3, we chose the summary 

statistic with the greatest |Spearman’s rho| value for Bayesian state-space model development 

(Table S2). For quadratic variables that did not meet the monotonicity assumption for 

Spearman’s correlations, we used a threshold of |quadratic R2| ≥ 0.3 for prioritization. 

Using this covariate selection process, we identified eight environmental covariate 

summary statistics for inclusion in Bayesian state-space models: daily minimum water 

temperature on the sampling day (MinWaterTemp), daily minimum water temperature with a 

one-week lag (MinWaterTempLag), seven-day moving average of water temperature 

(WaterTempMA), weekly difference in median Schmidt stability (ΔSchmidt), daily maximum 

Schmidt stability with a one-week lag (SchmidtLag), daily mean of the wind direction indicator 

variable with a two-day lag (WindDir), growing degree days (GDD), and daily sum of 

precipitation (Precip). 
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Text S3: Random walk model and development of informed observation error prior  

Our null Bayesian state-space model was a random walk model, or a linear model with a 

slope of 0 and a process error term (RW; Table 1), with an informed observation error prior 

developed using data from Site 2 (Fig. 2). For the informed observation error prior, we used 

logged G. echinulata density data collected weekly at Site 2 in Lake Sunapee from 2009-2014 

(Fig. 2) to run a random walk model with vague priors. Observation error was modeled as a 

normal distribution with precision τobs, which was assigned a vague gamma distribution prior 

with shape (a = 0.001) and rate (r = 0.001). After convergence, the model estimated the shape 

and rate of τobs to be 15.37 and 7.84, respectively, and these values were used for the prior on τobs 

in all models subsequently developed for Site 1 as part of our analysis. 

Initial conditions priors for all models were informed using G. echinulata densities 

observed in north temperate lakes in Maine, U.S.A during April and May across multiple years 

(H. Ewing, unpublished data). 
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Text S4: Model ensemble exercise 

Development of model ensemble 

 Following observations that model ensembles can sometimes provide more skilled 

predictions than a single model even when some ensemble members are low-performing 

(Johansson et al. 2019), we conducted a simple, unweighted model ensemble exercise to 

determine if the model ensemble could out-perform our individual models. We created the 

ensemble by appending all of the 7,500-member within-model hindcasts for each week for each 

model (excluding the RW null model) and conducted the same hindcast assessment and 

uncertainty partitioning on the grouped hindcast output as we did for individual models.  

 

Model ensemble hindcast skill similar to individual models 

 The model ensemble did not perform better than the best-performing individual models, 

with a ΔPL of 0.05 ln(colonies L-1) at the one-week forecast horizon and 0.09 ln(colonies L-1) at 

the four-week horizon  (Table 2; Fig. 5; Fig. 6; Fig. S11; Fig. S13). Overall, all models included 

in the ensemble exhibited a tendency to under-predict G. echinulata at both the one-week and 

four-week forecast horizon (see Bias in Table 2), likely resulting in negligible improvement in 

hindcast skill using an ensemble approach. 
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Text S5: Variability of environmental covariates in Bayesian state-space models 

 The environmental covariates selected for Bayesian state-space models were temporally 

variable from 2009-2016. Minimum daily water temperature at Site 1 (used in MinWaterTemp 

and MinWaterTempLag models) ranged from 13.4 °C to 26.2 °C and peaked between July 15 – 

August 20 during the study years (Fig. S2; Fig. S3). Weekly moving averages of water 

temperature at Site 1 (WaterTempMA model) were similar, ranging from 13.2 °C to 26.2 °C and 

reaching a maximum between July 11 – August 27 during the study years (Fig. S4). Growing 

degree days increased throughout the sampling season each year (Fig. S5).  

Coinciding with summer increases in surface water temperature, Lake Sunapee was 

thermally stratified in all study years but did sometimes experience fall turnover 

(homogenization of water column temperatures) before the end of the sampling season, so daily 

maximum Schmidt stability (SchmidtMaxLag model) ranged from 0-695 J m-2 in June-October 

(Fig. S6). Thermal stability peaked between July 15 – August 27 in all study years. However, the 

weekly change in Schmidt stability (SchmidtMedDiff model and two-covariate models) varied 

substantially both within and among years, with some weeks displaying large increases or 

decreases in Schmidt stability (± 200 J m-2) while other weeks exhibited no change in stability 

(Fig. S7). 

 Precipitation (Precip model and two-covariate models) was also highly variable among 

years, with 2009, 2011, 2013, and 2014 all including precipitation events of 20 mm day-1 or more 

(Fig. S8). Conditions were drier in other years and 2012 was an especially dry year with a 

maximum daily sum of precipitation of 4.1 mm. Notably, both of the hindcasting years (2015 

and 2016) were drier years. 

 Finally, the proportion of wind measurements blowing towards Site 1 (WindDir model 
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and two-covariate models) was also highly variable both within and among years, with values 

ranging from nearly 0 (no wind blowing towards Site 1) to nearly 1 (all wind blowing towards 

Site 1) on a week-to-week basis (Fig. S9). In general, wind blew towards Site 1 more often than 

not, with the proportion of wind measurements blowing towards Site 1 averaging 0.69 

throughout the study period. However, actual wind speed was not usually very high, with wind 

speed in the direction of Site 1 having a median of 2.6 m s-1 and maximum of 6.7 m s-1 during 

the study period. 
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Table S1: Examples of ecological forecasts with partitioned uncertainty. These studies are provided as examples only and do not represent a systematic 

literature review. IC = initial conditions; SDM = species distribution model; RCP = representative concentration pathway; GCM = global climate model 

                   Paper 

Ecosystem 

or region 

Focal forecasting 

variable 

Forecast 

horizon Type of model 

Types of 

uncertainty 

quantified 

Dominant 

source of 

uncertainty 

(Dietze 2017) Forest Net ecosystem exchange Daily 2-covariate Bayesian state-space 

Driver, IC, 

process, 

parameter 

 

Driver 

(Diniz-Filho et al. 2009) 
Western 

hemisphere 
Bird population distribution Multi- decadal Species distribution model Driver, process Process 

(Fox et al. 2018) 
Arid woodland/ 

grassland 
Carbon stock Annual Community land model Driver, IC IC 

(Gauthier et al. 2016) Arctic Snow goose population Multi- decadal 
Time-varying matrix population 

model 

Driver, 

parameter, 

process 

Parameter 

(Gertner et al. 1996) Forest Red pine growth Multi- decadal Pipe model (process-based) IC, parameter Parameter 

(Huang et al. 2013) Lake Chlorophyll Biweekly 
Complex numerical process-

based 
IC, parameter IC 

(Jiang et al. 2012) 
Global (high 

latitudes) 
Vegetation distribution Multi-decadal Dynamic global vegetation model 

Driver, 

parameter 
Parameter 

(Jiang et al. 2018) Peatland Carbon stocks and fluxes Decadal Process-based 

Driver, 

parameter 

 

Driver  

(Kim et al. 2014) River Chlorophyll Spatial Process-based 

Driver 

(different 

sources) 

 

Driver (river 

flow) 

(Massoud et al. 2018) 
Plankton 

mesocosm 
Plankton abundance Daily Process-based 

IC, parameter, 

process 
Process 

(Mbogga et al. 2010) Forest Aspen habitat Multi- decadal Bioclimate envelope model Driver, process Driver 
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                   Paper 

Ecosystem 

or region 

Focal forecasting 

variable 

Forecast 

horizon Type of model 

Types of 

uncertainty 

quantified 

Dominant 

source of 

uncertainty 

(Ouellet-Proulx et al. 2017) River 
Water temperature and 

discharge 
Daily Process-based Driver, IC Driver 

(Page et al. 2017) Lake 
Phytoplankton 

community 
Weekly 

Complex numerical process-

based 

Process 

(different 

sources) 

Process 

(representation of 

light, nutrients) 

(Raiho et al. in review) Forest Tree species biomass Multi- decadal Process-based forest gap model 

Driver, IC, 

parameter, 

process 

 

Process 

(Spadavecchia et al. 2011) Forest CO2 flux Daily Process-based ecosystem model 
Driver, 

parameter 
Parameter 

(Thomas et al. 2018) Forest Productivity Decadal 
Complex numerical process-

based 

Driver, 

parameter, 

process 

 

Process 

(Thomas et al. 2020) Lake Water temperature Daily 
Complex numerical process-

based 

Driver, IC, 

parameter, 

process 

 

Driver 

(Thuiller et al. 2019) Global 
Vertebrate species 

distributions 
Multi-decadal Species distribution model 

Driver and 

process 

(different 

sources of each) 

Driver (RCP 

scenarios) and 

process (choice of 

SDM) 

(Wang et al. 2009) Forest Forest carbon Spatial Kriging algorithm 

Driver 

(different 

sources) 

 

Driver (satellite 

data) 
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                   Paper 

Ecosystem 

or region 

Focal forecasting 

variable 

Forecast 

horizon Type of model 

Types of 

uncertainty 

quantified 

Dominant 

source of 

uncertainty 

(Watling et al. 2015) 
Southeastern 

U.S. 

Vertebrate species 

distribution 
Multi-decadal Species distribution model 

Driver, IC, 

process 
Process 

(Valle et al. 2009) Tropical forest Basal area Multi-decadal 
Complex numerical process-

based 

IC, parameter, 

process 
Process 

(Zhang et al. 2019) Maize fields Crop yield Multi-decadal Process-based 

Driver 

(different 

sources) and 

process 

Driver (GCMs) 
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Table S2: Correlation analysis results to determine which environmental covariates to include in Bayesian state-space models. Variable names are 

provided to match variables names in the output.csv file generated by the “2A_Covariate_correlation.R” script in the manuscript’s Github repository. 

Quadratic R2 instead of Spearman’s r is reported for variables which were determined to have a quadratic relationship with logged G. echinulata 

density during preliminary visualization. Shaded boxes indicate variables that met the prioritization criterion of r or R2 ≥ 0.3. Asterisks indicate 

variables chosen for inclusion in Bayesian state-space models. P-values have been adjusted using the Holm-Bonferroni correction to account for 

multiple comparisons except in the case of growing degree days, where the p-value is for quadratic regression rather than a Spearman’s correlation. 

Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

HCS.tempC_mean mean water temperature on the sampling day 0.49 -- 6.9 × 10-6 

HCS.tempC_median median water temperature on the sampling day 0.49 -- 8.5 × 10-6 

HCS.tempC_min minimum water temperature on the sampling day 0.51 -- 2.1 × 10-6 

HCS.tempC_max maximum water temperature on the sampling day 0.47 -- 2.5 × 10-5 

HCS.tempC_sd standard deviation of water temperature on the sampling day -0.17 -- 1 

HCS.tempC_mean_lag daily mean water temperature one week before the sampling 

day 

0.54 -- 2.1 × 10-7 

HCS.tempC_median_lag daily median water temperature one week before the sampling 

day 

0.54 -- 1.6 × 10-7 

HCS.tempC_min_lag daily minimum water temperature one week before the 

sampling day 

0.56* -- 4.2 × 10-8 

HCS.tempC_max_lag daily maximum water temperature one week before the 

sampling day 

0.52 -- 6.2 × 10-7 

HCS.tempC_sd_lag daily standard deviation of water temperature one week before 

the sampling day 

-0.19 -- 1 

wtr_mean_diff difference in mean water temperature between one week before 

the sampling day and the day of sampling 

-0.2 -- 1 

wtr_median_diff difference in median water temperature between one week 

before the sampling day and the day of sampling 

-0.2 -- 1 
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Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

wtr_max_diff difference in maximum water temperature between one week 

before the sampling day and the day of sampling 

-0.18 -- 1 

wtr_min_diff difference in minimum water temperature between one week 

before the sampling day and the day of sampling 

-0.2 -- 1 

wtr_sd_diff difference in standard deviation in water temperature between 

one week before the sampling day and the day of sampling 

-0.02 -- 1 

ma_3 three-day moving average of water temperature prior to the day 

of sampling 

0.44 -- 0.00022 

ma_5 five-day moving average of water temperature prior to the day 

of sampling 

0.45 -- 0.00013 

ma_7 seven-day moving average of water temperature prior to the 

day of sampling 

0.49* -- 1.7 × 10-5 

ma_10 ten-day moving average of water temperature prior to the day 

of sampling 

0.44 -- 0.00052 

ma_14 fourteen-day moving average of water temperature prior to the 

day of sampling 

0.48 -- 5.0 × 10-5 

gdd_sum growing degree days -- 0.52* 1.2 × 10-17 

schmidt.stability_mean mean Schmidt stability on the day of sampling 0.19 -- 1 

schmidt.stability_median median Schmidt stability on the day of sampling 0.19 -- 1 

schmidt.stability_min minimum Schmidt stability on the day of sampling 0.18 -- 1 

schmidt.stability_max maximum Schmidt stability on the day of sampling 0.2 -- 1 

schmidt.stability_sd standard deviation of Schmidt stability on the day of sampling 0.19 -- 1 

schmidt.stability_mean_lag daily mean Schmidt stability one week before the sampling day 0.35 -- 0.025 

schmidt.stability_median_lag daily median Schmidt stability one week before the sampling 

day 

0.35 -- 0.022 

schmidt.stability_min_lag daily minimum Schmidt stability one week before the sampling 

day 

0.34 -- 0.047 
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Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

schmidt.stability_max_lag daily maximum Schmidt stability one week before the 

sampling day 

0.36* -- 0.015 

schmidt.stability_sd_lag daily standard deviation of Schmidt stability one week before 

the sampling day 

0.13 -- 1 

schmidt.stability_mean_diff difference in mean Schmidt stability between one week before 

the sampling day and the day of sampling 

-0.34 -- 0.05 

schmidt.stability_median_diff difference in median Schmidt stability between one week 

before the sampling day and the day of sampling 

-0.36* -- 0.02 

schmidt.stability_min_diff difference in minimum Schmidt stability between one week 

before the sampling day and the day of sampling 

-0.3 -- 0.20 

schmidt.stability_max_diff difference in maximum Schmidt stability between one week 

before the sampling day and the day of sampling 

-0.34 -- 0.05 

schmidt.stability_sd_diff difference in standard deviation of Schmidt stability between 

one week before the sampling day and the day of sampling 

-0.05 -- 1 

precip_mm sum of daily precipitation on day of sampling -0.3* -- 0.05 

precip_mm_1daylag sum of daily precipitation on day before sampling -0.23 -- 0.73 

precip_mm_1weeklag sum of daily precipitation one week before the sampling day -0.22 -- 0.89 

ShortWaveRad_Wperm2_mean mean shortwave radiation on the day of sampling 0.04 -- 1 

ShortWaveRad_Wperm2_median median shortwave radiation on the day of sampling -0.21 -- 1 

ShortWaveRad_Wperm2_min minimum shortwave radiation on the day of sampling 0.27 -- 0.16 

ShortWaveRad_Wperm2_max maximum shortwave radiation on the day of sampling 0.07 -- 1 

ShortWaveRad_Wperm2_sd standard deviation of shortwave radiation on the day of 

sampling 

0.11 -- 1 

ShortWaveRad_Wperm2_sum sum of shortwave radiation on the day of sampling 0.04 -- 1 

par_mean mean PAR on the day of sampling 0 -- 1 

par_median median PAR on the day of sampling -0.21 -- 1 

par_min minimum PAR on the day of sampling 0.16 -- 1 
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Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

par_max maximum PAR on the day of sampling -0.03 -- 1 

par_sd standard deviation of PAR on the day of sampling 0.08 -- 1 

par_sum sum of PAR on the day of sampling 0 -- 1 

AveWindSp_ms_mean_in mean windspeed filtered for wind directions blowing into Site 

1 on the day of sampling 

0.08 -- 1 

AveWindSp_ms_median_in median windspeed filtered for wind directions blowing into 

Site 1 on the day of sampling 

0.09 -- 1 

AveWindSp_ms_min_in minimum windspeed filtered for wind directions blowing into 

Site 1  on the day of sampling 

0.16 -- 1 

AveWindSp_ms_max_in maximum windspeed filtered for wind directions blowing into 

Site 1 on the day of sampling 

0.03 -- 1 

AveWindSp_ms_sd_in standard deviation of windspeed filtered for wind directions 

blowing into Site 1 on the day of sampling 

0.01 -- 1 

AveWindSp_ms_mean_1daylag_in mean windspeed filtered for wind directions blowing into Site 

1 the day before the sampling day 

0.13  1 

AveWindSp_ms_median_1daylag_in median windspeed filtered for wind directions blowing into 

Site 1 the day before the sampling day 

0.15 -- 1 

AveWindSp_ms_min_1daylag_in minimum windspeed filtered for wind directions blowing into 

Site 1 the day before the sampling day 

0.14 -- 1 

AveWindSp_ms_max_1daylag_in maximum windspeed filtered for wind directions blowing into 

Site 1 the day before the sampling day 

0.13 -- 1 

AveWindSp_ms_sd_1daylag_in standard deviation of windspeed filtered for wind directions 

blowing into Site 1 the day before the sampling day 

0.16 -- 1 

AveWindSp_ms_mean_2daylag_in mean windspeed filtered for wind directions blowing into Site 

1 two days before the sampling day 

0.25 -- 0.50 

AveWindSp_ms_median_2daylag_in median windspeed filtered for wind directions blowing into 

Site 1 two days before the sampling day 

0.26 -- 0.46 
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Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

AveWindSp_ms_min_2daylag_in minimum windspeed filtered for wind directions blowing into 

Site 1 two days before the sampling day 

0.29 -- 0.14 

AveWindSp_ms_max_2daylag_in maximum windspeed filtered for wind directions blowing into 

Site 1 two days before the sampling day 

0.23 -- 0.95 

AveWindSp_ms_sd_2daylag_in standard deviation of windspeed filtered for wind directions 

blowing into Site 1 two days before the sampling day 

0.2 -- 1 

AveWindSp_ms_mean_3daylag_in mean windspeed filtered for wind directions blowing into Site 

1 three days before the sampling day 

0.23 -- 0.95 

AveWindSp_ms_median_3daylag_in median windspeed filtered for wind directions blowing into 

Site 1 three days before the sampling day 

0.24 -- 0.67 

AveWindSp_ms_min_3daylag_in minimum windspeed filtered for wind directions blowing into 

Site 1 three days before the sampling day 

0.26 -- 0.46 

AveWindSp_ms_max_3daylag_in maximum windspeed filtered for wind directions blowing into 

Site 1 three days before the sampling day 

0.19 -- 1 

AveWindSp_ms_sd_3daylag_in standard deviation of windspeed filtered for wind directions 

blowing into Site 1 three days before the sampling day 

0.11  1 

AveWindSp_ms_mean_1weeklag_in mean windspeed filtered for wind directions blowing into Site 

1 one week before the sampling day 

0.08 -- 1 

AveWindSp_ms_median_1weeklag_in median windspeed filtered for wind directions blowing into 

Site 1 one week before the sampling day 

0.09 -- 1 

AveWindSp_ms_min_1weeklag_in minimum windspeed filtered for wind directions blowing into 

Site 1 one week before the sampling day 

0.13 -- 1 

AveWindSp_ms_max_1weeklag_in maximum windspeed filtered for wind directions blowing into 

Site 1 one week before the sampling day 

0.04 -- 1 

AveWindSp_ms_sd_1weeklag_in standard deviation of filtered for wind directions blowing into 

Site 1 one week before the sampling day 

0.03 -- 1 

windsp_cumsum_1day_in cumulative windspeed into the cove one day prior to sampling 0.09 -- 1 
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Covariate variable name Covariate variable description Spearman’s 

rho 

Quadratic 

reg. R2 

p-value 

windsp_cumsum_2day_in cumulative windspeed into the cove two days prior to sampling 0.13 -- 1 

AveWindDir_cove_mean proportion of daily wind measurements blowing in the 

direction of Site 1 on the day of sampling 

0.2 -- 1 

AveWindDir_cove_mean_1daylag proportion of daily wind measurements blowing in the 

direction of Site 1 one day before sampling 

0.19 -- 1 

AveWindDir_cove_mean_2daylag proportion of daily wind measurements blowing in the 

direction of Site 1 two days before sampling 

0.37* -- 0.0072 

AveWindDir_cove_mean_3daylag proportion of daily wind measurements blowing in the 

direction of Site 1 three days before sampling 

0.2  1 

AveWindDir_cove_mean_1weeklag proportion of daily wind measurements blowing in the 

direction of Site 1 on the day one week before sampling 

0.11 -- 1 
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Table S3: Estimated mean random year effects for calibrated random walk model with random year effect from 2009-2014. The 

model parameter τyear was estimated to have a mean of 64.8, corresponding to a standard deviation of 0.12 being fit to the mean 

random year effects reported in the table. 

 

Year 2009 2010 2011 2012 2013 2014 

Mean random 

year effect 
0.069 0.026 0.002 0.026 0.058 0.038 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental information for Lofton et al., Using near-term forecasts and uncertainty partitioning to improve predictions of low-

frequency cyanobacterial events 
 

 
21 

 

Table S4: Parameter summary for all calibrated Bayesian state-space models: Part I. Model process equations and descriptions of 

covariates included in each model can be found in Table 1 of the manuscript. Parameter names are provided to match output from R 

script “4.2_Calibrate_Bayesian_models.R” included as part of the GitHub code repository for this manuscript. tau_proc = precision on 

the normal distribution representing process error; tau_obs = precision on the normal distribution representing observation error; beta1 

= intercept of linear models; beta2 = coefficient of AR term in linear models; S.D. = standard deviation; PSRF = potential scale 

reduction factor of the Gelman-Rubin statistic, sometimes referred to as R-hat, where a value approaching 1 indicates that the model 

has converged well on a parameter estimate both within and among chains; SSeff = effective sample size, or the number of independent 

samples in MCMC output for a parameter once auto-correlation has been accounted for.  

 

Parameters tau_proc tau_obs beta1 beta2 

Model name mean S.D. PSRF SSeff mean S.D. PSRF SSeff mean S.D. PSRF SSeff mean S.D. PSRF SSeff 

RW 0.70 0.16 1.00 21851 1.72 0.35 1.00 20044 -- -- -- -- -- -- -- -- 

AR 0.75 0.17 1.00 18748 1.80 0.37 1.00 18302 -0.26 0.15 1.00 33346 0.76 0.06 1.00 29639 

MinWaterTemp 0.93 0.25 1.00 12612 1.72 0.36 1.00 16302 -0.39 0.15 1.00 26303 0.68 0.06 1.00 22165 

MinWaterTempLag 0.85 0.21 1.00 16316 1.76 0.37 1.00 16918 -0.47 0.16 1.00 22452 0.63 0.07 1.00 18484 

WaterTempMA 0.88 0.23 1.00 14034 1.75 0.37 1.00 17074 -0.39 0.15 1.00 25093 0.66 0.07 1.00 19928 

ΔSchmidt 0.74 0.17 1.00 18662 1.89 0.38 1.00 18809 -0.29 0.16 1.00 27059 0.74 0.07 1.00 22980 

SchmidtLag 0.89 0.23 1.00 13929 1.73 0.36 1.00 16797 -0.31 0.14 1.00 30254 0.75 0.06 1.00 24900 

WindDir 0.84 0.20 1.00 16802 1.76 0.37 1.00 18279 -0.34 0.15 1.00 31447 0.72 0.06 1.00 27858 

Precip 0.74 0.17 1.00 18898 1.80 0.37 1.00 18829 -0.27 0.15 1.00 31476 0.76 0.06 1.00 26990 

GDD 0.92 0.28 1.00 7849 1.74 0.38 1.00 13033 0.16 0.19 1.00 19188 0.67 0.10 1.00 7888 

Schmidt+Temp 0.87 0.21 1.00 15352 1.76 0.38 1.00 16282 -0.45 0.16 1.00 21287 0.62 0.07 1.00 17198 

Schmidt+Precip 0.73 0.16 1.00 19113 1.80 0.37 1.00 18498 -0.30 0.16 1.00 26737 0.74 0.07 1.00 22744 

Temp+Precip 0.86 0.21 1.00 15752 1.77 0.37 1.00 17294 -0.41 0.15 1.00 25870 0.65 0.07 1.00 20824 

Precip+GDD 0.90 0.26 1.00 8985 1.75 0.38 1.00 14309 0.14 0.19 1.00 19120 0.65 0.10 1.00 8296 
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Table S5: Parameter summary for all calibrated Bayesian state-space models: Part II. Model process equations and descriptions of 

covariates included in each model can be found in Table 1 of the manuscript. Parameter names are provided to match output from R 

script “4.2_Calibrate_Bayesian_models.R” included as part of the Github code repository for this manuscript. beta3 = coefficient of 

covariate in single-covariate models and coefficient on first covariate, which is the first covariate in the model name, in two-covariate 

models; beta4 = coefficient on quadratic term for growing degree days in GDD model and coefficient on second covariate in two-

covariate models; beta5 = coefficient on quadratic term for growing degree days in WindAndGDD model; S.D. = standard deviation; 

PSRF = potential scale reduction factor of the Gelman-Rubin statistic, sometimes referred to as R-hat, where a value approaching 1 

indicates that the model has converged well on a parameter estimate both within and among chains; SSeff = effective sample size, or 

the number of independent samples in MCMC output for a parameter once auto-correlation has been accounted for. 

 

Parameters beta3 beta4 beta5 

Model name mean S.D. PSRF SSeff mean S.D. PSRF SSeff mean S.D. PSRF SSeff 

RW -- -- -- -- -- -- -- -- -- -- -- -- 

AR -- -- -- -- -- -- -- -- -- -- -- -- 

MinWaterTemp 0.49 0.13 1.00 38491 -- -- -- -- -- -- -- -- 

MinWaterTempLag 0.49 0.14 1.00 27828 -- -- -- -- -- -- -- -- 

WaterTempMA 0.47 0.13 1.00 33718 -- -- -- -- -- -- -- -- 

ΔSchmidt -0.09 0.16 1.00 31738 -- -- -- -- -- -- -- -- 

SchmidtLag 0.36 0.12 1.00 52607 -- -- -- -- -- -- -- -- 

WindDir 0.42 0.15 1.00 37608 -- -- -- -- -- -- -- -- 

Precip -0.08 0.14 1.00 44501 -- -- -- -- -- -- -- -- 

GDD 0.20 0.19 1.00 8919 -0.58 0.17 1.00 10260 -- -- -- -- 

Schmidt+Temp -0.17 0.15 1.00 28500 0.49 0.13 1.00 30182 -- -- -- -- 

Schmidt+Precip -0.09 0.16 1.00 31519 -0.07 0.14 1.00 45272 -- -- -- -- 

Temp+Precip 0.47 0.13 1.00 35021 -0.09 0.13 1.00 43088 -- -- -- -- 

Precip+GDD -0.10 0.13 1.00 41062 0.21 0.19 1.00 9751 -0.59 0.17 1.00 11474 
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Table S6: Uncertainty partitioning results across models for one-week-ahead hindcasts during the 2015-2016 hindcasting period. 

Mean, minimum (Min.) and maximum (Max.) proportional contributions of initial conditions, parameter, driver, and process 

uncertainty to hindcasting confidence intervals are reported for each model. Note the RW model does not have parameter or driver 

uncertainty because the model structure does not include parameters or drivers; similarly, the AR model does not include drivers. 

*Because contributions of parameter and driver error were so small, the estimated confidence intervals including parameter and/or 

driver error were occasionally smaller than those without due to numerical approximation error, leading to an estimation of “negative” 

parameter/driver error; this should be interpreted as no contribution of parameter/driver error, and negative parameter/driver error 

values were set to zero. 

 Initial conditions Parameter Driver Process 

Model name Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. 

RW 0.27 0.01 0.58 -- -- -- -- -- -- 0.73 0.42 0.99 

AR 0.18 0 0.41 0.02 0.01 0.04 -- -- -- 0.8 0.56 0.96 

MinWaterTemp 0.15 0 0.35 0.03 0.01 0.06 0.05 0 0.15 0.77 0.6 0.87 

MinWaterTempLag 0.13 0 0.3 0.03 0.01 0.07 0.04 0 0.14 0.81 0.63 0.94 

WaterTempMA 0.14 0 0.34 0.03 0.01 0.07 0.03 0 0.14 0.8 0.6 0.93 

Schmidt 0.17 0 0.42 0.03 0.01 0.07 0.01 0 0.03 0.79 0.54 0.96 

SchmidtLag 0.19 0 0.43 0.03 0.01 0.06 0.03 0 0.08 0.76 0.54 0.95 

WindDir 0.16 0 0.38 0.02 0.01 0.05 0.06 0.01 0.12 0.75 0.54 0.89 

Precip 0.17 0 0.41 0.02 0.01 0.04 0.01 0 0.08 0.79 0.55 0.96 

GDD 0.16 0 0.37 0.04 0* 0.07 0.01 0 0.04 0.8 0.62 0.94 

Schmidt+Temp 0.13 0 0.31 0.04 0.02 0.08 0.04 0 0.12 0.79 0.63 0.92 

Schmidt+Precip 0.17 0 0.4 0.03 0.01 0.08 0.02 0 0.08 0.79 0.56 0.95 

Temp+Precip 0.14 0 0.33 0.03 0.02 0.07 0.04 0 0.15 0.79 0.62 0.93 

Precip+GDD 0.15 0 0.36 0.05 0.02 0.09 0.02 0 0.11 0.78 0.58 0.93 

Ensemble 0.18 0.03 0.4 0.03 0.02 0.05 0.03 0* 0.07 0.76 0.57 0.86 
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Table S7: Uncertainty partitioning results across models for four-week-ahead hindcasts during the 2015-2016 hindcasting period. 

Mean, minimum (Min.) and maximum (Max.) proportional contributions of initial conditions, parameter, driver, and process 

uncertainty to hindcasting confidence intervals are reported for each model. Note the RW model does not have parameter or driver 

uncertainty because the model structure does not include parameters or drivers; similarly, the AR model does not include drivers. 

 

 Initial conditions Parameter Driver Process 

Model name Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. 

RW 0.09 0 0.26 -- -- -- -- -- -- 0.91 0.74 1 

AR 0.02 0 0.06 0.05 0.04 0.08 -- -- -- 0.93 0.87 0.95 

MinWaterTemp 0.01 0 0.03 0.06 0.03 0.1 0.07 0.01 0.15 0.86 0.79 0.93 

MinWaterTempLag 0.01 0 0.02 0.05 0.03 0.09 0.06 0.01 0.12 0.88 0.81 0.94 

WaterTempMA 0.01 0 0.02 0.06 0.03 0.1 0.06 0.02 0.1 0.88 0.84 0.93 

Schmidt 0.02 0 0.06 0.06 0.04 0.09 0.01 0 0.02 0.91 0.86 0.94 

SchmidtLag 0.02 0 0.06 0.06 0.03 0.09 0.09 0.02 0.21 0.83 0.73 0.92 

WindDir 0.02 0 0.05 0.05 0.03 0.08 0.06 0.02 0.1 0.88 0.83 0.92 

Precip 0.02 0 0.06 0.05 0.04 0.08 0.01 0 0.06 0.92 0.87 0.95 

GDD 0.01 0 0.03 0.08 0.06 0.13 0.01 0 0.04 0.89 0.85 0.93 

Schmidt+Temp 0.01 0 0.02 0.06 0.04 0.09 0.07 0.02 0.14 0.86 0.79 0.93 

Schmidt+Precip 0.02 0 0.05 0.06 0.04 0.09 0.02 0 0.07 0.9 0.86 0.94 

Temp+Precip 0.01 0 0.02 0.05 0.04 0.1 0.07 0.03 0.13 0.87 0.8 0.93 

Precip+GDD 0.01 0 0.04 0.09 0.06 0.15 0.03 0 0.11 0.87 0.81 0.92 

Ensemble 0.06 0.02 0.13 0.06 0.04 0.08 0.04 0.01 0.07 0.85 0.79 0.9 
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Figure S1: Natural log-transformed G. echinulata colonies L-1 vs. growing degree days for all 

sampling days from 2009-2016. 
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Figure S2: Timeseries of minimum water temperature at Site 1 on the day of sampling from 

2009-2016. 

 

 

 

 

 
Figure S3: Timeseries of minimum water temperature at Site 1 one week before the sampling 

day (one week lag) from 2009-2016. 
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Figure S4: Timeseries of seven-day moving average of water temperature prior to the day of 

sampling at Site 1 from 2009-2016. 

 

 

 

 

 

 

Figure S5: Timeseries of water temperature growing degree days at Site 1 from 2009-2016. 
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Figure S6: Timeseries of maximum Schmidt stability one week before the sampling day (one 

week lag) from 2009-2016. 

 

 

 
Figure S7: Timeseries of difference in median Schmidt stability between one week before the 

sampling day and the sampling day from 2009-2016. 
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Figure S8: Timeseries of proportion of daily wind measurements blowing in the direction of Site 

1 two days before the sampling day from 2009-2016. 

 

 

 

 

 
Figure S9: Timeseries of summed daily precipitation on Lake Sunapee from 2009-2016. 
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Figure S10: Timeseries of median predicted and observed G. echinulata density for one-week-

ahead hindcasts in 2016 for the best-performing models (b-g), as well as the RW null model (a).  

 

Figure S11 (next page): Timeseries of median predicted and observed G. echinulata density for 

one-week-ahead hindcasts in 2015 (a, c, e, g, i, k, m, o) and 2016 (b, d, f, h, j, l, n, p) for a subset 

of developed models. Black points are median predicted values and red triangles and observed 

values. Black error bars denote the 95% confidence interval, while gray error bars denote the 

95% predictive interval. Models shown are MinWaterTemp (a, b), SchmidtLag (c, d), WindDir 

(e, f), GDD (g, h), Schmidt+Precip (i, j), Temp+Precip (k, l), Precip+GDD (m, n), and the model 

Ensemble (o, p).
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Figure S12: Timeseries of median predicted and observed G. echinulata density for four-week-

ahead hindcasts in 2016 for the best-performing models (b-g), as well as the RW null model (a). 

Note the y-axis change from Figure S10 to accommodate larger credible and predictive intervals 

at the four-week forecast horizon. 

 

Figure S13 (next page): Timeseries of median predicted and observed G. echinulata density for 

four-week-ahead hindcasts in 2015 (a, c, e, g, i, k, m, o) and 2016 (b, d, f, h, j, l, n, p) for a subset 

of developed models. Black points are median predicted values and red triangles and observed 

values. Black error bars denote the 95% confidence interval, while gray error bars denote the 

95% predictive interval. Models shown are MinWaterTemp (a, b), SchmidtLag (c, d), WindDir 

(e, f), GDD (g, h), Schmidt+Precip (i, j), Temp+Precip (k, l), Precip+GDD (m, n), and the model 

Ensemble (o, p). Note the y-axis change from Figure S11.
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Figure S14: Uncertainty partitioning of the one-week-ahead to four-week-ahead confidence 

interval for hindcasts averaged across the 2015-2016 hindcasting period for eight models: a) 

MinWaterTemp, b) SchmidtLag, c) WindDir, d) GDD, e) Schmidt+Precip, f) Temp+Precip, g) 

Precip+GDD, and h) the model Ensemble.  
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Figure S15: Hindcast variance and proportional contribution of initial contributions uncertainty 

to the confidence interval of during the 2015 sampling season for an example model (WindDir) 

for a) one-week-ahead and b) four-week-ahead forecast horizons. Vertical black lines denote 

times when observational G. echinulata data was missing during 2015. Other models exhibit the 

same pattern. 

 

b 
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Figure S16: Relative contributions of process and driver uncertainty to total hindcast uncertainty 

over time for the MinWaterTempLag model in 2015.  
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