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Supplementary Figures 

 

Figure S1. Intercalibration check for CO2 data obtained using the Picarro CRDS analyzer and the Vaisala 
hand held probe. The same known concentration of CO2 in a sealed container was measured using both 
instruments in triplicate at 4 different concentrations: 0 ppm, 500 ppm, 1500 ppm and 5000 ppm. The 
results are plotted alongside a 1:1 line. Measurements performed with the Vaisala were found to be 
comparable to those measured with the Picarro and no correction was deemed necessary. 

  



 

 

Figure S2. Modeled interconversion of CO2 to HCO3
- for each of the releases using alkalinity (a-e) and 

pH (f-k). The measured CO2 concentrations are shown by the blue points, to which an exponential decay 
is fitted (dashed line). The decrease in concentration of CO2 that is due to chemical interconversion alone 
is shown in black. The corrected exponential decay of CO2 in the stream is shown in blue and corresponds 
to [CO2]corrected = [CO2]0 + [CO2]measured – [CO2]interconversion.   
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Supplementary Tables 

Table S1. Reaction rate constants and their respective check values used in this study 
Rate 
constant Check value (T = 298.15 K, S = 35) Dependence on T and S Reference 

k+1 3.71 × 10-2 s-1 exp (1246.98-6.19 × 104/T - 183.0 ln(T)) 1 
k-1 2.67 × 104 kg mol-1 s-1 k+1/K1

* Calculated 

k+4 2.23 × 103 kg mol-1 s-1 A4 exp(-90,166.83/(RT))/Kw
* 3 

k-4 9.71 × 10-5 s-1 k+4× Kw
*/K1

* Calculated 

kH+
+5 5.0 × 1010 kg mol-1 s-1 None 2 

kH+
-5 59.44 s-1 kH+

+5 × K2
* Calculated 

kOH-
+5 6.0 × 109 kg mol-1 s-1 None 2 

kOH-
-5 3.06 × 105 s-1 kOH-

+5×Kw
*/K2

* Calculated 

k+6 1.40 × 10-3 kg mol-1 s-1 None 2 
k-6 2.31 × 10-10 kg mol-1 s-1 k+6/Kw

* Calculated 

Reference 1 refers the work of Johnson (1982),  reference 2 refers to Eigen (1964) and reference 3 refers 
to Schulz et al. (2006). T refers to temperature in Kelvin and S refers to salinity, R denotes the universal 
gas constant of 8.31451 J/mol, Kw

* the equilibrium constant for the ion product of water calculated using 
the methods described in DOE (1994), K1

* and K2
* the first and second dissociation constants of carbonic 

acid from Roy et al. (1993).  

 

  



Supplementary Methods 

Methods S1. Estimation of discharge and velocity 
The methods used for the estimation of discharge and velocity follow closely the 
methods described in Ulseth et al. (2019). We used slug releases of sodium chloride to 
estimate flow (Q), travel time and velocity (v). We dissolved sodium chloride in a 
bucket of stream water, ensuring that the known mass of salt had completely dissolved 
before releasing it into the stream. Enough salt was dissolved to increase conductivity 
by 50-100% (0.5-500 kg, depending on stream size and background conductivity). The 
conductivity was continuously recorded at the bottom of the reach using conductivity 
loggers (WTW, Xylem, Inc.) until the conductivity returned to background conditions.  

Travel time was defined as the time it took to reach peak conductivity. The velocity was 
calculated by dividing the length of the reach (m) by the travel time (s).  

The stream Q (m3/s) was estimated by integrating under the specific conductivity curve 
according to equation 1: 

𝑄𝑄 = 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
∑ (𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×∆𝑡𝑡𝑛𝑛
𝑖𝑖=1

   (1) 

Where 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 is the specific conductivity of the salt slug added to the stream. We 
calculated 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 using an empirical relationship calculated in the lab that relates the 
mass of the salt to the specific conductivity. 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the specific conductivity 
measured at the end of the reach and ∆𝑡𝑡 is the time step of the conductivity 
measurements (1s).  
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