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Abstract19

In geophysical inverse problems, the distribution of physical properties in an Earth20

model is inferred from a set of measured data. A necessary step is to select data that21

are best suited to the problem at hand. This step is performed ahead of solving the in-22

verse problem, generally on the basis of expert knowledge. However, expert-opinion can23

introduce bias based on pre-conceptions. Here we apply a trans-dimensional algorithm24

to automatically weigh data on the basis of how consistent they are with the fundamen-25

tal assumptions made to solve the inverse problem. We demonstrate this approach by26

inverting arrival times for the location of a seismic source in an elastic half space, un-27

der the assumptions of a point source and constant velocities. The key advantage is that28

the data do no longer need to be selected by an expert, but they are assigned varying29

weights during the inversion procedure.30

Plain Language Summary31

In the Big data era, automated approaches to data evaluation are needed for two32

main reasons: to be able to process a large amount of data in a limited time, and to avoid33

bias introduced by data analysists. In this study we present a novel approach to data34

analysis, where the data themselves measure their consistency with our hypotheses. The35

approach is applied to earthquake location in mines, where millions of seismic events oc-36

cur every year, and automatic processing of seismic data is mandatory. We demonstrate37

that our approach outperforms standard ones when almost nothing is known about the38

data and their measurement errors.39

1 Introduction40

Measured scientific data make possible a quantitative analysis of observations (e.g.,41

a seismometer can record seismic waves, which are only felt by humans as transient phe-42

nomena). Scientific data are routinely processed before making inferences on the spatio-43

temporal distribution of physical quantities and/or physical processes (e.g., arrival times44

for seismic P-waves are extracted from continuous seismic recordings to infer the posi-45

tion of a seismic source). Processing steps can be necessary to remove spurious data (e.g.,46

arrival times from seismic sensors that are not synchronized), but also to enhance data47

to better represent the most relevant signal for the problem being investigated (e.g., seis-48

mic waveforms may be filtered in the frequency domain before picking relative arrival49

times by cross-correlation (VanDecar & Crosson, 1990), for a clear identification of phases50

and for removing noise-site-effect interferences with targeted signal wavelet).51

Geo-scientific data are especially challenging, because they are generally used to52

make inferences on physical quantities which are not directly measurable, but need to53

be estimated by solving an inverse problem (Tarantola, 2005), where processed measure-54

ments (e.g., P-wave arrival times or maximum wavelet amplitudes) are combined with55

hypotheses about the physics of the system (e.g., models of seismic wave propagation56

in the rock volume or seismic energy released by source). In this case, data processing57

typically includes selecting a subset of the data that is most relevant for the problem at58

hand (e.g., by removing arrival times for P-waves that do not travel directly from source59

to receiver). Additionally, seemingly less accurate data are often excluded or apriori down-60

weighted to make them less influential in the final solution (e.g., arrival times recorded61

at distant seismic sensors that are likely to show larger effect of influence by attenua-62

tion or scattering along the ray-path). These data processing steps are usually based on63

expert opinion, but expert decisions made a priori before solving the inverse problem can64

be somewhat arbitrary and bias the inversion results.65
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Here we propose a novel approach to incorporate the choice of weights for the data66

in the inversion process (or, more precisely, the variance of data noise). Our approach67

is based on trans-dimensional Markov chain Monte Carlo (McMC) sampling (Piana Agostinetti68

et al., 2021; Piana Agostinetti & Sgattoni, 2021) and works by proposing and accept-69

ing/rejecting data weighing schemes following the Metropolis algorithm (Sambridge &70

Mosegaard, 2002) where the data weighing schemes have a variable number of param-71

eters (Malinverno, 2002; Sambridge et al., 2006). The complexity of the weighing scheme72

is dictated by the data themselves, rather than by user-defined choices made during pre-73

processing. The assigned weights depend on how closely different data match the fun-74

damental assumptions made in solving the inverse problem.75

We test our approach in the geophysical inverse problem of locating a seismic point76

source using P- and S-wave arrival times recorded by sensors in a seismic network. In77

this inverse problem, data are generally downweighted with distance of the sensor from78

the seismic source or are removed in a pre-processing step if the sensors are farther than79

a chosen distance from the source. In our novel approach, we define a set of spherical80

shells centered on the source (Figure 1a). All sensors within a shell are assigned the same81

weight (Figure 1b), but more complex weight assignments can be made (e.g., weights that82

vary linearly with distance from the source within each shell; see Figure 1c). The num-83

ber of shells, their radii and weights are unknown, and will be defined by the McMC sam-84

pling. The stations that receive the largest weights will be those that measure arrival85

times consistent with the fundamental assumptions made in the inverse problem (namely,86

a point-wise seismic source and constant P- and S-wave velocities in the rock volume).87

Our natural laboratory is Kiirunavaara mine (Sweden), a 6km-long active mine with88

more than 200 seismic sensors in a 3D configuration that spans along the exploited rock89

volume (Dineva et al., 2022). Given such an extensive seismic network, events can be90

well located in three dimensions. We selected two seismic events. The first is a man-made91

blast, used to calibrate the seismic network (Figure 1d). The actual location of this seis-92

mic source is known within < 1 meter and can be immediately used to evaluate our re-93

sults. The second is a natural Mw 4.2 multi-phase seismic event that occurred on May94

18th 2020 (Dineva et al., 2022) and it was recorded on all working sensors in the mine95

(Figure 1e). Our experiment is structured as follows. We first compute a reference so-96

lution for the calibration blast by applying a standard McMC algorithm (see “Materi-97

als and Methods” and (Riva & Piana Agostinetti, 2023)). In this reference solution, we98

do not use our novel approach, but we solve for the source location by removing data99

from sensors at a range of distances from a preliminary location of the seismic source,100

as done in standard seismological workflows in mines. This is intended to simulate a range101

of possible expert opinions on the distance threshold for data selection (here we assume102

that the hypocentral distance is of such utmost importance that observational quality103

differences may be neglected, which is not the case in crustal studies). We then apply104

our novel approach to the complete data set for the calibration blast and compare the105

results with those in the reference solution. Finally, we apply our methodology to the106

natural seismic event. All the necessary details of our novel approach are in the Support-107

ing On-line Materials.108

2 Results109

The reference solution results are in Figure 2. Starting with all the available data110

(all 57 seismic sensors that recorded the blast to a maximum distance of 800 meters from111

the source), we get a posterior mean event location which is about 12 meters away from112

the blast, with estimated uncertainties as large as 7 meters. We then start removing data113

from sensors farther than 700 meters, 600 meters, etc., in steps of 100 meters (see Fig-114

ure 2 and “Materials and Methods”). The event location uncertainties and the differ-115

ences with the actual blast position reach a minimum for a maximum sensor distance116
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of 300 meters (19 sensors). Considering sensors closer to the source (200 meters, 5 sen-117

sors) results in an increase in uncertainties and location error.118

Our novel approach applied to the blast data gives results that are consistent with119

those obtained in the reference solution (Figures 3 and ??). The variation of weights with120

distance for both P- and S-wave arrival times follows a simple pattern, with a single step121

decrease at about 380±30 meters from the source (Figure 3b,c). The weights for S-wave122

arrival times decrease much more sharply than those for P-waves. This main step is well123

defined, as seen from the histogram of the sampled shell radii (Figure 3d), although the124

histogram of the number of shells has a maximum between 5 and 7 (Figure 3a). The sam-125

pled weights result in a cloud of event locations that closely reproduces what was found126

in the reference solution for a maximum distance of 400 meters (red vs. black dots in127

Figure 3e).128

In crustal studies, it has been observed that event location uncertainties depend129

on the azimuthal coverage (Husen et al., n.d.). Here we computed the azimuthal cov-130

erage of the 3D distribution of seismic sensors (see “Materials and Methods”). Azimuthal131

coverage reaches a nearly stable value at a distance of ca. 300 meters from the source,132

and it does not change substantially at greater distances (Figure 3d). The best reference133

solution was found when selecting stations only within 300 m from the source, which is134

also close to the distance where the weights obtained in our new method decrease sub-135

stantially.136

We apply our data-space exploration algorithm to the arrival times of the natu-137

ral event (Figure 4). This event has a magnitude Mw 4.2, it is composed of several sub-138

sequent processes, where the extent of the very first sub-event S1 is likely ca. 100-200139

meters (Dineva et al., 2022)). The final posterior distribution of the source location is140

close to that initially estimated (Figure 4a, b). The pattern of weights with distance is141

more complex compared to that obtained for the blast. There is a main step at about142

1230±70 m, but also three other maxima in the histogram of shell radii (marked with143

colored arrows in Figure 4c). The weights for the P-wave arrival times slightly increase144

from the origin to 150±50 meters (grey arrow) and remain near a maximum value be-145

tween 150±50 and 500±60 meters (red dashed arrow). At greater distances, the weight146

decrease slightly to a nearly constant value out to 1230±70 meters (red arrow), where147

there is a sharp decrease of almost one order of magnitude. The weights increase again148

at about 1900 ± 60 meters (blue arrow).149

We also conducted a test to check whether the overall pattern of weights with dis-150

tance is significantly affected by the simple parameterization of constant weights in each151

spherical shell. To this end, we implemented an alternative parameterization where weights152

are defined at the shell boundaries and vary linearly within each shell (Figure 1c). The153

pattern of weights with distance obtained with linearly varying weights is very similar154

to that obtained with constant weights (see yellow contours in Figure 4c and Support-155

ing On-Line Materials). The choice of parameterization does not seem to strongly con-156

trol the variation of weights with distance.157

3 Discussion158

In our first test with a controlled blast the reference solution seems to outperform159

our novel approach, as the best event location is slightly closer to the blast position for160

sensors at a maximum distance of 300 meters from the source (whereas the weights in161

our approach decrease at distances > 380 meters). This difference is small, however (less162

than 2 meters), and the pattern of the weights closely mimics a step function. We con-163

clude that in this simple case the performance of the two methods is similar (i.e the clas-164

sical approach outperforms our approach only in the case where the maximum distance165

is correctly chosen, 300 m, which is rarely the case).166
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Comparing the results obtained in the two tests carried out with our novel approach,167

we note that the pattern of weights with distance seems to be event-dependent and is168

not a constant in a particular sensor network. While further research would be neces-169

sary to determine which event parameters (e.g., magnitude, location) affect the weight170

pattern, the results indicate that a static workflow for all events would probably intro-171

duce artifacts and underestimate the actual uncertainties. In contrast, our approach is172

adapted to each single event, giving a solution that is statistically consistent and par-173

simonious (in terms of complexity of the weight pattern parameterization).174

The relationship between azimuthal coverage of the event and our results is not straight-175

forward. In the controlled blast, the main decrease in the weights we obtains is near the176

distance where the azimuthal coverage increases substantially (Figures 3d and 4c). On177

the other hand, there is no clear correspondence between weight patterns and azimuthal178

coverage in the test with a natural event. This suggests that azimuthal coverage is only179

one of the factors affecting the reliability of the inverted source location. A workflow based180

on this parameter (e.g., where distant seismic sensors are removed once the azimuthal181

gap decreases below a certain threshold) may not give optimal results. In fact, if the gap182

is larger than 180 degrees with stations in the epicenter near vicinity, a moderately dis-183

tant station closing this gap may be very useful if the real subsurface velocities are not184

perfectly well known (which is almost never the case). On the other hand, closing a gap185

to significantly less than 180 degrees with a single very distant station is at least ques-186

tionable (if not useless) when considering the uncertainties of phase identification and187

frequency difference in first arriving/visible wavelets.188

The pattern of weights allows us to interpret the results in terms of specific prop-189

erties of the rock volumes at different distances from the source. We suggest that the190

seismic sensors closest to the natural event (at distances < 150 meters, first grey cir-191

cle in Figure 4a), very likely are in the source area, where the assumption of a point-wise192

seismic source is not realistic for such a large event. Between the grey and the dashed193

red circle (distances of 150-500 meters) the weights reach their highest values, indicat-194

ing where the inverse problem assumptions should be valid. Indeed, all sensors within195

the red dashed circle in Figure 4a are located on the same side of the ore body, where196

the rock volume is expected to be comparatively homogeneous. Between the dashed and197

solid red circles in Figure 4a (distances of 500-1200 meters) the weights are still high,198

but less than in the previous interval. This is likely due to some ray-paths partially cross-199

ing the ore body and thus violating the homogeneous rock assumption. Farther than 1200200

meters from the source (red circle in Figure 4a), the seismic rays start to densely sam-201

ple the ore body and the surrounding rocks on both sides of the ore body itself. Here202

we can expect that the assumption of a homogeneous rock finally breaks down, and the203

weights decrease significantly. Further investigations are needed to confirm our hypoth-204

esis and to check how complex pattern in weights could be related to a less circularity205

in the data distribution around the seismic source in the case of the natural event than206

in the case of the blast.207

In a more general context, our novel approach can be applied to most of the sci-208

entific inference problems, where huge amount of data need to be pre-processed in some209

way, without introducing bias related to preconceptions of the data-analysts. We men-210

tion that our approach only works if data can be ordered or clusterized in some way. Here211

for example, they are “ordered” with regards to the source-sensor distance. In this case,212

“ordering” is necessary, but it is not the only way of performing the trans-dimensional213

data-space exploration. To apply our approach, we need either a metric to be used to214

”measure” some kind of data-point distance in the data-space, or, equivalently, some kind215

of data characterization which enables data clustering, where the trans-dimentional ap-216

proach is used to define the number of data cluster from the data themselves.217
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Software and Data Availability Statement218

Software and data (i.e., P- and S- arrival times for the blast occurred in the mine)219

has been archived on Mendeley Data Repository (REF) at https://data.mendeley.com/XXXXX.220

For the Editor: Software and data will be made available upon publication221
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Figure 1. The arrival time weights wk are associated with a set of k concentric 3D spheri-

cal shells with radii rk, centered on a preliminary event location. (a) 2D representation of the

spherical shells. (b) Constant weights within each shell. (c) Alternative parameterization with

linearly varying weights within each shell. (d-e) Seismic data used in this study: sensor locations

projected on a horizontal plane (circles) and arrival times for P-waves relative to the earliest

recorded arrival time (circle colors). Dashed circles show the distance in meters from the prelim-

inary event location. Important geological features are depicted with coloured dots: grey = ore

body; blue = clay zones; red/purple = diapir/diabase. Panel (d) shows seismic arrival times for

a calibration blast (yellow Sun symbol), and (e) for a Mw 4.2 event (yellow star). The red box in

(e) shows the smaller area plotted in (d).
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Figure 2. (a) Blast locations obtained in the reference solution with data for sensors that are

within different maximum distances from the actual source location. The last column reports the

distance D between the posterior mean and true location of the source. The best location (where

D is minimum) is obtained with data from sensors up to 300 m from the blast. The X (South),

Y (East), and Z (depth) columns list the posterior mean value for the location coordinates. (b)

Source locations sampled by the McMC algorithm for different maximum source-sensor distances

projected on the X-Z vertical plane (dots). The maximum source-sensor distances are 800 m

(black dots), 700 m (dark blue), 600 m (pink), 500 m (yellow), 400 m (red), 300 m (light blue),

and 200 m (green). Colored circles are posterior mean locations. The yellow sun indicates the

true position of the calibration blast.
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Figure 3. Application of the novel data-weighing method to blast recordings. (a) Poste-

rior probability density function (PDF) of the number of spherical shells, approximated by the

histogram obtained by McMC sampling. (b) Posterior PDF of the weights assigned to P-wave

arrival times as a function of source-sensor distance. Green crosses indicate the distance of each

sensor from the source. (c) As in (b) for S-wave arrival times. (d) Posterior PDF of shell radii.

The blue dashed line indicates the azimuthal gap as a function of distance from the source (see

“Materials and Methods” for a definition). The red dashed line indicate the prior probability

distribution for the shell distance. (e) Sampled source locations projected onto a X-Z vertical

plane (black dots) compared to source locations in the reference solution for a maximum source-

sensor distance of 400 meters (red dots; see Figure 2b). The yellow square shows the posterior

mean source location obtained with the data-weighing method. Colored circles are the posterior

mean source locations obtained in the reference solution (same as in Figure 2b). The yellow sun

indicates the true position of the calibration blast.
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Figure 4. Application of the novel data-weighing method to recordings of the Mw 4.2 natural

event. (a) Seismic network geometry (same as in Figure 1e). Colored circles report the position

of the main modes in the histogram of sampled shell radii, indicated with colored arrows in panel

(c). The inset (b) plots the sampled source locations projected onto a X-Z vertical plane (blue

dots) compared to the preliminary location of the event (yellow star). (c) Posterior probability

density function (PDF) of shell radii, approximated by the histogram obtained by McMC sam-

pling. The colored arrows indicate the main modes in the posterior PDF, corresponding to the

boundaries of the source area (gray arrow), homogeneous rock volume with all sensors on the

same side of the ore body (dashed red), homogeneous rock volume (red), heterogeneous rock

volume (blue). (d) Posterior PDF of the weights assigned to P-wave arrival times as a function

of source-sensor distance. Green crosses indicate the distance of each sensor from the source.

The yellow contours display the posterior PDF of the data weights obtained with the alternative

parameterization in Figure 1c (see also Figure Supportin On-line Materials).
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