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Abstract11

The persistent and growing spread in effective climate sensitivity (ECS) across global12

climate models necessitates rigorous evaluation of their cloud feedbacks. Here we eval-13

uate several cloud feedback components simulated in 19 climate models against bench-14

mark values determined via an expert synthesis of observational, theoretical, and high-15

resolution modeling studies. We find that models with smallest feedback errors relative16

to these benchmark values have moderate total cloud feedbacks (0.4–0.6 Wm−2K−1) and17

generally moderate ECS (3–4 K). Those with largest errors generally have total cloud18

feedback and ECS values that are too large or too small. Models tend to achieve large19

positive total cloud feedbacks by having several cloud feedback components that are sys-20

tematically biased high rather than by having a single anomalously large component, and21

vice versa. In general, better simulation of mean-state cloud properties leads to stronger22

but not necessarily better cloud feedbacks. The Python code base provided herein could23

be applied to developmental versions of models to assess cloud feedbacks and cloud er-24

rors and place them in the context of other models and of expert judgement in real-time25

during model development.26

Plain Language Summary27

Climate models strongly disagree with each other regarding how much warming28

will occur in response to increased greenhouse gases in the atmosphere. This is mainly29

because they disagree on the response of clouds to a warming planet — a process known30

as the cloud feedback that can amplify or dampen warming initially caused by carbon31

dioxide. In this study we compare many models’ cloud feedbacks to those that have been32

determined by a recent expert assessment of the literature. We find that the models whose33

cloud feedbacks most strongly disagree with expert assessment tend to have more ex-34

treme cloud feedbacks and hence warm too much or too little in response to carbon diox-35

ide. The models with total cloud feedbacks that are too large do not have a single mas-36

sive feedback component but rather several components that are larger than in other mod-37

els. Models that simulate current-climate clouds that look more like those in nature also38

simulate stronger amplifying cloud feedbacks, but doing a better job at simulating current-39

climate clouds does not, in general, lead to a better simulation of cloud feedbacks.40

1 Introduction41

Cloud feedback — the change in cloud-induced top-of-atmosphere radiation anoma-42

lies with global warming — is the primary driver of differences in effective climate sen-43

sitivity (ECS) across global climate models (GCMs). This has been the case for all ex-44

isting model intercomparisons, starting with Cess et al. (1989); Cess and others (1990)45

and continuing to the most recent collection of models as part of CMIP6, the 6th phase46

of the Coupled Model Intercomparison Project (Zelinka et al., 2020; Eyring et al., 2016).47

Despite substantial progress in understanding, diagnosing, modeling, and observation-48

ally constraining cloud feedbacks from a variety of approaches, the spread in cloud feed-49

backs across GCMs has remained substantial through the decades and actually increased50

in CMIP6 relative to CMIP5 (Zelinka et al., 2020). Moreover, strengthened cloud feed-51

back — particularly for extratropical low clouds — is the primary reason for the increase52

in average climate sensitivity in CMIP6 relative to CMIP5, as well as for the emergence53

of models with very high ECS above the upper limit of the likely range (1.5–4.5 K) re-54

ported in the fifth assessment report of the Intergovernmental Panel on Climate Change55

(Collins et al., 2013).56

This motivates a desire to evaluate models’ cloud feedbacks against some form of57

ground truth. Such an evaluation is now possible because quantitative values of individ-58

ual cloud feedbacks (and their uncertainties) were recently determined based on an ex-59
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pert synthesis of theoretical, observational, and high-resolution cloud modeling evidence.60

This synthesis was conducted as part of a broader assessment of climate sensitivity, in61

which three semi-independent lines of evidence (process studies, historical climate record,62

and paleoclimate record) were brought together in a Bayesian framework to place robust63

bounds on Earth’s climate sensitivity (Sherwood et al., 2020).64

Our goals in this work are several-fold. First, we evaluate GCM cloud feedback com-65

ponents against those assessed in Sherwood et al. (2020). This allows us to answer sev-66

eral questions, including: Do models with extremely large or small climate sensitivities67

have cloud feedback components that are erroneous? If so, which component(s)? How68

are cloud feedbacks in CMIP6 — and their biases with respect to expert assessment —69

changing from CMIP5? Are some models getting the “right” total cloud feedback via70

erroneous components that compensate?71

Second, we investigate whether the fidelity with which models simulate present-72

day cloud properties is linked to their cloud feedbacks and to the fidelity with which their73

cloud feedbacks agree with expert judgement. A key question is whether better simu-74

lation of present-day cloud properties leads to cloud feedbacks that are better aligned75

with expert judgement. This is particularly relevant because aspects of the cloud sim-76

ulation in many high-ECS CMIP6 models are in many cases considered superior to those77

in CMIP5 (Gettelman et al., 2019; Bodas-Salcedo et al., 2019), yet holistic aspects of the78

climate simulation in these models appear inferior to their lower-ECS counterparts (Zhu79

et al., 2020, 2021; Tokarska et al., 2020; Nijsse et al., 2020)80

Finally, we provide a code base to compute cloud feedbacks and error metrics for81

all of the assessed categories, and visualize them in a multi-model context. This will al-82

low, for example, model developers to evaluate cloud feedbacks in developmental ver-83

sions of their models against expert judgement, other models, and other variants of their84

model, providing them with detailed information about a key process affecting their model’s85

climate sensitivity.86

2 Data and Methods87

We are primarily interested in cloud feedbacks in response to CO2-induced global88

warming, so we make use of abrupt CO2 quadrupling experiments conducted with fully-89

coupled GCMs in CMIP5 and CMIP6 (abrupt-4xCO2). We first compute cloud radia-90

tive anomalies at the top-of-atmosphere (TOA) by multiplying cloud fraction anoma-91

lies with cloud radiative kernels (Zelinka et al., 2012a, 2012b). The cloud fraction anoma-92

lies needed for this calculation are reported in a matrix of 7 cloud top pressure (CTP)93

categories by 7 visible optical depth (τ) categories matching the categorization of the94

International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer, 1999). These95

matrices are produced by the ISCCP simulator (Klein & Jakob, 1999; M. Webb et al.,96

2001), referred to as clisccp in CMIP parlance. Cloud radiative kernels quantify the97

sensitivity of top-of-atmosphere radiative fluxes to small cloud fraction perturbations in98

each of these 49 cloud types. Hence the product of the two yields the radiation anomaly99

from each cloud type, which can be summed over the entire matrix to provide the to-100

tal cloud radiative anomalies at a given location. Because of the reliance on clisccp,101

we are limited in this study to those models that have successfully implemented the Cloud102

Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP;103

Bodas-Salcedo et al., 2011).104

Anomalies are computed with respect to the contemporaneous pre-industrial con-105

trol (piControl) simulation, with three exceptions: CNRM-CM6-1, CNRM-ESM2-1, and106

IPSL-CM6A-LR-INCA did not archive clisccp from the piControl simulation, so we107

take this field from piClim-control, a 30-year long atmosphere-only simulation that uses108
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sea-surface temperatures (SSTs) and sea ice concentrations fixed at the model-specific109

piControl climatology (Pincus et al., 2016).110

We compute cloud feedbacks by regressing annual mean cloud-radiative anomalies111

on annual and global mean surface air temperature anomalies over the duration of the112

150-year abrupt-4xCO2 experiment containing all necessary data. In CMIP6, clisccp113

output is available throughout the full duration of the run, whereas in CMIP5 it is typ-114

ically only available for two non-contiguous 20-year periods, one at the beginning and115

one at the end of the run.116

We focus in this study on feeedbacks estimated from abrupt-4xCO2 experiments117

so as to stay consistent with Sherwood et al. (2020), but have repeated all calculations118

using AMIP experiments with imposed +4K SST perturbations that are spatially uni-119

form (amip-p4K) and patterned (amip-future4K), as described in the CFMIP protocol120

(M. J. Webb et al., 2017). Feedbacks in these simulations were computed as cloud ra-121

diation anomalies normalized by global mean surface air temperature anomalies between122

the +4K experiments and the control amip experiment. All basic conclusions reported123

in this study are insensitive to whether we consider feedbacks diagnosed in amip-p4K,124

amip-future4K, or abrupt-4xCO2 experiments.125

To distinguish feedbacks occurring in regions of large-scale ascent from those oc-126

curring in regions of large-scale descent over tropical oceans, we aggregate all monthly127

control and perturbed climate fields over the tropical oceans into 10-hPa wide bins of128

500 hPa vertical pressure velocity (ω500) following Bony et al. (2004). Anomalies between129

perturbed and control climates are then performed in ω500 space rather than geographic130

space when computing feedbacks. The resulting feedbacks can be further broken down131

into dynamic, thermodynamic, and covariance terms (see Bony et al., 2004), but for the132

purposes of this study, we will consider only their sum, and will further aggregate these133

to “ascent regions” where ω500 < 0 and “descent regions” where ω500 ≥ 0.134

Following Zelinka et al. (2016), we separately quantify feedbacks arising from low,135

boundary layer clouds and from non-low, free tropospheric clouds, hereafter referred to136

as “low” and “high” cloud feedbacks, respectively. This is done by performing the cloud137

feedback calculations using only restricted parts of the clisccp histogram: CTPs > 680138

hPa for low clouds and CTPs ≤ 680 hPa for high clouds. Within these subsets, the cloud139

feedback is further broken down into (1) the “amount” component due to change in to-140

tal cloud fraction holding CTP and τ distribution fixed; (2) the “altitude” component141

due to the change in CTP distribution holding total fraction and τ distribution fixed;142

and (3) the “optical depth” component due to the change in τ distribution holding the143

total fraction and CTP distribution fixed (Zelinka et al., 2013, 2016).144

In Table 1, we list the central value and 1-σ uncertainty of the cloud feedback com-145

ponents assessed in Sherwood et al. (2020) and describe how we compute them in GCMs146

in this study. A large amount of observational evidence, based mainly on inter-annual147

variability, was used to provide quantitative values for the assessed total cloud feedback148

and several of its individual components. In addition, process-resolving models in the149

form of large eddy simulations were a key piece of evidence for the strength of tropical150

marine low cloud feedback, while guidance from theoretical understanding underlies the151

assessed high cloud altitude, tropical anvil, and land-cloud amount feedbacks. While many152

of the expert assessed cloud feedbacks are independent of any GCM results, the assessed153

central value and uncertainty for the high cloud altitude, land cloud amount, and mid-154

dle latitude marine low cloud amount feedbacks were derived at least partially from GCMs,155

albeit a collection that included pre-CMIP5 models that are excluded here and that ex-156

cluded some recently-published CMIP6 models that are included here. Comparing GCM157

results to these values can therefore be thought of as a quick and economical way of eval-158

uating model feedbacks against the very wide body of evidence that forms the basis of159

the expert-assessed cloud feedbacks.160
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Values of effective climate sensitivity (ECS) are taken from Zelinka et al. (2020),161

updated to include recently-available models. These ECS values are computed in a man-162

ner consistent with the cloud feedbacks, by regressing global and annual mean TOA net163

radiative flux anomalies on global and annual mean surface air temperature anomalies.164

Anomalies are computed with respect to the contemporaneous piControl simulation,165

except in IPSL-CM6A-LR-INCA, for which we use piClim-control because no piControl166

fields are available.167

Finally, we compute mean-state cloud error metrics defined in Klein et al. (2013).168

Briefly, these scalars quantify the spatio-temporal error of several modeled climatolog-169

ical cloud properties with respect to the ISCCP observational climatology: (1) the to-170

tal cloud fraction for clouds with τ greater than 1.3; (2) the joint distribution of cloud171

fraction as a function of cloud top pressure and τ for clouds with τ > 3.6; and (3) the172

radiatively-relevant cloud property errors. The radiatively-relevant errors are computed173

as for (2), but cloud fraction anomalies with respect to ISCCP are first multiplied by LW,174

SW, and net (LW+SW) cloud radiative kernels before integrating over month and space.175

We compute the model climatological cloud properties using Atmospheric Model Inter-176

comparison Project (amip) simulations and the observational climatology using the IS-177

CCP HGG product (Young et al., 2018). Both model and observed climatologies are com-178

puted over the 26-year period January 1983 to December 2008, when all model simula-179

tions and observations overlap, but error metrics are very insensitive to the time period180

considered. All error metrics are computed between 60◦S and 60◦N.181

3 Results182

3.1 GCM Cloud Feedbacks Evaluated Against Expert-Assessed Values183

In Figure 1, cloud feedbacks from 7 CMIP5 and 12 CMIP6 models are compared184

with the assessed values for feedback categories listed above. Each feedback value is scaled185

by the fractional area of the globe occupied by that cloud type such that summing all186

components yields the global mean feedback. Each marker is color-coded by its ECS, with187

the color boundaries corresponding to the 5th, 17th, 83rd, and 95th percentiles of the188

Baseline posterior PDF of ECS from Table 10 of Sherwood et al. (2020). In Table 2, we189

list the GCM values and highlight any values that lie outside of the very likely (90%)190

and likely (66%) confidence intervals of expert judgement with double and single aster-191

isks, respectively. Supplementary Figures 1-19 are identical to Figure 1, but with indi-192

vidual models highlighted in each figure for better discrimination.193

Many models fall within the likely range assessed for the high cloud altitude feed-194

back and the multi-model mean is very close to the central assessed value. However, some195

models have weak high cloud altitude feedbacks that lie below the lower bound of the196

likely (MRI-CGCM3 and MIROC6) and very likely (MIROC5 and MIROC-ES2L) con-197

fidence intervals, and some have strong high cloud altitude feedbacks that lie above the198

upper bound of the likely (HadGEM2-ES and CanESM5) and very likely (E3SM-1-0)199

confidence intervals. This feedback component has the greatest number of models (3)200

lying outside of the assessed very likely range; these are the same three models that lie201

outside the assessed very likely range for total cloud feedback. Such inter-model vari-202

ation is striking for a feedback having a strong theoretical basis and both observational203

and high-resolution modeling support.204

Consistent with Klein et al. (2017), the distribution of modeled tropical marine low205

cloud feedback values favors the low end of the expert assessed value. No models exceed206

the central expert assessed value, and several models’ values lie below the lower bound207

of the likely (MIROC5, MRI-CGCM3, MIROC-ES2L, and MIROC6) and very likely (CCSM4)208

confidence intervals.209
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Figure 1. Cloud feedback components estimated from climate model simulations and as as-

sessed in Sherwood et al. (2020). For each component, the individual model values are indicated

with symbols, the multi-model means are indicated with blue (CMIP5) and orange (CMIP6)

bars, and the expert assessed likely and very likely confidence intervals are indicated with black

errorbars. Model symbols are color-coded by ECS with color boundaries corresponding to the

edges of the likely and very likely ranges of the Baseline posterior PDF of ECS from Sherwood et

al. (2020). Identical figures highlighting each individual model are provided in Figures S1-S19.
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In contrast, all but two models (MIROC5 and MIROC-ES2L) underestimate the210

strength of the negative anvil cloud feedback as assessed in Sherwood et al. (2020). Nine211

models have positive anvil feedbacks that place them above the upper bound of the as-212

sessed likely confidence inerval (CanESM2, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3,213

CanESM5, E3SM-1-0, HadGEM3-GC31-LL, IPSL-CM6A-LR, and UKESM1-0-LL).214

All models lie within the assessed likely range for the land cloud amount feedback215

and all but two models (MIROC5 and MIROC6) lie within the assessed likely range of216

the middle latitude marine low cloud amount feedback. These two models have values217

just below the lower bound of the assessed likely confidence inerval.218

Whereas the central estimate of the high latitude low cloud optical depth feedback219

from the assessment is 0, all models simulate a negative feedback. All but two models220

(MIROC-ESM and MPI-ESM-LR) fall within the likely assessed range, however. In the221

multi-model average, the negative feedback values are more than halved in CMIP6 rel-222

ative to CMIP5, bringing CMIP6 models into better agreement with expert judgement.223

This may be related to a weakened cloud phase feedback owing to improved simulation224

of mean-state cloud phase (Bodas-Salcedo et al., 2019; Gettelman et al., 2019; Zelinka225

et al., 2020; Flynn & Mauritsen, 2020). The inter-model spread in this feedback com-226

ponent has also dramatically decreased.227

The unassessed feedback is near zero on average across all models, consistent with228

it being assigned a value of zero in the expert assessment. However, its across-model stan-229

dard deviation and its CMIP5-to-CMIP6 increase in multi-model average are greater than230

for any of the previously discussed individual cloud feedback components. Contributors231

to this feedback will be discussed in greater detail in Section 3.5.232

The sum of all six assessed feedback components is positive in all but two models233

(MIROC5 and MIROC-ES2L) and exhibits substantially more inter-model spread than234

any individual component comprising it. Its standard deviation (σ = 0.30 Wm−2K−1)235

is also larger than would exist if the feedback components comprising it were uncorre-236

lated across models (σ if summing individual uncertainties in quadrature = 0.21 Wm−2K−1),237

as discussed further in Section 3.2. While the multi-model mean value is close to the expert-238

assessed value, some models lie below the lower bound of the assessed likely (CCSM4 and239

MIROC6) and very likely (MIROC5 and MIROC-ES2L) confidence intervals, and two240

lie above the upper bound of the assessed likely confidence interval (E3SM-1-0 and IPSL-241

CM6A-LR).242

The total cloud feedback, which is the sum of assessed and unassessed components,243

has a larger standard deviation than would occur if these two components were uncor-244

related. Owing to this correlation, all but four models (CCSM4, CanESM2, MIROC-ESM,245

and MPI-ESM-LR) exhibit degraded agreement with expert assessment once account-246

ing for their unassessed feedbacks. In addition to the models that fell outside the likely247

and very likely ranges for the sum of assessed feedbacks, there are two additional mod-248

els (CanESM5 and UKESM1-0-LL) that now lie above the upper bound of the assessed249

likely confidence interval, and E3SM-1-0 has now moved above the upper bound of the250

assessed very likely confidence interval.251

Unsurprisingly, models with larger total cloud feedback tend to have higher ECS.252

All models with total cloud feedbacks above the upper limit of the expert-assessed likely253

range are part of CMIP6. These models also have ECS values above 3.9 K, the upper254

limit of the expert-assessed likely ECS range, and three of them have ECS values above255

4.7 K, the upper limit of the very likely ECS range. However, two models with ECS >256

3.9 K (HadGEM2-ES, MIROC-ESM) and even three with ECS > 4.7 K (CNRM-CM6-257

1, CNRM-ESM2-1, and HadGEM3-GC31-LL) have total cloud feedbacks within the likely258

range, indicating that other non-cloud feedbacks are pushing them to very high ECS.259

No models considered here have ECS values below 2.6 K, the lower limit of the Sherwood260
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et al. (2020) assessed likely range. Even the models whose cloud feedbacks lie below the261

lower limit of the likely and very likely total cloud feedback confidence bound still lie within262

the likely ECS range.263

Turning now to the multi-model mean cloud feedback components, we see that the264

mean total cloud feedback is roughly twice as large in CMIP6 than in CMIP5, qualita-265

tively consistent with Zelinka et al. (2020), who assessed a much larger collection of mod-266

els. This occurs because the high cloud altitude, midlatitude marine low cloud amount,267

high latitude low cloud optical depth, and unassessed feedbacks all become more pos-268

itive, on average, in CMIP6. The other feedbacks remain unchanged on average. The269

largest shift among individual components is for the unassessed feedback, discussed fur-270

ther in Section 3.5.271

All multi-model mean assessed feedback components lie within the respective expert-272

assessed likely range. They also lie very close to the central assessed values, with two ex-273

ceptions: The tropical marine low cloud feedback averaged across all models (0.12 ± 0.07274

Wm−2K−1) is about half as large as assessed (0.25 ± 0.16 Wm−2K−1), and the trop-275

ical anvil cloud area feedback averaged across all models is close to zero (−0.02 ± 0.09276

Wm−2K−1), whereas it was assessed to be moderately negative (−0.20 ± 0.20 Wm−2K−1).277

For these two components, GCM values were not used to inform the expert judgement278

value, but rather they were based upon observations and, in the case of tropical marine279

low cloud feedbacks, large eddy simulations that resolve many of the cloud processes that280

must be parameterized in GCMs (see Table 1 of Sherwood et al. (2020)).281

3.2 Correlations Among GCM Cloud Feedbacks282

The previous section provided several indications that models with large positive283

total cloud feedbacks tend to have systematically higher cloud feedbacks for all compo-284

nents rather than having a single anomalously strong positive component, and vice versa285

for models with small or negative total cloud feedbacks. We quantify this more rigor-286

ously in this section by diagnosing the correlation structure among the individual com-287

ponents.288

All individual cloud feedback components are positively correlated with the total289

cloud feedback, especially the high cloud altitude, tropical anvil, midlatitude marine low290

cloud amount, and unassesed feedbacks (Figure 2a, column 1). The high cloud altitude291

feedback has a larger correlation than any other single component. While the tropical292

marine low cloud feedback is significantly correlated with the total, it is markedly weaker293

than for several other components, which is surprising given previous findings that low294

latitude marine low clouds in regions of moderate subsidence drive inter-model spread295

in climate sensitivity (Bony & Dufresne, 2005). The discrepancy may arise from the rel-296

atively small subset of models considered here.297

The positive correlations between individual components and the total cloud feed-298

back is expected: If all the models were distributed randomly for each feedback compo-299

nent, one would expect the models with largest total cloud feedback to be the ones that300

most consistently lie on the positive tail of all components. To demonstrate this, we gen-301

erated normal distributions with 10,000 samples matching the multi-model mean and302

standard deviation for each of the six assessed and one unassessed components and re-303

peated the above calculations on these random data. All individual components are sig-304

nificantly positively correlated with their sum, with correlation strengths proportional305

to the individual component variances (Figure 2b, column 1).306

The prevalence of strong and significant positive correlations among individual feed-307

back components seen in the actual model data is, however, not expected from chance.308

This leads to (1) individual components being more strongly correlated with the total309

cloud feedback and (2) a wider spread in the total cloud feedback than would occur if310
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Figure 2. Matrix showing the across-model correlation among all cloud feedback components

for (a) actual model data and (b) synthetic normally-distributed data with means and stan-

dard deviations equal to those of the models for each feedback component. Correlations that are

significantly different from zero at the 95% confidence level are indicated with an asterisk.

individual components were uncorrelated. Models with large positive total cloud feed-311

backs tend to have systematically larger-than-average cloud feedbacks across multiple312

components rather than being generally near-average but having a single large compo-313

nent. E3SM-1-0, for example, has the largest positive total cloud feedback, and its feed-314

back values are among the three largest in all categories except the land cloud feedback315

(Figure S11 and Table 2). Conversely, models like MIROC5 with negative total cloud316

feedbacks tend to have cloud feedbacks on the left tail of the distribution for all com-317

ponents (Figure S5 and Table 2). Consistent with this, we find that most models with318

near-average total cloud feedbacks have components that are systematically near-average319

rather than having several components with extreme values of opposing sign that counter320

each other. One exception is MPI-ESM-LR, which has feedbacks on the high tail of the321

model distribution for some components and on the low tail for others (Figure S6 and322

Table 2).323

One noteworthy, albeit insignificant, negative correlation in Figure 2a is between324

the tropical marine low cloud feedback and high latitude low cloud optical depth feed-325

back (r = −0.45). This anti-correlation is qualitatively consistent with that shown in Fig-326

ure 3b of Zelinka et al. (2016) and may be traced to compensating errors in how cloud327

micro- and macrophysical properties are simulated (McCoy et al., 2016).328

That all of the significant correlations in Figure 2a are positive might suggest that329

they are linked by a physical mechanism rather than arising from tuning artifacts. More-330

over, several of the significant correlations involve the same cloud types. For example,331

one could consider the tropical and middle latitude marine low-cloud feedbacks and the332

(low-cloud dominated) land cloud amount feedback in one grouping, and the high-cloud333

altitude, anvil, and unassessed feedbacks in another grouping. (As shown in Section 3.5,334

the unassesed feedbacks are dominated by extra-tropical high-cloud amount and opti-335

cal depth components.) Given that they involve similar cloud types, it is plausible that336

positive correlations within these groupings reflect a shared physical mechanism. Other337

large positive correlations (e.g., between high-cloud altitude and tropical and middle lat-338

itude marine low cloud amount) are harder to rationalize. We discuss further implica-339

tions of all of these correlations in Section 4.340
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Figure 3. Total cloud feedback scattered against cloud feedback RMSE, with expert likely

and very likely ranges of total cloud feedback indicated with horizontal shading. Models are de-

noted by letters listed in Table 2 and are colored according to their (a) ECS values and (b) net

radiatively-relevant cloud property error metric.

3.3 Metrics of Overall Cloud Feedback Errors341

To assess the overall skill of each model in matching the expert-assessed cloud feed-342

back components, we compute a single cloud feedback error metric for each model as the343

root mean square error (RMSE) with respect to the central expert judgement value over344

all six assessed feedback components of Sherwood et al. (2020). Each model’s cloud feed-345

back RMSE is provided in Table 2 and is plotted against total cloud feedback in Figure346

3.347

CMIP5 and CMIP6 models exhibit both high and low cloud feedback RMSE val-348

ues, and the multi-model mean RMSE is only slightly smaller in CMIP6 than in CMIP5349

(Table 2). Although the two best-performing models in this measure are CMIP6 mod-350

els, there is no systematic tendency for CMIP6 models to be performing better than CMIP5351

models with respect to expert judgement. For models from the same modelling centers352

that can be tracked between the two generations, more models show improved perfor-353

mance than degraded performance in this measure: CanESM5 [J] has lower RMSE than354

its predecessor (CanESM2 [b]); MRI-ESM2-0 [R] has lower RMSE than its predecessor355

(MRI-CGCM3 [g]); MIROC-ES2L [P] has lower RMSE than its predecessor (MIROC-356

ESM [d]); and MIROC6 [Q] has lower RMSE than its predecessor (MIROC5 [e]); while357

the two UKMO models (HadGEM3-GC31-LL [M] and UKESM1-0-LL [S]) have higher358

RMSE than their predecessor (HadGEM2-ES [c]).359

The four models with smallest cloud feedback errors (i.e., RMSE ≤ 0.10 Wm−2K−1)360

have moderate (0.4–0.6 Wm−2K−1) total cloud feedbacks and moderate (3–4 K) ECS361

values, except for HadGEM2-ES [c] which has an ECS of 4.6 K. This makes sense given362

that the expert-assessed value of total cloud feedback, which has the greatest leverage363

on ECS, led to moderate values of ECS in Sherwood et al. (2020). GFDL-CM4 [L] has364

the lowest RMSE of all models, followed by MRI-ESM2-0 [R]. These are the only mod-365

els for which all assessed feedbacks lie within the expert likely range, and most of their366

feedback components lie near the assessed central values (Figure S12 and S18; Table 2).367

Put simply, they get the right answer for the right reasons.368

Models with too-large or too-small total cloud feedbacks and ECS tend to have larger-369

than-average cloud feedback RMSE values. That is, the models that lie farthest from370

the horizontal dashed line tend to be located on the right side of Figure 3. The models371

with small total cloud feedback and small ECS have cloud feedback components that are372

systematically biased low relative to expert judgement, giving them larger-than-average373

RMSE. Of the five models with ECS < 3 K, only MIROC6 [Q] has a below-average RMSE374
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Figure 4. (a) Total cloud feedback and (b) cloud feedback RMSE scattered against net

radiatively-relevant cloud property error metric. Models are denoted by letters listed in Table 2

and are colored blue for CMIP5 and orange for CMIP6. Expert likely and very likely ranges of

total cloud feedback indicated with horizontal shading in (a). Correlations that are significant at

95% confidence are indicated with an asterisk.

value. The models with large total cloud feedback and large ECS have cloud feedback375

components that are systematically biased high relative to expert judgement, also giv-376

ing them larger-than-average RMSE. Of the nine models with ECS > 4.5 K, only HadGEM2-377

ES [c], CanESM5 [J], and HadGEM3-GC31-LL [M] have below-average RMSE value. E3SM-378

1-0 [K] has the highest RMSE of all models considered. Although it lies within the as-379

sessed likely range for four components, it lies above the upper limit of the assessed likely380

range for two components (Figure S11; Table 2).381

However, several models with total cloud feedbacks very close to the central value382

of expert assessment have moderate and even large RMSE values. Most notably, CNRM-383

ESM2-1 [I] achieves a reasonable total cloud feedback partly through having a low-biased384

tropical marine low cloud feedback that counteracts its high-biased tropical anvil cloud385

area feedback (Figure S9; Table 2). Put simply, it gets the right answer for the wrong386

reasons.387

GFDL-CM4, MRI-ESM2-0, HadGEM2-ES, and CanESM2 remain among the five388

models with lowest RMSE regardless of whether we use feedbacks derived from abrupt-4xCO2389

or amip-p4K experiments.390

3.4 Relationship Between Cloud Feedbacks and Mean-State Cloud Prop-391

erty Errors392

The fidelity with which models simulate mean-state radiatively-relevant cloud prop-393

erties is strongly and significantly correlated with total cloud feedback (Figure 4a). We394

show this result for the net radiatively-relevant cloud property error, but it is also strong395

and significant for the SW-radiation error as well as the cloud property error without396

radiative weighting (not shown). This result is consistent with Figure 11 of Klein et al.397

(2013), but now the relationship holds across two ensembles of models (CMIP5 and CMIP6).398

It is possible that the CFMIP1 models were offset in Klein et al. (2013) because mean-399

state cloud errors are larger in non-AMIP simulations where SSTs can deviate substan-400

tially from those observed in nature. However, we find little support for this, as error401

metrics derived in amip and piControl experiments are virtually indistinguishable (not402

shown). While caution is necessary given the relatively small sample size, an important403

question is why better simulating present-day cloud properties is associated with larger404

cloud feedbacks. We leave this as an open question for future research.405
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On average, mean-state cloud properties are simulated better in CMIP6 than in406

CMIP5 (Figure 4a; Table 2). Six CMIP6 models now have smaller error values than the407

smallest exhibited in CMIP5. For models from the same modeling center than can be408

tracked, all but one has improved in this measure from CMIP5 to CMIP6. Specifically,409

marked improvement is seen from CanESM2 [b] to CanESM5 [J], from HadGEM2-ES410

[c] to HadGEM3-GC31-LL [M] and UKESM1-0-LL [S], and from MIROC5 [e] to MIROC6411

[Q], whereas MRI-ESM2-0 [R] has very slightly degraded mean-state clouds relative to412

MRI-CGCM3 [g].413

It is often implicitly assumed by model developers and model analysts that the de-414

gree to which a model’s clouds resembles reality can be used as a basis to trust their re-415

sponse to climate change. In Figure 4b, we test this assumption by comparing the agree-416

ment with expert judgment for cloud feedbacks to the agreement with observations of417

the present-day climatological distribution of clouds and their properties. The absence418

of any relationship between these two metrics clearly indicates that improved simulation419

of mean-state cloud properties does not lead to improved cloud feedbacks with respect420

to expert judgment. This can also be seen in Figure 3b, where models are color-coded421

by ENET, allowing for a simultaneous assessment of how well models simulate mean-state422

cloud properties and match expert judgment of total cloud feedback and its components.423

From this it is evident that most of the models with small mean-state errors (yellow shad-424

ing) have large cloud feedback RMSE and several lie above the upper limit of the likely425

range of total cloud feedback (i.e., in the top-right portion of the diagram). The one ex-426

ception is GFDL-CM4 [L], which achieves low cloud feedback RMSE, low values of ENET,427

and total cloud feedback near the central value of expert judgement.428

At the same time, simulating worse-than-average mean-state cloud properties is gen-429

erally associated with poorer agreement with the expert-assessed total cloud feedback430

and/or its components. This is evidenced by the fact that most of the models with large431

mean-state errors (purple/black shading) have moderate cloud feedback RMSE and lie432

below the lower limit of the likely range of total cloud feedback (i.e., in the bottom-right433

part of Figure 3b). MPI-ESM-LR [f], which achieves a reasonable total cloud feedback434

despite its large feedback RMSE, has a larger ENET than other models that lie near the435

expert assessed total cloud feedback value.436

3.5 GCM Cloud Feedbacks in Unassessed Categories437

Figure 5 shows a breakdown of explicitly-computed feedbacks that were not assessed438

in Sherwood et al. (2020). Examining these feedback components is important as it may439

guide where future research with observations, process-resolving models, and theory is440

needed to further constrain GCMs’ cloud feedbacks. There are an infinite number of ways441

of breaking down these components, but our strategy was to quantify those that com-442

plement the assessed feedbacks, either in altitude or geographic space, to the extent pos-443

sible. For example, we quantify the low cloud altitude feedback since the high cloud feed-444

back is an assessed category, and we quantify the low cloud optical depth feedback be-445

tween 30 and 90 degrees latitude but excluding the 40–70 degree zone where it was al-446

ready assessed. The sum of these closely reproduces the implied unassessed feedbacks447

in Figure 1 (not shown).448

The multi-model mean unassessed cloud feedback transitions from being −0.06 Wm−2K−1
449

on average in CMIP5 to +0.06 Wm−2K−1 on average in CMIP6. It becomes more pos-450

itive for all individual components except the (very small) low cloud altitude feedback.451

The largest shifts occur for the multi-model mean extratropical high cloud optical depth452

and amount components, which both transition from negative to positive values.453

There are a few models whose unassessed feedbacks sum to a value that is large454

relative to their total and/or combined assessed feedbacks and worth examining in greater455

detail. Strong negative unassessed cloud feedbacks (with values < −0.10 Wm−2K−1) are456
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Figure 5. As in Figure 1, but for cloud feedback components that were not assessed in

Sherwood et al. (2020). Note the x-axis spans a range that is only a third of that in Figure

1.
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around half as large in magnitude as the total cloud feedbacks in MPI-ESM-LR and MIROC5,457

and are actually larger in magnitude than the sum of assessed feedbacks in MIROC-ES2L458

and MIROC6. All of these models have negative high cloud feedbacks in common. Most459

notably, all four have negative extratropical high cloud optical depth and amount com-460

ponents with values < −0.04 Wm−2K−1. Additionally, all but MIROC6 have moder-461

ately negative feedbacks for high cloud amount and optical depth in tropical marine sub-462

sidence regions.463

Anomalously large positive extratropical high cloud feedbacks also cause large pos-464

itive unassessed feedbacks (exceeding +0.17 Wm−2K−1) in three models: E3SM-1-0’s465

extratropical high cloud optical depth feedback is much larger than in any other model,466

while in HadGEM3-GC31-LL and UKESM1-0-LL, this feedback along with an even stronger467

extratropical high cloud amount feedback are jointly responsible.468

4 Discussion and Conclusions469

We have evaluated cloud feedback components simulated in 19 CMIP5 and CMIP6470

models against benchmark values determined via an expert synthesis of observational,471

theoretical, and high-resolution modeling studies (Sherwood et al., 2020). We found that472

models that most closely match the expert-assessed values across several cloud feedback473

components have moderate total cloud feedbacks (0.4–0.6 Wm−2K−1) and generally mod-474

erate ECS (3–4 K). In contrast, models with largest feedback errors with respect to ex-475

pert assessment generally have total cloud feedbacks and climate sensitivities that are476

too large or too small.477

There is no evidence that CMIP6 models simulate cloud feedbacks in better agree-478

ment with expert judgement than do CMIP5 models. While the two best models in our479

error metric are CMIP6 models, more modeling centers show degraded than improved480

performance between their CMIP5 and CMIP6 model versions. All models with total481

cloud feedbacks above the upper limit of the expert-assessed likely range are part of CMIP6482

and have ECS values above 3.9 K, the upper limit of the expert-assessed likely ECS range.483

However, the converse is not true: several models with high ECS have total cloud feed-484

backs within the likely range. This means that large cloud feedback ensures a high ECS,485

but high ECS can emerge even with moderate cloud feedbacks, a result consistent with486

M. J. Webb et al. (2013) for CMIP3 models. More generally, having 2xCO2 radiative487

forcing and feedbacks in agreement with expert judgement does not guarantee that a model’s488

ECS will be in agreement with expert judgement because the latter is further constrained489

by evidence from the paleoclimate and historical records (Sherwood et al., 2020).490

On average, and for most individual modeling centers, mean-state cloud proper-491

ties are better simulated in CMIP6. Better simulation of mean-state cloud properties is492

strongly and significantly correlated with larger total cloud feedback, for reasons that493

remain to be investigated. But more skillful simulation of mean-state cloud properties494

does not, in general, translate to more skillful simulation of cloud feedbacks, and many495

models with small mean-state errors have large cloud feedback errors with respect to ex-496

pert judgment. In general, better simulation of mean-state cloud properties leads to stronger497

but not necessarily better cloud feedbacks. GFDL-CM4, which has the smallest cloud498

feedback error, small mean-state cloud property error, and a total cloud feedback near499

the expert-assessed central value, is the exception to this rule.500

Models with large positive total cloud feedbacks tend to have systematically higher501

cloud feedbacks for all components rather than having a single anomalously strong pos-502

itive component, and vice versa for models with small or negative total cloud feedbacks.503

This means, for example, that there is no single feedback that all high ECS models are504

exaggerating. However, if there is some physical relationship causing the correlation be-505

tween individual feedback components, this may imply that constraining one component506
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would have knock-on effects across several components. In this case, feedbacks from mul-507

tiple cloud types could be constrained with less evidence than would be needed if they508

were uncorrelated, and changing one aspect of a model might systematically change the509

feedbacks from multiple cloud types, making it easier to improve its cloud feedbacks.510

One plausible scenario could involve systematically more positive feedback com-511

ponents in models with optically thicker mean-state clouds. Models with thicker clouds512

would be expected to have larger positive amount components for a given decrease in513

cloud fraction, larger positive altitude feedbacks for a given increase in cloud top alti-514

tude, and weaker negative optical depth feedbacks for a given increase in cloud water515

content. Such a linkage between mean-state cloud properties and multiple feedback com-516

ponents is qualitatively consistent with the strong correlation between skill in simulat-517

ing mean-state clouds and larger cloud feedback noted above. Establishing and under-518

standing the physical basis of correlations among feedback components and their poten-519

tial linkages with mean-state cloud properties is important future work.520

Taken as a whole, cloud feedbacks in CMIP6 exhibit two noteworthy changes rel-521

ative to CMIP5. First, the high latitude low-cloud optical depth feedback has shifted from522

being robustly negative across CMIP5 models, with some models simulating moderately523

strong negative feedbacks below the expert-assessed likely range, to a much weaker neg-524

ative feedback in CMIP6, with the models tightly clustered about it. This represents a525

shift towards better agreement with expert judgement, and may be tied to reductions526

in super-cooled liquid biases in the latest models (Bodas-Salcedo et al., 2019; Gettelman527

et al., 2019; Zelinka et al., 2020). Second, the inter-model spread in the tropical marine528

low-cloud feedback has decreased markedly between CMIP5 and CMIP6, with the across-529

model standard deviation nearly halving. This may indicate some degree of model con-530

vergence in the simulated response of tropical low clouds to warming, albeit one that is531

centered on the lower end of the expert-assessed likely range.532

Results from several individual cloud feedback components raise important ques-533

tions and motivate future investigation:534

• The high cloud altitude feedback strength varies widely across models, despite its535

firm theoretical basis and support from observational analyses and high-resolution536

modeling. This motivates further work to pin down causes of inter-model spread537

and to eliminate sources of bias in this feedback.538

• Although we found that the tropical marine low cloud feedback simulated by most539

models lies at the low end of the expert-assessed likely range, recent observational540

constraints support slightly lower values (Cesana & Del Genio, 2021) (Myers et541

al 2021) owing in part to a better discrimination between strong stratocumulus542

feedbacks and weaker trade cumulus feedbacks. If incorporated into a future as-543

sessment, the expert value of this feedback could be revised downward, likely re-544

sulting in a better alignment between it and the multi-model mean. To the ex-545

tent that the assessed confidence bounds also narrow, however, the models with546

very weak tropical marine low cloud feedbacks may still lie below the expert judge-547

ment range.548

• Despite the wide uncertainty in its expert-assessed value, nine models have pos-549

itive tropical anvil cloud feedbacks that place them above the upper bound of the550

assessed likely confidence interval. This discrepancy between models and expert551

judgment can be traced to the disagreement between models and observations in552

the sensitivity of tropical TOA radiation and deep convective cloud properties to553

interannual fluctuations in surface temperature found in the studies of (Mauritsen554

& Stevens, 2015; Williams & Pierrehumbert, 2017), which were influential in es-555

tablishing the expert-assessed value. Much uncertainty remains surrounding the556

processes controlling tropical anvil cloud fraction and its changes with warming,557
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and the fidelity with which GCMs can simulate them (Bony et al., 2016; Hartmann,558

2016; Seeley et al., 2019; Wing et al., 2020; Gasparini et al., 2021).559

• Cloud feedback components that were not assessed in Sherwood et al. (2020), though560

summing to zero on average across models, have substantial inter-model spread561

and play the largest role in the increase in multi-model average cloud feedback from562

CMIP5 to CMIP6. Of these, extratropical high cloud feedbacks emerge as strong563

in many models. It remains to be established whether and to what extent these564

feedbacks are exaggerated in models or rather important components that need565

to be explicitly included in future assessments. This, along with the aforementioned566

uncertainties surrounding high cloud altitude and anvil cloud feedbacks highlights567

the need for further observational analyses, process-resolving modeling, and the-568

oretical studies targeting high cloud feedbacks.569

We have provided Python code that performs all calculations and generates all vi-570

sualizations presented in this study. The code is also easily modified to accommodate571

comparisons between GCM cloud feedbacks and the similar but not identical breakdown572

of cloud feedback components that is used in the forthcoming 6th Assessment report of573

the IPCC. We envision that this code could be applied to perturbed parameter or per-574

turbed physics ensembles and to developmental versions of models to assess cloud feed-575

backs and cloud errors and place them in the context of other models and of expert judge-576

ment in real-time during model development. This may be particularly valuable in less577

computationally expensive prescribed SST perturbation experiments that are routinely578

performed during model development. Despite their simpler design, these “Cess-type”579

experiments effectively capture the feedbacks present in fully coupled experiments (Ringer580

et al., 2014).581
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