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S1. Illustration of different permutations for Vecchia-Multiscale
We illustrate the effect of different permutations (Figure S1 and S2) by applying the

eight permutations to the hypothetical example in Figure 2 (a) comprising three
datasets: areal datasets R; (64 green pixels) and R, (36 purple pixels), and point dataset
P; (40 blue triangles), making the total number of observations n = 140. The numbers
in columns (I) to (III) in Figure (S1) represent the ordering number in A = {4, ..., A140}
assigned to individual data in P; (I), R; (II) and R, (III) for the different permutations.
Column (IV) denotes the subvector A,,, (color-filled blue triangles, and color-filled

green and purple pixels) for a randomly chosen pixel 4; (color-filled red) for m = 20.

The Joint-Coordinate permutation (Figure S1 (a)-(c)) sorts the data based on the sum of

coordinate values resulting in the data from the three platforms getting ordered from
the lower-left to the upper right along the diagonal. For any pixel 4;, this results in
Ajy.;—1 located close to A;. The subvector 4,,, (selected from elements of A;;_4 closest to
A; in space) is thus located in the immediate neighborhood of A; (Figure S1 (d)).

Middleout ordering is based on the same heuristic as Coordinate ordering and orders the

locations based on increasing distance from the mean location of the study domain

(Guinness, 2018). Thus, it also has 4,,, located in the neighborhood of A; (Figure S1 (h)).

The Joint-Maxmin ordering (Figure S1 (i)-(1)) selects the first pixel / point which is closest
to the mean location of the study domain and then sequentially selects a successive
pixel / point which maximizes the “minimum distance” to previously selected
pixels/points (Guinness, 2018). This results in the pixels/points getting permuted such

that for any A;, A1.;_1 now consist of a good mix of both far and near pixels/points

(Figure S1 (i)-(k)). The subvector A,,, now consist of both far and near data surrounding



A; (Figure S1 (1)). Though Joint-Random (Figure S1 (m)-(p)) is not based on any heuristic,

it can give similar results to Joint-Maxmin (Guinness, 2018).

The corresponding “Separate-" orderings for the four “Joint- orderings are given in
Figure S2. The “Separate-“ orderings separate the point and areal data, apply the
permutations separately to each and then form the final permutation by sorting the
permuted point data followed by the permuted areal data (Figure 4, main text). Though
the “Separate-” orderings retain the heuristic of the corresponding “Joint-“ permutations

separately for point and areal data, the “Separate-” permutations introduce a constraint
that the point data always lie in the beginning of the vector A. For instance, in Figure S2
(Column I) since we have 40 point data, {4y, ..., A4} always represent point data in
“Separate-“ permutations. Now for any areal pixel A; (which for “Separate-“
permutations in this example represent {A,;, ..., A140}), A1.i-1 will always consist of
point data. This often leads to the subvector 4,,, consist of point data which are near to

A; (Figure S2, Column IV).
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Figure S1. Illustration of the “Joint-“ Permutations applied on the example from Figure 2 (a) in the
main text consisting of 40 point data P; and 100 areal pixels in R, (64 pixels) and R, (36 pixels) .
Numbers in columns (I) to (II) represent the ordering number in the vector A = {4, ..., A140}
assigned to data in P; (I), R, (I) and R, (III) for the four different “Joint-“ permutations. Column
(d) denotes the subvector A4,,, (equation 11, main text) comprising color-filled blue triangles, and
color-filled green and purple pixels, for a randomly chosen pixel A; (color-filled red) form = 20.
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Figure S2. Illustration of the “Separate-“ Permutations applied on the example from Figure 2 (a) in
the main text consisting of 40 point data P, and 100 areal pixels in R, (64 pixels) and R, (36 pixels) .

Numbers in columns (I) to (II) represent the ordering number in the vector A = {4, ..., A140}
assigned to data in P; (I), R, (I) and R, (III) for the four different “Separate-” permutations.
Column (d) denotes the subvector 4,,, (equation 11, main text) comprising color-filled blue

triangles, and color-filled green and purple pixels, for a randomly chosen pixel A; (color-filled red)

form = 20.



§2. Simulation

We use simulations for two (e.g, a variable varying across latitude and longitude) and
three (e.g., a variable varying across latitude, longitude and time) dimensions in space
inaregion D = [0,1] x [0,1] and [0,1] x [0,1] x [0,1] respectively. We fix each
dimension between 0 and 1 for generality. The objective of the simulations is to

investigate that for a given value of m, which approximation (equation 11) resulting out
of the eight permutations better approximates the exact likelihood (equation 10). Similar

to the hypothetical example in Figure 2 (a) in the main text, we assume three data
sources for each setting—two aggregate datasets (R; and R;) covering the entire region
D, and point dataset (P;) in D. The number of pixels in R; and R, along with their
resolutions as well as the number of point data P; are given in Table S1. The number of
point data are chosen as 1) 5% of the areal data to represent scenarios where the point
data is sparse compared to areal data, and 2) 25% of the areal data to represent
scenarios where point data are considerable in number compared to areal data. We
assume an equidistant numerical grid § consisting of 11000 points for two dimensions

and 1089 x 11 = 11979 points for three dimensions across D.

As mentioned in the main text, evaluation of the exact likelihood requires quadratic
complexity in the number of assumed grid points ng and cubic complexity in the
number of observations n. Therefore for the simulations, the number of observations of
each platform and the size of the numerical grid are chosen so that the computation of

actual likelihood f(z(A)|0) is feasible.

We use a flexible class of covariance function called the Matern, with a range,
smoothness and variance parameter, for simulating the covariance matrix. Other widely
used covariance functions such as the Exponential and the Gaussian are special cases of
the Matern. We do simulations for range = {0.2, 0.4, 0.6}, smoothness (nu) =

{0.5,1, 1.5}, variance = 1 and measurement error variance (in R; and R,) = {0.05,0.2}.
This ensures that the simulations are carried out for a wide range of parameters

resulting in a total of 72 simulations for each ordering. We perform 72 simulations for
each of the eight orderings and take m =5, 10, 20, 40, 60, 100, 120 and 180.



To control for simulation error, we use the Kullback-Leibler (KL) divergence, which

measures how much information we lose using the approximation f(z(A)|0) (equation

11, main text) over the exact likelihood f(z(A)|6) (equation 10, main text), both using

the true value of the parameters. A lower KL-divergence between f(z(A)|6) and

f(2(A)|0) thus denotes a better approximation. Plots of eight representative
simulations (out of 72) comparing the (log) KL-Divergence of the approximations over
the true likelihood are given in Figure S3. For both 2D and 3D, in general, the Separate-
Maxmin and Separate-Random perform the best while the Coordinate-based orderings
perform the worst. There was no effect of measurement error on the relative
performance of the orderings. Therefore, in general, we suggest adopting Separate-

Maxmin or Separate-Random when using Vecchia-multiscale.

Table S1. Data setting for the simulations in Section S2.

Data |Resolution| Number of pixels/points Grid pc.>ints
per pixel
Two Dimensions
R, 0.09 34 x 34 =1156 9
R, 0.06 52 %52 =2704 4
200( =~ 5%) &
P, - -
1000( =~ 25%)
Total 4060 &
ota ] 4860 ]
Three Dimensions
R, 0.03 11x11x11=1331 9
R, 0.02 16 X 16 x 11 = 2816 4
p 20x 11 =220( = 5%) & i
! 100 x 11 = 1100( ~ 25%)
Total 4367 &
ota ] 5247 ]
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Figure S3 Representative simulations comparing the (log) KL-Divergence of the approximations over the true
likelihood for measurement error variance equal to 0.05. A lower KL-Divergence denotes a better approximation.
For the majority of the simulation settings, the Separate-Maxmin and the Separate-Random lead to better
approximation of the exact likelihood.



S3 Supporting Information for Section 4 in the main text
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Figure S4 Histograms of point soil, SMAP and SMOS soil moisture data for July 06-20, 2017. On the original
scale soil moisture exhibits considerable skewness but on the logit scale the soil moisture distribution becomes

less skewed making the Gaussian assumption tenable.
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Figure S5 Overlapping SMOS and SMAP pixels for July 06-20, 2017. The SMOS pixels are bilinearly
interpolated to the overlapping SMAP pixels for this exploratory analysis. The red line denotes the 1:1 line.
The transformed scale results in a slightly better correlation (R) between the two datasets. On the transformed

scale, it can also be seen that there is a bias between SMOS and SMAP datasets for the analyzed time period.
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Figure S6 Covariate plots for July 06, 2020 for Contiguous US (CONUS). All the four covariates exhibit
considerable heterogeneity across CONUS.
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