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1. MOTIVATION

# Accurately estimating the net seasonal snow accumulation
(or “winter balance”) on glaciers is central to assessing
glacier health and predicting runoff.
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Fig. 1 Schematic of winter balance on an alpine glacier. Modified figure, original by Martin Funk

# Our objective is to quantify uncertainty in estimates of winter
balance from three sources of uncertainty using a Monte Carlo
method.

WINTER BALANCE

= DEPTH X DENSITY
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2. STUDY DESIGN

DATA COLLECTION
* We collected more than 9000 direct measurements of
snow depth across three glaciers in the St. Elias
Mountains, Yukon, Canada in May 2016.

INTERPOLATION
* We use linear regression (LR), combined with cross
validation and model averaging, to interpolate
estimates of snow water equivalent (SWE) from snow
depth and density measurements.

UNCERTAINTY ANALYSIS
* We use a Monte Carlo method to quantify the effects of
three sources of uncertainty: snow depth variability, density
estimation, and data interpolation.
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3. ANALYSIS AND RESULTS
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* We use Monte Carlo analysis to quantify the contribution of three
sources of uncertainty

* Our glacier-wide winter balance
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Fig. 2 Visual representation of the four scales of snow depth variability considered in this study and the Distance from topographic divide (km)

sampling design used to obtain measurements at each scale Fig. 12 Regional context of winter-balance study. (Left) Location of study glaciers within the Donjek Range, St. Elias Mountains, Yukon, Canada. Dashed line LIMITATIONS
indicates mountain-scale topographic divide. (Right) Winter balance of study glaciers along an accumulation gradient on the continental side of the St. Elias _ _ _ _
Taylor-Barge B (1969) The summer climate of the St. Elias Mountain region.
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