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Key Points

We create 3x1000-member ensembles in an atmosphere-only model, taking
boundary conditions from coupled simulations of future extreme winters

The boundary conditions in two of the three winters favour extreme winters and we
find examples that are beyond 1-in-10000 year events

These high-end extremes could be used for more robust adaptation planning and

climate scenario development

Abstract

Recent extreme weather in the UK highlights the need to understand the potential for more

extreme events in the present-day, and how such events may change with global warming. We
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present a methodology for more efficiently sampling extremes in future climate projections.
As a proof-of-concept, we use the UK’s most recent set of national Climate Projections
(UKCP18). UKCP18 includes a 15-member perturbed parameter ensemble (PPE) of coupled
global simulations, providing a range of climate projections incorporating uncertainty in both
internal variability and forced response. However, this ensemble is too small to adequately
sample extremes with return periods over 180 years, which are of interest to policy-makers
and adaptation planners. To better understand the statistics of these events, we use
distributed computing to run three ~1008-member initial-condition ensembles with the
atmosphere-only HadAM4 model at 60km resolution on volunteers’ computers, taking
boundary conditions from future extreme winters within the UKCP18 ensemble. We find that
every UKCP18 extreme winter is captured within our ensembles, and that two of the three
ensembles are conditioned towards producing extremes by the boundary conditions. Our
ensembles contain several extremes that would only be expected to be sampled by a UKCP18
PPE of over 500 members, which would be prohibitively expensive with current
supercomputing resource. The most extreme winters simulated lie above those for UKCP18
by 8.85K for daily maximum temperature and 37% of the present-day average for

precipitation (UK winter means).

Plain language summary

The risk from extreme weather events is important to understand due to the damage that
they can cause. This study is concerned with understanding extremes both in the
present-day, and how they may change with global warming. Extreme weather events can be
difficult to study with climate models due to their rarity: sampling the most extreme events
requires very long simulations. In a climate model containing a representation of both the

atmosphere and ocean such long simulations would be prohibitively expensive. In this study
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we explore a new approach for efficiently sampling extremes over the UK (though it is
applicable to other regions). Starting with a small sample of coupled climate model
simulations, we use surface temperature and sea ice conditions from the most extreme
future winters within these coupled simulations to drive an atmosphere-only model. We run
this model on volunteers’ personal computers, which allows us to create very large
ensembles of simulated winter weather. Our ensembles contain many samples of very
extreme events; some sea surface temperature patterns condition the ensemble towards
producing extremes. Our approach could be used to explore the uncertainty surrounding
extreme weather events at the present-day, or create climate scenarios to inform adaptation

planning.

Key words

climate modelling | climate change projection | understanding extreme weather events | large

ensembles | climate change adaptation

1. Introduction

Weather extremes are one of the most damaging hazards that society faces at the
present-day (The Global Risks Report 2021, 2021). Many studies have now found that
anthropogenic climate change is increasing the frequency and/or magnitude of certain types
of extreme weather, including heatwaves, extreme rainfall and droughts (Seneviratne et al.,
2021). This has therefore resulted in a need to plan how society can adapt to the more
frequent or severe weather extremes projected to occur under continued greenhouse gas

emissions (M. R. Allen et al., 2009; Diffenbaugh et al., 2017; Rahmstorf & Coumou, 2011). In
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order to plan effectively, we must first understand and quantify how extreme weather events

are projected to change into the future.

In the United Kingdom (UK), a key part of this understanding has been informed by the UK
Climate Projections (UKCP) project. The most recent iteration of UKCP (UKCP18) was
released in 2018 (Lowe et al., 2018; Murphy et al., 2018) and included a number of novel
climate model ensembles: a set of transient global simulations from coupled climate models,
with 15 simulations from a single-model perturbed parameter ensemble (PPE) and 13
additional simulations from CMIP5 models; a set of 12 regional climate model simulations;
and a set of 12 convection permitting model projections. In this study, we focus on the set of
15 PPE simulations, and our analysis and results build upon the information provided by

these global runs.

In particular, we are interested in how effectively the UKCP18 PPE has sampled extreme
weather during the UK winter, and in exploring methods for improving the sampling of
extremes that could inform the design of future projections. To this end, we aim to provide
proof-of-concept of a methodology for generating large ensembles of extreme winters. We
first select three exceptional UK winters from the UKCP18 PPE that occurred between 2061
and 2080 (henceforth the “study winters”). We then use the sea surface temperature (SST)
and sea ice (SIC) fields from these winters to force very large perturbed initial-condition
ensembles using the HadAM4 model, which has been implemented to run in the distributed
computing system climateprediction.net at the same horizontal resolution as the UKCP18
global simulations. This allows very large ensembles to be produced and is possible because
HadAM4 requires less computational resources. These ensembles are intended to provide
numerous extreme samples, hence are called the “ExSamples” ensembles. We compare the

statistics of weather extremes in these ExSamples ensembles to both the corresponding
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extreme study winter, and to the whole UKCP18 PPE 2061-2080 climate distribution in order

to answer several science questions:

e Is the atmosphere-only model able to produce equal magnitude extremes to those
within the study winters from the UKCP18 PPE? If the study winter lies outside the
atmosphere-only model distribution, this suggests the importance of coupling to a

dynamic ocean and other differences between the models for producing extremes.

e Were the study winters truly exceptional, or could they have been even more extreme?

e To what extent did the SSTs and SIC during the study winters condition the extreme

response?

e Is carrying out this type of experiment using a computationally cheaper, but less
modern, atmosphere-only model a better methodology for sampling extremes than

increasing the size of the UKCP18 PPE?

In this paper, we first describe the models used, experiment design and statistical
methodologies performed within the study. We then present the results of our experiments,
first comparing the climate distributions of the two models over a present-day baseline
period to assess whether there are any significant biases between them. Taking any biases
into account, we compare the projections from our three future ensembles to the UKCP18
PPE, focussing on how the extreme tail of the climate distribution is sampled. This
comparison allows us to explore the sampling advantage given by, and influence of, the SST
and SIC. The very large ensembles created also allow us to examine the influence of the
large scale dynamics present during the study winters using a circulation analog approach.
We then use a single ensemble member case study to highlight the importance of large
ensembles for sampling unprecedented extreme events that cannot always be statistically

extrapolated from smaller ensembles (Fischer et al., 2021; Gessner et al., 2021). Finally, we
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discuss the insights provided by these experiments, and how they might inform the design of
future projections; also suggesting directions for future research that could further improve

our approach.

2. Study design and methods

2.1 Models

2.1.1 HadGEM3-GC3.05 global climate model

In addition to the ExSamples ensembles, we also analyse UKCP18 global PPE simulations of
the RCP8.5 emission scenario (Riahi et al., 2011). This PPE is based on the global
HadGEM3-GC3.05 coupled ocean atmosphere model (Murphy et al., 2018; Williams et al.,
2018). This combines an 85 vertical level atmosphere model at 5/6 ° zonal and 5/9 °
meridional resolution (N216, ~60 km at mid-latitudes) with a 75 level ocean model at
ORCA®25 (1/4 °) horizontal resolution. The aim of this PPE is to explore a range of plausible
model responses to climate change. The parameters were selected on the basis of the
credibility of the model response on both weather and climate timescales (Karmalkar et al.,
2019; D. M. H. Sexton et al., 2019, 2021; Yamazaki et al., 2021). In this study we use both the
final product 15-member PPE and a 10-member subsample. The 18-member subsample
consists of the 12 members that compose the accompanying UKCP18 regional climate model
projections (Murphy et al., 2018), minus two members that displayed a significant weakening
of the Atlantic Meridional Overturning Circulation (D. Sexton et al., 2020). Henceforth, we
shall refer to the HadGEM3-GC3.05 simulations analysed here as the “UKCP18 PPE”. Unless

stated otherwise, this refers to the 15-member PPE.
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2.1.2 HadAM4 N216 atmospheric model

The novel simulations presented here are performed by the global HadAM4 atmosphere and
land surface model (Webb et al., 2001; Williams et al., 2003). Like its predecessor, HadAM3
(Pope et al., 2000), it includes prognostic cloud, convection and gravity-wave drag
parameterisation schemes, a radiation scheme that treats water vapour and ice crystals
separately, and a land surface scheme. The updates in HadAM4 include a mixed-phase
precipitation scheme, parameterisation of ice cloud particle size and the radiative effects of
non-spherical ice particles, and a revised boundary layer scheme. The version used here
incorporates an upgrade to the spatial resolution (Bevacqua et al., 2021; Watson et al., 2020),
which matches the horizontal resolution of the HadGEM3-GC3.05 simulations analysed here.
HadAM4 has 38 vertical levels; and here the sea surface temperature (SST) and sea ice
fraction (SIC) boundary conditions are taken from specific years and members of the

HadGEM3-GC3.05 UKCP18 PPE simulations.

A key aspect of the HadAM4 simulations described here are that they are performed on the
personal computers of volunteers using the climateprediction.net distributed computing
system (M. Allen, 1999; Anderson, 2004; D. Stainforth et al., 2002). This system has been
used previously to run a range of Hadley Center Unified Model variants (A. Brown et al., 2012),
including a coupled atmosphere-slab ocean model (D. A. Stainforth et al., 2005), a fully
coupled model (Frame et al.,, 2009) and an atmosphere-only model (Pall et al., 2011) similar
to HadAM4. The near thousand member ensembles presented here would be prohibitively
expensive to run using a standard supercomputer, and so we are only able to run the
bespoke experiments presented in this study because of this distributed computing system,
and the volunteers involved. However, the constraints of this system strongly motivate the

choice of HadAM4: it is sufficiently memory-efficient that it can be run on personal
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computers at the same horizontal resolution as the state-of-the-art HadGEM3-GC3.85

model.

Henceforth, we shall refer to the HadAM4 simulations presented here as the “ExSamples”
ensembles. A complete description of the ExSamples ensembles, including the selection of

the prescribed SST/SIC, is given below in “Experiment design”.

2.2 ExSamples experiment design

ExSamples covers six distinct sets of simulations: three future winter and three baseline
period ensembles. The process behind generating each future and corresponding baseline

ensemble is as follows:

1. Select a single winter from within the UKCP18 PPE over the 2061-2080 period. This
winter is chosen on the basis of being particularly “extreme”; more detail on how we

selected the three future winters is given below in “Selecting the three “extreme”

study winters”.

2. Use the SSTs and SICs from this winter to force HadAM4 over the November - March
period (the November of each simulation is used to spin-up the simulation and is
discarded prior to analysis). An ensemble is created from the boundary conditions for
this single winter through initial-condition perturbations. Due to the nature of the
(ongoing) distributed computing system used to run the model (M. Allen, 1999; D. A.
Stainforth et al., 2005), our target final ensemble size is 1500 members, and in this
study we analyse all the members that are complete at the time of writing and pass
our quality control checks, which ranges from 883 to 1836 over the three ensembles

(Sparrow et al., 2021).
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3. We then create a corresponding HadAM4 baseline ensemble by using winter SSTs
and SICs from the same UKCP18 member as the selected winter over the period
2007-2016. For each of the ten years, an ensemble of 50 members is generated
using initial-condition perturbations. This results in a target baseline ensemble size

of 500 members per study winter.

2.2.1 Motivation of the experiment design

In this section we outline the motivation behind our experimental design, with a particular
focus on the differences between the internal variability sampled by a coupled model, and
sampled by an atmosphere-only model. The coupled PPE in UKCP18 samples a series of
events including the most extreme ones, that arise from the response to anthropogenic
forcing plus coupled internal variability. The latter is due to a combination of internal
variability in the ocean, the impact this has on the atmosphere, and internal variability
generated within the atmosphere itself (Sexton et al., 2001). So an extreme deviation about
the long-term forced trend in a coupled simulation might have occurred solely due to
atmospheric internal variability but it is a priori more likely than other years to have had a
contribution from ocean internal variability. Therefore, by picking three winters with the
largest deviations from the long-term climate trend, we hope to capture more winters where
the ocean has strongly influenced the extreme. In years where there is an appreciable
influence from ocean internal variability, which will be manifest in the simulated SST and SIC
patterns along with the long term forced response of the ocean to anthropogenic forcing,
then there is more potential for there to be an additional effect from atmospheric internal
variability to produce greater extremes. Therefore an initial-condition ensemble of
atmosphere-only simulations forced by SSTs, SIC and anthropogenic forcing from a study
winter, where members differ only by atmospheric internal variability, can be used to

distinguish winters where the ocean internal variability has played an important role from
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ones where the ocean has played little role. In the former case, we would expect to sample
extremes beyond the UKCP18 extreme more often than we would by chance from

atmospheric internal variability around the long term forced response.

2.2.2 Definitions of key terms

There are several technical definitions we use throughout this study, which we will define in

this section.

Firstly, a “raw value” is the simulated value straight from the model, as found within the

relevant data product.

“Anomalies” are these raw values set relative to the average absolute value over some
reference period, in order to remove any mean model biases. For the ExSamples simulations,
we define anomalies as the raw values minus the average over the corresponding 2007-2016
baseline ensemble members. For the UKCP simulations, we define anomalies as the raw
values minus the 1997-2026 reference period mean for each PPE member. This longer
30-year period is used to reduce the impact of inter-decadal variability that may be present
in the time series of each member. For precipitation, we show results in terms of the
“percent change” to compensate for differences in average rainfall intensity between the two
models used. Percent changes are calculated as anomalies divided by the average raw value

over the reference period (times 100 %).

Finally, we use “deviations" in the context of the UKCP PPE to refer to the raw values relative
to a long-term trend. Deviations are calculated as the residual of a simple linear regression
computed over time for each PPE member (ie. over the 2061-2080 period). Deviations
therefore represent a basic estimate of the variability about a long-term forced trend. Hence
we use deviations to measure how unusual a particular simulated winter within the UKCP18

PPE is compared to others when a forced trend that may vary across ensemble members is
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present; and also to generate time series that can be fitted using statistical models that
assume the underlying process is stationary. Deviations of the UKCP18 PPE also provide the
closest simple comparison to the atmosphere-only ExSamples ensembles which only sample

atmospheric internal variability.

2.2.3 Selecting the three “extreme” study winters

To generate our future ExSamples ensembles, we needed to select three “extreme” winters
from the UKCP18 PPE projections. We considered winters from the 18-member subsample
over the period 2061-2080, giving a total of 200 candidate winters for selection. The
18-member subsample was used such that the ExSamples ensembles generated here would
be able to be directly compared to the UKCP18 regional climate and convection permitting

model projections if desired in the future.

The variables we used to compare how “extreme” each candidate winter was were the winter
(DJF) mean of daily maximum temperatures, and winter mean precipitation, each averaged
over the UK land region. Since the UKCP18 PPE displays significant forced trends in climate
over the 2061-2080 period and based on the thinking behind the experimental design, we
used the deviations of each candidate winter as the basis for our selection; if we used

anomalies we would naturally bias our selection towards the end of the period.

We aimed to select two “hot” winters and one “wet” winter. As shown in Figure 1, there is one
clear candidate for each type of extreme: UKCP18 PPE member 82868 (ID numbers as
Sexton et al., 2021) year 2066 as a hot winter; and member 82242 year 2068 for the wet
winter. The next most extreme hot winters shown in Figure 1A all had similar deviations, so
we distinguished between them on the basis of their anomalies, choosing member 81554

year 2072, which has the highest anomaly of any of the candidate winters.
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FIG 1: UKCP PPE 2061-2080 deviations. A, DJF mean of daily maximum temperatures
averaged over the UK region. Coloured lines indicate the three UKCP runs from which the study
winters were chosen. The study winters are circled and dotted horizontal lines indicate the
deviation of each study winter. The ensemble member id of the three runs is given in the
legend. B, as A, but for DJF mean precipitation.

Table 1 provides a summary of the study winters selected. For clarity, we refer to the
ExSamples ensembles by the abbreviations given in the final column of Table 1 followed by
ensemble” (so the ensemble that uses the SST/SIC from UKCP18 member 02868 year 2066
is “HOT1 ensemble”, and the corresponding baseline ensemble is “HOT1-B ensemble”). We
use “aggregate baseline ensemble” to denote the aggregate of all three baseline ensembles.
We refer to the corresponding winters as the ensemble abbreviation followed by “ winter”.
Finally, we refer to the UKCP18 PPE ensembles as “UKCP” followed by the period the samples

are taken from.
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Boundary condition (study winter) info

Abbreviation used

UKCP18 member Year Extreme type
Future projections | 02868 2066 HOT HOT1
01554 2072 HOT HOT2
02242 2068 WET WET1
Baseline 02868 2007-2016 - HOT1-B
ensembles
01554 2007-2016 - HOT2-B
02242 2007-2016 - WET1-B

Table 1: Summary of experiments performed for ExSamples project.

2.2.4 Synoptic characterisation of the study winters

Here, we briefly describe the broad synoptic characteristics of each of the three future

winters selected. Figure 2 shows three key characteristics: mean sea level pressure (MSLP)

anomalies over the UK; SST deviations; and Arctic SICs. They display a wide range of

meteorological and climatological features: none of the extreme winters selected are caused

by very similar large-scale features.

The HOT1 winter displays a strong positive NAO pattern. Over the UK the flow is even more

zonal, and has a weaker gradient; the positive NAO pattern is also weaker. This shares

similarities with several weather patterns, including 20 and 23. There is a strong positive

ENSO phase during this winter, alongside moderately positive Atlantic Multidecadal

Variability and negative phase Pacific Decadal Oscillation. This extreme winter places

between the other two in terms of SIC - mean Arctic sea ice fraction is approximately 70 %.
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The HOT2 winter displays a similar MSLP pattern to the first hot winter. In terms of the 30
weather patterns developed by the Met Office (Neal et al., 2016), the mean large scale flow
over the whole winter is closest to weather pattern 20. This weather pattern is associated
with warm and wet weather over the UK (Huang et al.,, 2020; Richardson et al., 2018, 2020),
and has also been shown to be conducive to producing record temperature extremes on daily
timescales (Kendon et al., 2020). During this winter, the El Nino Southern Oscillation (ENSO)
pattern of global SST variability was in a weak La Nina (negative) phase (Deser et al., 2010);
this phase has previously been linked to an increased likelihood of positive NAO (Deser et al.,
2017; M. P. King et al., 2018, 2020; Lépez-Parages et al., 2016). No other modes of SST
variability are present. With regards to SIC, this particular PPE member has virtually entirely
lost all winter Arctic sea ice by 2072. It has been suggested that Arctic sea ice loss may be
linked with more persistent mid-latitude weather patterns (Francis & Vavrus, 2012; Pedersen
et al,, 2016), though this is still a subject of active scientific interest (Kretschmer et al., 2020;

Screen, 2017; Screen & Simmonds, 2013).

The WET winter displays a strong cyclonic south westerly flow with a low west of Ireland;
classified as weather pattern 29. This pattern is associated with generally warm and wet
weather. ENSO is in a neutral phase during this winter; and there are no other modes of SST
variability in significantly positive or negative phases. Of the three study winters, this one has
the smallest change in sea ice relative to the present-day; Arctic sea ice is almost entirely

intact over the winter.
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FIG 2: synoptic features of the study winters within the UKCP simulations. The row titles indicate
the study winter. a, DJF mean MSLP anomalies for each winter. b, DJF mean SST deviations for
each winter. Deviations are calculated for each gridpoint timeseries over 2061-2080. ¢, DJF
mean Arctic sea ice fraction for each winter. The blue dashed line in Aa indicates the area used
for analog subsampling.

2.3 Statistical methods

2.3.1 Estimating distributions of extremes

We estimate distributions using the method of L-moments (Hosking, 1990; Hosking et al.,
1985; Hosking & Wallis, 1997). We use L-moments for their computational efficiency and
stability. Uncertainties in the fit distributions, their CDFs and corresponding return periods

are calculated using a 10,000 resample nonparametric bootstrap. The specific distributions

used for each variable analysed are as follows:
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Mean DJF daily maximum temperatures (TXm) & daily mean precipitation rate (PRm)

We use a generalised pareto distribution (Coles, 2001; Hosking & Wallis, 1987) fit to the
upper quantile of the sample population. When estimating CDFs and corresponding return
periods from the fit, if the value in question lies below the upper quantile, we use the

empirical CDF.

Maximum DJF daily maximum temperatures (TXx)

We use a generalised extreme value distribution fit to the sample population.

Maximum DJF daily mean precipitation rate (PRXx)

We use a generalised logistic distribution (Hosking, 1990) fit to the sample population. A
generalised logistic distribution is used since the tail of the UKCP18 PPE 2061-2080
deviations population is clearly heavier than estimated by best-fit generalised extreme or
generalised pareto distributions; we note that this approach to modelling block maxima of
daily rainfall has some precedent in the literature (Kysely & Picek, 2007; Wan Zin et al.,
2009). This issue is not a feature of the L-Moments estimator used: a maximum likelihood
estimator yields near-identical results. The apparent discrepancy with the generalised
extreme value distribution may arise as the number of independent precipitation events per
season may not be near enough to the asymptotic limit (independent event count = ) for
classical extreme value theory to be appropriate, as noted previously for annual daily rainfall

maxima (Marani & Ignaccolo, 2015).

2.3.2 Analog construction

In order to assess the dynamical contributions to the extreme weather simulated during the
study winters, we use an MSLP analog approach (Cattiaux et al., 2010; Vautard et al., 2016;

Yiou et al.,, 2017). For each future ExSamples ensemble (and each corresponding baseline
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ensemble), we create a subsample of analogs composed of ensemble members that have a
root mean square error (Euclidean distance) of less than 3 hPa from the UKCP18 PPE study
winter average MSLP over the domain enclosed by the dashed blue lines in the top left
subplot of Figure 2 (-30:20°E; 35:70°N). This domain was the best for explaining variance in
UK temperatures and close to best for UK precipitation of those investigated by (Neal et al.,
2016). We used a 3hPa threshold as this was the tightest constraint that resulted in analog
ensembles large enough to infer statistics from with any degree of certainty (>20 members
in each case). The MSLP distance based subsampling results in an ensemble of analogs in
which the mean large scale flow during the winter very closely matches the study winter. We
can then use these ensembles of analogs to estimate the dynamical contribution and

associated uncertainty to the extreme weather.

3. Results

3.1 Comparison of HadAM4 and HadGEM3-GC3.05 baseline
ensembles

Before we can robustly compare the projections within the UKCP18 PPE and ExSamples
ensembles, we must first quantify any differences between the representations of UK climate
within the HadAM4 and HadGEM3-GC3.05 models. We do this by comparing the 15-member
UKCP18 PPE over 2007-2016 (150 members total) with each of the three 2007-2016
ExSamples baseline ensembles (~500 members each) in turn, and their aggregate ensemble.
Here we quantify whether the simulated climates differ using a two-sample
Kolmogorov-Smirnoff (K-S) test (Hodges, 1958; Kolmogorov, 1933; Smirnoff, 1939a, 1939b) at

the 5 % significance level on the anomalies of the variable in question unless stated
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otherwise. We use anomalies here since our main results are presented using anomalies to
account for any model mean biases (and biases between different UKCP18 PPE members),
but note if there are significant differences between the two model climate means. Verifying
the accuracy of these models against reality lies outside of the scope of this paper, but has
already been studied for both the UKCP18 PPE (Murphy et al., 2018) and HadAM4 (Bevacqua

et al., 2021; Watson et al., 2020).

For both mean and maximum DJF daily maximum temperatures over the UK (TXm and TXx
respectively), the UKCP 2007-2016 and ExSamples baseline distributions are highly
comparable (Figures 3, 4, S4, S7, S8, S9). None of the three (nor their aggregate) ExSamples
baseline ensemble distributions are statistically significantly different from the
corresponding UKCP baseline ensemble distributions for either TXm or TXx anomalies. The
ExSamples aggregate baseline ensemble mean biases are +0.06 K and +0.18 K compared to

the UKCP18 PPE for TXm and TXx respectively.

For mean DJF precipitation rate over the UK (PRm), we do find clear differences in the
behaviour of the models. The ExSamples baseline ensembles have a reduced winter average
rainfall intensity compared to the UKCP18 PPE: a 16 % (0.61 mm day”) lower ensemble mean.
They also have a slightly increased spread in winter rainfall. We note that these differences in
simulated UK climate do not appear to be the result of differences in the large-scale
dynamics of the two models over the Euro-Atlantic sector; as investigated using a Principal

Component Analysis in the Supplementary Information. Despite the difference in spread,

none of three ExSamples baseline ensemble distributions are statistically significantly
different from the UKCP18 baseline ensemble distribution for absolute PRm anomalies; nor is
their aggregate. However, due to this discrepancy in mean rainfall intensity between the two
models, we measure projected PRm in percent changes rather than anomalies, both in the

figures presented and analysis carried out. After converting to percentages, the differences
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in the spread of the distributions becomes relatively larger (Figure 5) and the distributions of

percentage anomalies are statistically significantly different.

Despite the differences in PRm, the two models show little difference in their simulated
distributions of the DJF maximum of daily mean precipitation averaged over the UK (PRx).
The difference in mean PRx between all the ExSamples baseline ensembles and the UKCP18
PPE is only 4 % (0.99 mm day™). None of the three (nor their aggregate) ExSamples baseline
ensembles are statistically significantly different from the UKCP 2007-2016 distribution for

PRx anomalies.

3.2 Projections of future extremes

In this section we examine the future ExSamples ensembles and compare them to the
UKCP18 PPE projections. Since we are largely concerned with winters that are extreme as a
whole, rather than isolated extreme weather events within the winters (consistent with our
methodology for selecting the three study winters), we analyse “hot” winters through

DJF-mean temperatures and “wet” winters through DJF-mean precipitation.

3.2.1HOT1

We first address the primary question: was the atmosphere-only HadAM4 model able to
capture the magnitude of the extreme simulated in the study winter by the coupled
HadGEM3-GC3.85 model? Yes - there are four within the HOT1 ensemble that exceed the

TXm value of the study winter, as shown in Figure 3.

However, the prescribed SST/SIC within the HOT1 simulations do not appear to have
conditioned this ensemble towards producing more extremes than would be expected from
an (unconditioned by construction) UKCP18 PPE of the same (increased) size. This is clearly

seen in Figure 3: the distributions of the HOT1 and UKCP 2061-2080 ensembles are very
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similar in the PDF subplot; and the ExSamples return period sample histogram follows the
“1000 member” expectation line closely. We can conclude that despite the HOT1 winter
being an exceptional extreme within the context of the UKCP18 PPE, the associated SST and

SICs did not pre-condition the winter towards (nor away from) such an extreme.

In order to compare the conditioning (effectively the “sampling advantage”) across the three
ensembles, we examine the relative exceedance risk of three different extreme thresholds set
by the following UKCP18 PPE distribution quantiles: 8.9, 0.95 and 0.99; representing 1-in-10,
-20 and -100 year extremes. We do this for both the TXm and PRm variables. We first
calculate the threshold values that correspond to the given extremes using the UKCP
2061-2080 deviations statistical fit (ie. the black line in Figure 3B). We then calculate the
fractions of the UKCP 2061-2080 and ExSamples ensembles that lie above these thresholds.
We present the results in Table 2 in terms of the relative risk of the given extreme in the
ExSamples ensemble compared to the UKCP ensemble. This is calculated as the fraction of
the ExSamples ensemble that exceeds the threshold divided by the corresponding fraction of
the UKCP ensemble, analogous to the “risk ratios” often used in extreme event attribution
studies (Stone & Allen, 2005; Stott et al., 2004 ). This relative risk provides a measure of how
many more samples of extremes of a particular return period we would expect to see in the
ExSamples ensembles compared to a UKCP18 PPE-style ensemble of equal size. The
quantitative results in Table 2 support the picture provided by Figure 3: the HOT1 ensemble
was not conditioned towards producing any more extremes than expected from the
unconditioned UKCP 2061-2080 ensemble (for several thresholds it actually appears to have

been marginally conditioned away from producing extremes).

While the boundary conditions did not have any impact on the likelihood of an extreme
winter, the large-scale dynamical situation of the study winter did. According to the analogs

within the HOT1 ensemble, this specific dynamical situation increased the chance of a
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1-in-100 year winter (based on the UKCP 2061-2080 statistical fit in Figure 3B) by a factor of
6.2 [5.3, 6.9]. A similar level of dynamical conditioning is seen in the baseline ensemble. The
analog-based subsampling also suggests that the prescribed SST/SIC may actually make the
dynamical situation of the study winter less likely to occur than expected from the baseline
climatological rate: the proportion of analogs in the HOT1 ensemble is 20 % lower than in
the HOT1-B ensemble. Note that this change in analog frequency is not significant at the 5 %
level. This change is reflected in the HOT1 ensemble mean MSLP anomalies, which are
negative southwest of the UK and positive northwest of the UK (the opposite pattern to the

study winter).
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FIG 3: comparing statistics of DJF mean of daily maximum temperatures averaged over the UK
region for the HOT1 winter. A, PDFs of baseline and future ensembles. The light orange PDF
shows UKCP 2061-2080 deviations, with the distribution mean set to the ensemble mean
anomaly between 2007-2016 and 2061-2071. The dark orange PDF shows HOT1 ensemble
anomalies. The light grey PDF shows UKCP 2007-2016 anomalies. The dashed horizontal light
orange line indicates HOT1 winter deviation. The dark orange and black dotted bars indicate
mean and likely range (16-84 %) of corresponding analog subsamples. The bracketed values in
the legend indicate the number of ensemble members that exceed the HOT1 winter threshold
over the total number of ensemble members. B, return period diagram. The light orange dots
show the empirical CDF of UKCP PPE 2061-2080 deviations. The solid black line shows the
median generalised pareto distribution fit. The dotted black lines indicate a 5-95 % credible
interval of the distribution fit. The dark orange dashes along left y axis indicate positions of HOT1
ensemble anomalies. C, histograms of sampled return periods. The light orange line indicates the
UKCP 2061-2080 deviations histogram, and the dark orange line the HOT1 ensemble anomalies.
The dashed light orange line indicates the best-estimate return period of the HOT1 winter
deviation. Black contours indicate the expected histogram curve arising from a sample of size
given by the contour labels.

We note that the sampled return periods are calculated using the best-estimate fit distribution
shown in the return period diagram; hence the curves in C and A are related by the transfer
function indicated by the solid black line in B.
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UKCP18 quantile (return period)
Study winter Variable 0.9 (1-in-10 year) 0.95 (1-in-20) 0.99 (1-in-100)
HOT1 TXm 0.9 [0.86 , 0.96] 0.84 [0.77 , 0.97] 0.97 [0.75, 2.32]
PRm 1.02 [0.95 , 1.08] 0.98 [0.85, 1.03] 2.03[1.0, 3.78]
HOT2 TXm 4.25[3.95,4.64] 5.71[4.97 , 6.05] 9.97 [7.34 , 24.8]
PRm 2.93[2.5, 3.22] 3.6[3.17, 3.81] 10.08 [4.5, 16.19]
WET1 TXm 3.75 [3.61 , 4.06] 4.3 [3.67 , 4.7] 5.02[3.53 , 10.14]
PRm 3.96 [3.42 , 4.22] 4.7 [4.22 ,4.94] 11,75 [6.17 , 17.14]

Table 2: Relative risk of three extreme thresholds in ExSamples future ensembles compared to UKCP18 PPE
2061-2080 deviations. Square brackets indicate a 90 % CI.

3.2.2 HOT2

Again, the magnitude of the extreme in the study winter was captured within the HOT2

ensemble.

The HOT2 ensemble produced more extremes than would be expected from a UKCP18 PPE

ensemble of the same size (Figure 4A, C, Table 2), suggesting that it was preconditioned

towards such extremes by the prescribed SST/SIC. We can see from Figure 4C that the HOT2

ensemble samples extremes that we would only expect to see within an unconditional

UKCP18 PPE-type ensemble of total sample size 19,000 (for the period 2061-2080, this

would be 500 members * 20 years = 10,000 samples). Table 2 supports the picture that the

HOT2 ensemble was significantly primed towards producing extremes: the relative risk of a

1-in-100 year event was 10 times greater in the HOT2 ensemble than the UKCP18 PPE for

both hot (TXm) and wet (PRm) extremes.
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In addition to the SST preconditioning, the dynamical situation of the study winter also made
an extreme season more likely, as shown by the horizontal lines representing the likely range
of the analog subsamples in Figure 4A. Based on the number of analogs sampled, the
frequency of this particular large-scale flow was increased by a factor of 3.6 [2.6 , 5.4]
relative to the climatological frequency estimated using the ExSamples baseline ensemble,
which may be due to the prescribed boundary conditions. This would fit within the canonical
picture that the negative La Nina ENSO phase is associated with positive NAO (Bronnimann,

2007; Deser et al., 2017).
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FIG 4: as FIG 4, but for the HOT2 winter.
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3.2.3 WET

Finally, we examine the WET winter extreme. As in both hot winters, the magnitude of the

extreme within the study winter lies within the range of the WET ensemble.

As in the HOT2 ensemble, the prescribed SST/SIC have conditioned the WET ensemble
towards producing more wet extremes than would be expected from an unconditioned
ensemble, as shown by the histogram of sampled return periods and shifted PDF compared
to the UKCP 2061-2080 PDF in Figure 5. This is consistent with the quantitative estimates in
Table 2, which suggest that the WET ensemble was 5 times more likely to produce a 1-in-20

year wet (PRm) extreme, and 12 times more likely to produce a 1-in-100 year extreme.

An analog-based dynamical analysis shows that, once again, the large-scale circulation
pattern present in the study winter was important for the development of the extreme rainfall
that was simulated, consistent with previous weather pattern studies (Richardson et al., 2018,
2020). Interestingly, conditioning on the study winter dynamics appears to have a smaller
influence on the WET ensemble than on the corresponding baseline: the difference between
the distributions implied by the PDF and by the dotted bar is much greater for the baseline
simulations (black) than for the future simulations (dark blue) in Figure 5A. This may be due

to the SST/SIC preconditioning present in the 2072 ensemble.
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FIG 5: as FIG 4, but of DJF mean precipitation averaged over the UK region for the WET winter.

3.3 Sampling record-shattering subseasonal events

Although this study is largely concerned with extremes that occur on seasonal timescales, the
novel large ensembles created here also provide a set of extremes occurring on shorter
weather timescales. Such extreme weather events are of particular importance for decisions
surrounding adaptation to climate change. The “H++" scenario concept has been developed
to inform such adaptation decisions by considering plausible low likelihood but high impact

events that might test the limits to adaptation (D. King et al., 2015; Lowe et al., 2009; Wade
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et al., 2015). Here we consider how the ExSamples methodology could be used to supplement
the UKCP18 PPE with regard to such H++ scenarios by examining a particular ExSamples

ensemble member as a case study.

This case study is an example of extreme DJF maximum of daily maximum temperatures
averaged over the UK (TXx as previously defined). Figure 6 shows a return period diagram of
UKCP 2061-2080 TXx deviations (centered on the mean anomaly for 2061-2071 over
2007-2016), plus a fitted generalised extreme value distribution (GEV) and associated
uncertainty. GEVs are often used to statistically model block maxima of climate variables; and
therefore infer information about the likelihood of such extreme events (S. J. Brown et al.,
2014). However, this statistical approach appears to have inadequately accounted for the risk
of very high impact events, an issue noted previously by Sippel et al. (2015). The dashed dark
orange line in Figure 6 shows the TXx for HOT1 ensemble member cOqu, which lies
considerably above (by 2.3 °C) any UKCP18 PPE samples. This event is roughly 5 standard
deviations above the mean of the UKCP18 deviations distribution shown in Figure 6. This is
an example of a potential “record-shattering” event as discussed by Fischer et al. (2021).
Since the particular GEV fitted to the UKCP18 deviations is type III (Coles, 2001), it sets a
theoretical upper bound on TXx, consistent with the physical laws governing energy transfer
in the climate system. However, in a 100,000 member resample bootstrap, the UKCP inferred
GEV upper bound is only above this most extreme member in 8.3 % of resamples. This is not
due to a mean bias between the two models: they display near-identical climatological
distributions of TXx over the baseline period. We note that this exceptional TXx extreme
arises from a very similar set of meteorological circumstances (not shown) to the
record-breaking winter temperature extreme that occurred over Europe in 2019 (Kendon et
al., 2020; Young & Galvin, 2020). Therefore, the methodology used here could help to provide

examples of the kinds of H++ scenarios used to consider the limits to adaptation.
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FIG 6: as return period diagram of FIG 4, but of DJF maximum of maximum daily temperatures
averaged over the UK region for the HOT1 winter. The statistical model fit indicated by the solid
and dotted black lines is a generalised extreme value distribution over the entire population. Note
the dotted lines indicate a 0.1 - 99.9 % Cl in this instance. The dashed dark orange line shows
the value of the most extreme member within the HOT1 ensemble.

»s 4, Discussion

497 The first science question we aimed to answer through our experiments is also the most
498 straightforward: is the atmosphere-only HadAM4 model able to simulate the highest
499 extremes observed in the UKCP18 HadGEM3-GC3.05 PPE, or do the differences between the

500 models preclude HadAM4 from producing such events? The answer to this is a confident yes.
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We have found that HadAM4 is not only able to closely reproduce the present-day climate
statistics of the more complex model (after correcting the bias in seasonal mean rainfall,
which may be due to model parameterisation), but is able to produce winters just as extreme

as the selected study winters when driven by the SST and SICs from those winters.

The question that naturally follows on from this is: were the selected winters genuinely
exceptional events, or could they have been more extreme? Despite the fact the selected
winters were already far into the tails of the projected climate distribution from UKCP18, the
SST/SIC forced ExSamples experiments show that higher extremes are possible. In the two
winters pre-conditioned by the SST and SIC patterns, there were more higher extremes than
in the winter where the ocean pattern did not contribute to the extreme. Since the ExSamples
ensembles are forced by the same lower boundary conditions as the study winters, they
cannot be used to determine the unconditional likelihood of these higher extremes, but they
do provide plausible and physically consistent scenarios in which such higher extremes

might be generated.

We suggest that the ExSamples methodology is more efficient at sampling extremes than the
simplest alternative approach of increasing the UKCP18 PPE size. We have found that overall,
for both hot and wet extremes, on both seasonal and daily timescales, the future ExSamples
ensembles were able to produce many more samples of extreme winters than would be
expected if we simply increased the UKCP18 2061-2080 ensemble to be the same size as
the ExSamples ensembles. Across the three future ExSamples ensembles, for mean
temperature we sampled 44 winters above the most extreme winter in UKCP18, and 106 for
mean precipitation (using re-centered deviations to define the UKCP18 maxima as shown in
Figures 3-5, S4-S6). However, there is an important caveat to bear in mind here: the
SST/SICs taken from the selected study winters clearly “primed” the corresponding

ExSamples ensembles towards producing relatively more extremes in two of the three cases
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(HOT2 and WET), but not in the third (HOT1). For the two primed study winters, the benefits of
the ExSamples methodology is clear: we get many more samples of extreme winters than
would be expected from an unconditioned ensemble of the same size (like the UKCP18 PPE).
In particular, the HOT2 ensemble produces 10 times more samples of 1-in-100 year TXm and
PRm events than would be expected for an equal-size UKCP18 PPE (from Table 2). For the
third study winter the overall benefits to sampling efficiency are less clear. However, this
winter generated a TXx extreme that far exceeds anything seen in the UKCP18 PPE (and
indeed anything that would be expected to be seen even if the UKCP18 PPE was considerably

larger, based on a statistical extreme value analysis).

In addition to the methodology presented here, the future ExSamples ensembles explored
here represent a data set that may be of considerable interest to the wider scientific
community, since they provide multivariate spatially coherent information for climate
projections of very high return period extremes. These ensembles, and in particular the
physically plausible simulations of extremes within, could be used in the context of “H++
scenarios” to explore and understand the potential impacts of climate change, and the limits
to adaptation planning (Wade et al., 2015). The efficiency with which we have been able to
sample extremes with the ExSamples methodology means that we can provide a much richer
set of future extreme winter events than exist within the UKCP18 PPE. This rich set of events
could be used, for example, by impact modelling, to more fully explore the space of impacts

that may arise from climate change.

A final topic that this study touches on is the use of atmosphere-only versus coupled models.
Here, we have explored both present-day baseline and projected climates from a coupled
model (HadGEM3-GC3.85) and a comparable atmosphere-only model (HadAM4). It has
previously been found that atmosphere-only simulations can underestimate the internal

variability of the climate system (Fischer et al., 2018; He & Soden, 2016), thereby producing
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biases in the estimated frequency of extreme events and their changes in frequency with
climate change, though this is an area of ongoing research (Barsugli & Battisti, 1998; Copsey
et al,, 2006; Dong et al., 2017; Saravanan, 1998). However, for the UK region studied here, we
have not found that this is the case. For the baseline period, the atmosphere-only model did
not systematically underestimate the internal variability of the seasonal (or daily) timescale
extreme variables considered here (Figures 3-5, S4-S12). Since we only have ExSamples
future ensembles for three different sets of SST/SIC conditions, it is more difficult to quantify
whether the projected internal variability is significantly different from the coupled model
simulations, but the climate distributions of the relatively unconditioned HOT1 ensemble

suggest that this is not the case.

If the ExSamples methodology were to be repeated, for the purpose of sampling additional
extremes, being able to pre-select study winters (ie. lower boundary conditions) that
condition the resulting ensembles towards extremes would be of considerable value. Here,
we simply chose three of the most extreme winters within the UKCP18 PPE, expecting that
these would be more likely to produce extremes than a randomly selected winter. This turned
out to be the case for two of the winters we chose, but not the third. Understanding what
features of the prescribed SST and SIC patterns caused the ensembles to be conditioned
towards extremes would be a very useful direction for further study to take. If future research
were able to provide evidence of such features, then we could pre-select study winters more
intelligently, and therefore sample extremes even more efficiently. There has been some
previous work done on the subject of how SST patterns affect seasonal mid-latitude weather
that could potentially be used in this manner (Baker et al., 2019). On a related note, our
methodology could be used to understand real extremes in the present-day by driving the
model with observed rather than simulated SST/SICs. This would allow some exploration of

whether extremes that have already occurred might have been even more extreme.
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Another research direction that could be taken would be to attempt to extract additional
information from the existing set of events provided by the ExSamples ensembles presented
here. Although the ~60 km (N216) resolution of both the ExSamples ensemble and UKCP18
PPE is very competitive within the context of the current generation of climate models
(CMIP6 Source_id Values, n.d.; Eyring et al., 2016), it is still relatively coarse for providing
assessments of weather events on small spatial or temporal scales. For example,
catchment-scale hydrological modelling would require much higher spatial resolutions
(Charlton et al.,, 2006). Hence, we suggest that the ExSamples ensembles could be
statistically downscaled (or dynamically downscaled using a regional model if suitable model
output was stored to drive these models) in order to provide information that is more relevant
for localised climate change adaptation planning. Such downscaling could result in an
extensive set of extreme local scenarios to complement the raw model output that provides a
corresponding set of extreme national scenarios. For downscaling to be trustworthy, the
large-scale dynamical features of the input simulations must be an accurate representation
of reality. The analysis that we have performed here suggests this is the case: as

demonstrated in the Supplementary Information, the large-scale dynamics over the

Euro-Atlantic sector within HadAM4 very closely replicates those within HadGEM3-GC3.05.

5. Concluding remarks

In this study we have presented a new set of ~1000-member ensembles of simulations from
the HadAM4 atmosphere-only model, run on the personal computers of volunteers using a
distributed computing system, to allow the study of extreme weather events. The lower
boundary conditions of these ensembles were taken from three of the most extreme winters
within the UKCP18 PPE between 2061-2080, and they therefore represent a comprehensive

sampling of atmospheric internal variability conditioned on the prescribed SST, SIC and
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anthropogenic forcings. Corresponding ensembles for a 2007-2016 baseline period were also
run to enable the HadAM4 model to be verified against the coupled HadGEM3-GC3.05

model used in UKCP18.

We find that the HadAM4 ensembles are able to simulate winters with temperature and
precipitation anomalies that exceed the magnitudes of the most extreme examples within
the UKCP18 PPE. Conditioning from the prescribed SST/SICs present in two of the three
ensembles resulted in significantly more extremes being sampled by these ensembles than
would be expected from a UKCP18 PPE-style ensemble of the same size: around 10 times

more 1-in-100 year extremes.

The computational efficiency with which our methodology was able to sample such extremes
provides a compelling argument for how it could be used to support future climate projection
efforts. The ensembles that we have presented here could themselves be used to provide
physically plausible simulations of extreme weather in the context of H++ scenarios and for
adaptation planning. Although we have focussed on the UK in this study, our methodology
could be applied to other regions, subject to proper model validation (Murphy et al., 2018;

Watson et al., 2020).
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Code and data availability

The code used to carry out the analysis and produce the figures within this study are

available at https://github.com/njleach/ExSamples-analysis-notebooks.

The novel ExSamples data used in this study are available from MASS via the CEDA archive

(https://help.jasmin.ac.uk/category/227-mass). They are located at

/adhoc/projects/qump_hadgem3/ExSamples/netcdf/product/20210622. The UKCP data used
in this study are available from the CEDA archive

(http://data.ceda.ac.uk/badc/ukcp18/data/land-gcm/global/6Okm/rcp85).

References

Allen, M. (1999). Do-it-yourself climate prediction. Nature, 401(6754), 642-642.
https://doi.org/10.1038/44266

Allen, M. R, Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., &
Meinshausen, N. (2009). Warming caused by cumulative carbon emissions towards
the trillionth tonne. Nature, 458(7242), 1163-1166.
https://doi.org/10.1038/nature®8019

Anderson, D. P. (2004). BOINC: A system for public-resource computing and storage. Fifth
IEEE/ACM International Workshop on Grid Computing, 4-10.

https://doi.org/10.1189/GRID.2004.14


https://github.com/njleach/ExSamples-analysis-notebooks
https://help.jasmin.ac.uk/category/227-mass
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

Baker, H. S., Woollings, T., Forest, C. E., & Allen, M. R. (2019). The Linear Sensitivity of the
North Atlantic Oscillation and Eddy-Driven Jet to SSTs. Journal of Climate, 32(19),
6491-6511. https://doi.org/10.1175/JCLI-D-19-0038.1

Barsugli, J. J., & Battisti, D. S. (1998). The Basic Effects of Atmosphere-Ocean Thermal
Coupling on Midlatitude Variability. Journal of the Atmospheric Sciences, 55(4),
477-493. https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2

Bevacqua, E., Shepherd, T. G., Watson, P. A. G., Sparrow, S., Wallom, D., & Mitchell, D. (2021).
Larger Spatial Footprint of Wintertime Total Precipitation Extremes in a Warmer
Climate. Geophysical Research Letters, 48(8), e2020GLO91990.
https://doi.org/10.1029/2020GLO91990

Bronnimann, S. (2007). Impact of El Nifio-Southern Oscillation on European climate. Reviews
of Geophysics, 45(3). https://doi.org/10.1029/2006RGOO0199

Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., & Shelly, A. (2812). Unified Modeling
and Prediction of Weather and Climate: A 25-Year Journey. Bulletin of the American
Meteorological Society, 93(12), 1865-1877.
https://doi.org/18.1175/BAMS-D-12-00018.1

Brown, S. J., Murphy, J. M., Sexton, D. M. H., & Harris, G. R. (2014). Climate projections of
future extreme events accounting for modelling uncertainties and historical
simulation biases. Climate Dynamics, 43(9), 2681-2705.
https://doi.org/10.1007/s00382-014-2080-1

Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., & Codron, F. (2010). Winter
2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters,
37(20). https://doi.org/10.1829/2010GLO44613

Charlton, R,, Fealy, R., Moore, S., Sweeney, J., & Murphy, C. (2006). Assessing the Impact of
Climate Change on Water Supply and Flood Hazard in Ireland Using Statistical

Downscaling and Hydrological Modelling Techniques. Climatic Change, 74(4),


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

671 475-491. https://doi.org/10.1007/s10584-006-0472-x

672 CMIP6 source_id values. (n.d.). Retrieved 10 August 2021, from

673 https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id.html

674 Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag.
675 https://doi.org/10.1007/978-1-4471-3675-0

676 Copsey, D., Sutton, R., & Knight, J. R. (2006). Recent trends in sea level pressure in the Indian
677 Ocean region. Geophysical Research Letters, 33(19).

678 https://doi.org/10.1029/2006GL027175

679 Deser, C., Alexander, M. A,, Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature

680 Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115-143.
681 https://doi.org/10.1146/annurev-marine-120408-151453

682 Deser, C., Simpson, I. R., McKinnon, K. A., & Phillips, A. S. (2017). The Northern Hemisphere

683 Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It
684 and How Do We Evaluate Models Accordingly? Journal of Climate, 30(13),
685 5059-5082. https://doi.org/10.1175/JCLI-D-16-0844.1

686 Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., Charland, A.,

687 Liu, Y., Haugen, M., Tsiang, M., & Rajaratnam, B. (2017). Quantifying the influence of
688 global warming on unprecedented extreme climate events. Proceedings of the

689 National Academy of Sciences, 114(19), 4881-4886.

690 https://doi.org/10.1873/pnas.1618082114

691 Dong, B., Sutton, R. T, Shaffrey, L., & Klingaman, N. P. (2017). Attribution of Forced Decadal
692 Climate Change in Coupled and Uncoupled Ocean-Atmosphere Model Experiments.
693 Journal of Climate, 30(16), 6203-6223. https://doi.org/10.1175/JCLI-D-16-0578.1

694 Eyring, V., Bony, S., Meehl, G. A,, Senior, C. A, Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016).
695 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)

696 experimental design and organization. Geoscientific Model Development, 9(5),


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

1937-1958. https://doi.org/10.5194/gmd-9-1937-2016

Fischer, E. M., Beyerle, U., Schleussner, C. F.,, King, A. D., & Knutti, R. (2018). Biased Estimates
of Changes in Climate Extremes From Prescribed SST Simulations. Geophysical
Research Letters, 45(16), 8500-8509. https://doi.org/10.1029/2018GLO79176

Fischer, E. M., Sippel, S., & Knutti, R. (2021). Increasing probability of record-shattering
climate extremes. Nature Climate Change, 1-7.
https://doi.org/10.1038/s41558-021-01092-9

Frame, D. j, Aina, T., Christensen, C. m, Faull, N. e, Knight, S. h. e, Piani, C., Rosier, S. m,
Yamazaki, K., Yamazaki, Y., & Allen, M. r. (2009). The climateprediction.net BBC
climate change experiment: Design of the coupled model ensemble. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 367(1890), 855-870. https://doi.org/10.1098/rsta.2008.0240

Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather
in mid-latitudes. Geophysical Research Letters, 39(6).
https://doi.org/10.1829/2012GLO51000

Gessner, C., Fischer, E. M., Beyerle, U., & Knutti, R. (2021). Very Rare Heat Extremes:
Quantifying and Understanding Using Ensemble Reinitialization. Journal of Climate,
34(16), 6619-6634. https://doi.org/10.1175/JCLI-D-20-0916.1

He, J., & Soden, B. J. (2016). Does the Lack of Coupling in SST-Forced Atmosphere-Only
Models Limit Their Usefulness for Climate Change Studies? Journal of Climate,
29(12), 4317-4325. https://doi.org/10.1175/JCLI-D-14-80597.1

Hodges, J. L. (1958). The significance probability of the smirnov two-sample test. Arkiv For
Matematik, 3(5), 469-486. https://doi.org/10.18007/BF02589501

Hosking, J. R. M. (1990). L-Moments: Analysis and Estimation of Distributions Using Linear
Combinations of Order Statistics. Journal of the Royal Statistical Society: Series B

(Methodological), 52(1), 185-124. https://doi.org/10.1111/j.2517-6161.1990.tbO1775.x


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and Quantile Estimation for the Generalized
Pareto Distribution. Technometrics, 29(3), 339-349.
https://doi.org/10.1080/00401706.1987.1048824 3

Hosking, J. R. M., & Wallis, J. R. (1997). Regional Frequency Analysis. In Regional Frequency
Analysis. Cambridge University Press. https://doi.org/10.18017/cb09780511529443

Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments.
Technometrics, 27(3), 251-261. https://doi.org/10.1080/00401706.1985.10488049

Huang, W. T. K., Charlton-Perez, A., Lee, R. W., Neal, R,, Sarran, C., & Sun, T. (2020). Weather
regimes and patterns associated with temperature-related excess mortality in the UK:
A pathway to sub-seasonal risk forecasting. Environmental Research Letters, 15(12),
124052. https://doi.org/10.1088/1748-9326/abcbba

Karmalkar, A. V., Sexton, D. M. H., Murphy, J. M., Booth, B. B. B., Rostron, J. W., & McNeall, D. J.
(2019). Finding plausible and diverse variants of a climate model. Part II:
Development and validation of methodology. Climate Dynamics, 53(1), 847-877.
https://doi.org/10.1007/s00382-019-04617-3

Kendon, M., Sexton, D., & McCarthy, M. (2020). A temperature of 20°C in the UK winter: A
sign of the future? Weather, 75(10), 318-324. https://doi.org/18.1002/wea.3811

King, D., Schrag, D., Dadi, Z., Ye, Q., & Ghosh, A. (20815). Climate change: A risk assessment.
UK Foreign & Commonwealth Office.
https://www.csap.cam.ac.uk/projects/climate-change-risk-assessment/

King, M. P., Herceg-Buli¢, 1., Bladé, 1., Garcia-Serrano, J., Keenlyside, N., Kucharski, F., Li, C., &
Sobolowski, S. (2018). Importance of Late Fall ENSO Teleconnection in the
Euro-Atlantic Sector. Bulletin of the American Meteorological Society, 99(7),
1337-1343. https://doi.org/10.1175/BAMS-D-17-0020.1

King, M. P., Yu, E., & Sillmann, J. (2020). Impact of strong and extreme El Nifios on European


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

749 hydroclimate. Tellus A: Dynamic Meteorology and Oceanography, 72(1), 1-10.

750 https://doi.org/10.1080/16000870.2019.1704342

751 Kolmogorov, A. N. (1933). Sulla Determinazione Empirica di Una Legge di Distribuzione.

752 Giornale Dell’Istituto Italiano Degli Attuari, 4, 83-91.

753 Kretschmer, M., Zappa, G., & Shepherd, T. G. (2020). The role of Barents-Kara sea ice loss in
754 projected polar vortex changes. Weather and Climate Dynamics, 1(2), 715-730.

755 https://doi.org/18.5194/wcd-1-715-2020

756 Kysely, J., & Picek, J. (2007). Probability estimates of heavy precipitation events in a

757 flood-prone central-European region with enhanced influence of Mediterranean
758 cyclones. Advances in Geosciences, 12, 43-50.
759 https://doi.org/10.5194/adgeo-12-43-2007

760 Loépez-Parages, J., Rodriguez-Fonseca, B., Dommenget, D., & Frauen, C. (2016). ENSO

761 influence on the North Atlantic European climate: A non-linear and non-stationary
762 approach. Climate Dynamics, 47(7), 2071-2084.
763 https://doi.org/10.1007/s00382-015-2951-0

764 Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., Edwards,

765 T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, T., Kaye, N.,
766 Kendon, E., Krijnen, J., ... Belcher, S. (2018). UKCP18 Science Overview Report. Met

767 Office Hadley Centre.

768 https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-0
769 verview-report.pdf

770 Lowe, J. A., Howard, T. P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S., Milne, G., Leake, J., Wolf,

771 J., Horsburgh, K., Reeder, T., Jenkins, G., Ridley, J., Dye, S., & Bradley, S. (2009). UK
772 Climate Projections science report: Marine and coastal projections. Met Office Hadley
773 Centre.

774 https://webarchive.nationalarchives.gov.uk/ukgwa/20181204111026 mp_/http://ukclimat


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

775 eprojections-ukcp®9.metoffice.gov.uk/media.jsp?mediaid=87906&filetype=pdf
776 Marani, M., & Ignaccolo, M. (2015). A metastatistical approach to rainfall extremes. Advances
777 in Water Resources, 79, 121-126. https://doi.org/10.1016/j.advwatres.2015.03.001

778 Murphy, J. M., Harris, G. R,, Sexton, D. M. H., Kendon, E. J., Bett, P. E., Clark, R. T., Eagle, K. E.,

779 Fosser, G., Fung, F.,, Lowe, J. A,, McDonald, R. E., McInnes, R. N., McSweeney, C. F.,

780 Mitchell, J. F. B,, Rostron, J. W., Thornton, H. E., Tucker, S., & Yamazaki, K. (2018).

781 UKCP18 Land Projections: Science Report. Met Office.

782 https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-L
783 and-report.pdf

784 Neal, R, Fereday, D., Crocker, R., & Comer, R. E. (2016). A flexible approach to defining
785 weather patterns and their application in weather forecasting over Europe.
786 Meteorological Applications, 23(3), 389-400. https://doi.org/10.1002/met.1563

787 Pall, P., Aina, T., Stone, D. A,, Stott, P. A., Nozawa, T., Hilberts, A. G. J., Lohmann, D., & Allen, M.

788 R. (2011). Anthropogenic greenhouse gas contribution to flood risk in England and
789 Wales in autumn 2000. Nature, 470(7334), 382-385.
790 https://doi.org/10.1038/nature®9762

791 Pedersen, R. A., Cvijanovic, 1., Langen, P. L., & Vinther, B. M. (2016). The Impact of Regional
792 Arctic Sea Ice Loss on Atmospheric Circulation and the NAO. Journal of Climate,

793 29(2), 889-902. https://doi.org/108.1175/JCLI-D-15-0315.1

794 Pope, V. D., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (20080). The impact of new physical
795 parametrizations in the Hadley Centre climate model: HadAM3. Climate Dynamics,

796 16(2), 123-146. https://doi.org/10.1007/s003820050009

797 Rahmstorf, S., & Coumou, D. (2011). Increase of extreme events in a warming world.

798 Proceedings of the National Academy of Sciences of the United States of America,
799 108(44), 17905-17909. https://doi.org/10.1873/pnas.1101766108

800 Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., &


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

801 Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas

802 emissions. Climatic Change, 109(1-2), 33-57.

803 https://doi.org/10.1007/s10584-011-0149-y

804 Richardson, D., Fowler, H. J., Kilsby, C. G., & Neal, R. (2018). A new precipitation and drought
805 climatology based on weather patterns. International Journal of Climatology, 38(2),
806 630-648. https://doi.org/10.1002/joc.5199

807 Richardson, D., Neal, R., Dankers, R., Mylne, K., Cowling, R., Clements, H., & Millard, J. (2020).

808 Linking weather patterns to regional extreme precipitation for highlighting potential
809 flood events in medium- to long-range forecasts. Meteorological Applications, 27(4),
810 e€1931. https://doi.org/10.1002/met.1931

811 Saravanan, R. (1998). Atmospheric Low-Frequency Variability and Its Relationship to

812 Midlatitude SST Variability: Studies Using the NCAR Climate System Model. Journal
813 of Climate, 11(6), 1386-1404.
814 https://doi.org/10.1175/1520-0442(1998)011<1386:ALFVAI>2.0.CO;2

815 Screen, J. A. (2017). The missing Northern European winter cooling response to Arctic sea ice
816 loss. Nature Communications, 8(1), 14603. https://doi.org/10.1038/ncomms14603

817 Screen, J. A., & Simmonds, I. (2013). Exploring links between Arctic amplification and

818 mid-latitude weather. Geophysical Research Letters, 40(5), 959-964.

819 https://doi.org/10.1002/grl.50174

820 Seneviratne, S. 1., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S.,

821 Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, 1., Satoh, M., Vincente-Serrano, S. M.,
822 Wehner, M., & Zhou, B. (2021). Weather and Climate Extreme Events in a Changing

823 Climate. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N.
824 Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R.

825 Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, & B. Zhou (Eds.), Climate

826 Change 2021: The Physical Science Basis. Contribution of Working Group I to the


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press.

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_12.pdf

Sexton, D. M. H., Karmalkar, A. V., Murphy, J. M., Williams, K. D., Boutle, I. A., Morcrette, C. J.,

Stirling, A. J., & Vosper, S. B. (2019). Finding plausible and diverse variants of a
climate model. Part 1: Establishing the relationship between errors at weather and
climate time scales. Climate Dynamics, 53(1), 989-1022.

https://doi.org/10.1007/s00382-019-04625-3

Sexton, D. M. H., McSweeney, C. F.,, Rostron, J. W., Yamazaki, K., Booth, B. B. B., Murphy, J. M.,

Regayre, L., Johnson, J. S., & Karmalkar, A. V. (2021). A perturbed parameter ensemble
of HadGEM3-GC3.05 coupled model projections: Part 1: selecting the parameter
combinations. Climate Dynamics, 56(11), 3395-3436.

https://doi.org/10.1007/s00382-021-05709-9

Sexton, D. M. H., Rowell, D. P., Folland, C. K., & Karoly, D. J. (2001). Detection of

anthropogenic climate change using an atmospheric GCM. Climate Dynamics, 17(9),

669-685. https://doi.org/10.1007/s003820000141

Sexton, D., Yamazaki, K., Murphy, J., & Rostron, J. (2020). Assessment of drifts and internal

variability in UKCP projections (p. 20). Met Office.
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/uk

cp/ukcp-climate-drifts-report.pdf

Sippel, S., Mitchell, D., Black, M. T., Dittus, A. J., Harrington, L., Schaller, N., & Otto, F. E. L.

(2015). Combining large model ensembles with extreme value statistics to improve
attribution statements of rare events. Weather and Climate Extremes, 9, 25-35.

https://doi.org/10.1016/j.wace.2015.06.004

Smirnoff, N. (1939a). On the estimation of the discrepancy between empirical curves of

distribution for two independent samples. Bulletin Mathématique de L Université de


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

Moscow, 2(2), 3-11.

Smirnoff, N. (1939b). Sur les écarts de la courbe de distribution empirique. Matematicheskii
Sbornik, 6(48)(1), 3-26.

Sparrow, S., Sexton, D., Leach, N. J., Watson, P. A. G., & Wallom, D. C. H. (2021). ExSamples
Simulation Dataset. Scientific Data, in prep.

Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J.
A, Knight, S., Martin, A.,, Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A,,
Thorpe, A. J., & Allen, M. R. (2005). Uncertainty in predictions of the climate response
to rising levels of greenhouse gases. Nature, 433(7024), 403-406.
https://doi.org/10.1038/nature®3301

Stainforth, D., Kettleborough, J., Allen, M., Collins, M., Heaps, A., & Murphy, J. (2002).
Distributed computing for public-interest climate modeling research. Computing in
Science Engineering, 4(3), 82-89. https://doi.org/10.1109/5992.998644

Stone, D. A, & Allen, M. R. (2005). The end-to-end attribution problem: From emissions to
impacts. Climatic Change, 71(3), 303-318.
https://doi.org/10.1007/s10584-005-6778-2

Stott, P. A, Stone, D. A, & Allen, M. R. (2004). Human contribution to the European heatwave
of 2003. Nature, 432(7017), 610-614. https://doi.org/10.18038/nature®3089

The Global Risks Report 2021. (2021). World Economic Forum.
https://www.weforum.org/reports/the-global-risks-report-2021/

Vautard, R,, Yiou, P., Otto, F., Stott, P., Christidis, N., van Oldenborgh, G. J., & Schaller, N.
(2016). Attribution of human-induced dynamical and thermodynamical contributions
in extreme weather events. Environmental Research Letters, 11(11), 114009.
https://doi.org/10.1088/1748-9326/11/11/114809

Wade, S., Sanderson, M., Golding, N., Lowe, J. A,, Betts, R. A,, Reynard, N., Kay, A. L., Stewart, L.,

Prudhomme, C., Shaffrey, L., Lloyd-Hughes, B., & Harvey, B. (2015). Developing H++


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

879 climate change scenarios for heat waves, droughts, floods, windstorms and cold

880 snaps (p. 144). Committee on Climate Change.
881 https://www.theccc.org.uk/publication/met-office-for-the-asc-developing-h-climate-ch
882 ange-scenarios/

883 Wan Zin, W. Z., Jemain, A. A, & Ibrahim, K. (2009). The best fitting distribution of annual

884 maximum rainfall in Peninsular Malaysia based on methods of L-moment and
885 LA-moment. Theoretical and Applied Climatology, 96(3), 337-344.
886 https://doi.org/10.1007/s00704-008-0044-2

887 Watson, P., Sparrow, S., Ingram, W., Wilson, S., Marie, D., Zappa, G., Jones, R., Mitchell, D.,

888 Woollings, T., & Allen, M. (2020). Multi-thousand member ensemble atmospheric
889 simulations with global 60km resolution using climateprediction.net (No.

890 EGU2020-10895). EGU2020. Copernicus Meetings.

891 https://doi.org/10.5194/egusphere-egu2020-10895

892 Webb, M., Senior, C., Bony, S., & Morcrette, J.-J. (2001). Combining ERBE and ISCCP data to
893 assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models.
894 Climate Dynamics, 17(12), 985-922. https://doi.org/10.1007/s003820100157

895 Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P.,

896 Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C.,, Keen, A. B,, Lee, R.
897 W., Megann, A, Milton, S. F., Rae, J. G. L., Roberts, M. J., ... Xavier, P. K. (2018). The Met
898 Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. Journal
899 of Advances in Modeling Earth Systems, 19(2), 357-380.

900 https://doi.org/10.1002/2017MS081115

901 Williams, K. D., Ringer, M. A., & Senior, C. A. (2003). Evaluating the cloud response to climate
902 change and current climate variability. Climate Dynamics, 20(7), 705-721.
903 https://doi.org/10.1007/s00382-002-0303-3

904 Yamazaki, K., Sexton, D. M. H., Rostron, J. W., McSweeney, C. F., Murphy, J. M., & Harris, G. R.


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

905

906

907

908

909

910

911

912

913

914

(2021). A perturbed parameter ensemble of HAdGEM3-GC3.85 coupled model
projections: Part 2: global performance and future changes. Climate Dynamics, 56(11),
3437-3471. https://doi.org/10.18007/s00382-020-05608-5

Yiou, P., Jézéquel, A., Naveau, P., Otto, F. E. L., Vautard, R., & Vrac, M. (2017). A statistical
framework for conditional extreme event attribution. Advances in Statistical
Climatology, Meteorology and Oceanography, 3(1), 17-31.
https://doi.org/18.5194/ascmo-3-17-2017

Young, M., & Galvin, J. (2020). The record-breaking warm spell of February 2019 in Britain,
the Channel Islands, France and the Netherlands. Weather, 75(2), 36-45.

https://doi.org/10.1002/wea.3664


https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE
https://www.zotero.org/google-docs/?lNfYoE

