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1. Introduction

This Supporting Information file contains additional text and a figure to help interpret

the main text of “Predicting Fire Season Intensity in Maritime Southeast Asia with In-

terpretable Models.” Specifically, it contains additional details about: 1) the smoothing

that we apply to the climate mode indices before using them in our model, and 2) the

mathematical details of the regularization-based model fitting framework we propose in

the main text.
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2. Additional information on climate mode index smoothing

We employ the following smoothing strategy on the climate mode indices used as pre-

dictor variables in our models. We do not smooth the indices for lags below four weeks, as

we want to capture as much high frequency signal as possible from these very short term

relationships. For lags between four and 52 weeks, we use a Gaussian kernel to smooth the

indices, with the bandwidth value increasing every four weeks. To select bandwidth val-

ues, we first found the bandwidth that seemed to best capture the long term trend in the

climate indices. This was then set as the maximum bandwidth and a continuous sequence

of bandwidth values was created between no smoothing and this maximum value.

Figure S1 shows every other level of smoothing applied to the climate indices over two

years of data. The black curve is the original weekly climate index time series, which is

used for lags one through three. The colored curves show every other level of smoothing

up to the maximum smoothing applied to lags of one year and greater. Note that the

vertical axis has been omitted from Figure S1 for visual clarity since its purpose is solely

to show the relative levels of smoothing applied to each climate index.

3. Mathematical details of regularization-based model fitting framework

A general expression for the coefficient estimates generated by regularization is given

by

β̂ = arg min
β

n∑
i=1

(Yi −Xiβ)2 +

p∑
j=1

p(βj), (1)

where β is a vector containing all coefficients corresponding to the covariates in X, Y is

the response, and p(β) is some penalty applied to the coefficients. In Equation 1, i iterates

through the number of observations and j iterates through the number of covariates. The
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first term is the sum of squared residuals and can be thought of as a measure of fit. The

LASSO penalty, given by

p(β) = λ|β| (2)

has the added benefit of shrinking coefficient estimates to exactly zero, hence performing

variable selection (and lag selection for our application). The tuning parameter, λ ≥ 0, is

a free parameter that balances the fit term and the penalty term. We discuss our method

for selecting λ values shortly.

Instead of the traditional 1-norm used in the LASSO, we apply a slightly more flexible

penalty: the minimax concave penalty (MCP). The MCP penalty is given by

p(β) =

{
λ|β| − β2

2η
if |β| ≤ ηλ

ηλ2

2
otherwise.

(3)

While the LASSO penalty increases linearly with |β|, the MCP penalty gradually levels

off until eventually applying a constant penalty after |β| surpasses a threshold defined by

the free parameter η ≥ 1. Again, we discuss our method for selecting η values shortly. The

MCP results in less biased estimates for non-zero regression coefficients (Zhang, 2010).

Essentially, it allows for larger coefficient estimates on the significant terms (which might

be closer to the “true” relationship we are attempting to model). We found that using the

MCP penalty over the 1-norm penalty from the LASSO increased model performance. The

price we pay for this generality is the introduction of a second parameter, η, in additional

to the traditional tuning parameter, λ, that weights the penalty term.

The typical procedure for selecting parameter values (e.g., η and λ) involves minimizing

the loss function (i.e., Equation 1) for a sequence of λ values, called a solution path. A
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single model is then selected from the solution path using an information criterion (e.g.,

AIC or BIC) or cross-validation test error. Here we use a more general form of the BIC,

called the Extended Bayesian Information Criterion (EBIC), given by

BICγ(s) = BIC(s) + 2γ log τ(s), (4)

where s is the model being evaluated, BIC is the standard form of the BIC, τ is the

number of possible models with equation dimension (i.e., number of terms) as s, and

γ ∈ [0, 1] controls the extra penalty contained in the second term.

The EBIC can apply a much stronger penalty to large models (i.e., models with many

selected terms) than the BIC. This is well suited for applications in which the number

of possible covariates is large, but the true model might in fact be quite small. Since we

believe this to be the case for the atmospheric CO application, we use the EBIC rather

than the BIC or cross-validation test error to select λ.

With these more flexible adaptations to the traditional LASSO, we are left with a num-

ber of free parameters: λ, the tuning parameter, η, which controls the MCP penalty,

and γ, which controls the EBIC. For a given combination of these parameters, we fit the

coefficients using the RAMP package in R (Hao et al., 2018). RAMP is a recent regulariza-

tion method that efficiently computes a hierarchy-preserving solution path for quadratic

regression (i.e., models including squared and interaction terms). Enforcing hierarchy, or

more specifically strong hierarchy, requires that terms present in an interaction are also

present as main effects. Strong hierarchy (also known as the marginality principle) has

long been recommended for models with interactions, as it helps avoid misinterpretation

of the included covariates (Nelder, 1977). Another benefit of the RAMP algorithm is its
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remarkable efficiency. RAMP is able to compute full solution paths much faster than simi-

lar hierarchy-preserving algorithms available in R, such as hierNet (Bien et al., 2013) or

ncvreg (Breheny & Huang, 2011).

We select parameter values with a simple grid search broken into two steps:

1. Select a γ value on [0, 1]. Values closer to 0 will result in larger models and values

closer to 1 will result in smaller models.

2. For the given γ value, vary λ and η simultaneously. For each combination of λ and

η, fit regression coefficients using the RAMP package. Select the model that minimizes the

EBIC computed with the selected γ value.

(i) The RAMP algorithm automatically computes a data-driven sequence of λ values,

so no user input is required.

(ii) We vary η on a logarithmic sequence from 1.001 to 6. This range was selected

manually by trial-and-error and tuned specifically for this application. We tested this

range on a number of different covariate combinations and response regions (including

MSEA), and the selected η value always fell well within this range. Note that the optimal

η value is completely data dependent and this sequence will need to be adjusted for

different applications or data.
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Figure S1. Black curve shows the original climate index data, which is used for lags of one

through three weeks. Colored curves show every other level of smoothing applied to the climate

index data, which is used for lags of four through 52 weeks. Vertical axis has been omitted for

visual clarity.
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