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Key Points:

» The diurnal cycle interacts with the large scale circulation,
» The diurnal period becomes dominant for system sizes smaller than a~ 2000 km,
+ The interaction can be conceptually modeled by a forced oscillator with a self-drive.
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Abstract

Tropical convection is known to self-organize under the diurnal cycle, yet is also subject
to large scale convergence. In a suite of idealized numerical experiments we mimic Earth’s
tropical circulation, to probe the cross talk between inherent circulation eigenmodes and
the convective diurnal cycle — which generally are characterized by incommensurate os-
cillatory frequencies. The tropics are caricatured by a doubly-periodic domain with spa-
tially constant surface temperature Ts(z,y,t) in the "zonal” (x) but decreasing Ty in
the "meridional” dimension. Temporally, we contrast constant Tg(z,y,t) = Tg(z,y)
with diurnally varying Tg(z,y,t) = Tg(z,y,t + 7,), with 7, = 1 day. We find that the
diurnal forcing by no means dominates the precipitation power spectrum. Rather, the
intrinsic circulation period 7; drives temporal precipitation patterns for large and small
domains. At intermediate domain sizes, where intrinsic frequencies approximately match
the diurnal one, i.e., 7; & 74, the diurnal cycle is amplified and, substantially increas-
ing the precipitation amplitude.

1 Introduction

Tropical large scale atmospheric circulations and local scale moist convection have
proven to be intrinsically coupled, such as for the Hadley Cell and intertropical conver-
gence zone (ITCZ) as well as the Madden-Julian Oscillation (MJO). The interaction be-
tween circulation patterns and convection has been extensively studied within a range
of simplified models (Lindzen, 1974; K. A. Emanuel, 1987; Neelin et al., 1987; Wang, 1988;
Takayabu, 1994; Wheeler & Kiladis, 1999; Kiladis et al., 2009; Mapes, 2000; Majda &
Shefter, 2001; Sobel & Bretherton, 2000; Héartel et al., 2000; Kuang, 2012; Yang & In-
gersoll, 2013; Yang, 2021). Many of these works use a form of linearized shallow water
equations, yet, coupling to moist convection, itself a threshold effect, preserves an essen-
tial, strong non-linearity. The intriguing notion that convection is both a result and a
cause of the large scale circulation is central to many of these studies. Specifically, the
large-scale low-level moisture convergence can give rise to convection and the tropospheric
heating, caused by cloud formation, is the cause of a circulation. Despite this tremen-
dous body of research, even basic features of the coupling of cumulus convection to the
large-scale circulation remain poorly understood, e.g, the MJO continues to be the sub-
ject of a range of plausible theories (Zhang et al., 2020).

A prevailing, yet not conclusively explained, finding in models allowing for self-organization

of convectively-coupled equatorial waves is that, in the steady state, a low-wavenumber
mode is typically excited, whereas higher wavenumbers are less dominant. As a case in
point, analysis of two-dimensional cloud system resolving equatorial wave simulations
Tulich, Randall, and Mapes (2007), run to radiative convective equilibrium, illustrated
that a low-wavenumber mode with propagation speed of 16 to 18 m s~! appeared to dom-
inate. It is thus intriguing to seek simplified models that explain why large wavelength
modes are "picked out” by emergent organization in coupled circulation-convection at-
mospheres. One promising candidate theory is that by Yang and Ingersoll (2013), where
the shallow water equations are coupled to a simple, threshold based, representation of
convective heating. In their model, high-frequency convective activity is able to excite
low-frequency standing gravity waves, by which the tropical atmosphere self-organizes
to a climatological steady state. One of the authors recently applied the model to con-
vective self-aggregation (Yang, 2021).

Spatially and temporally varying boundary conditions have been applied to excite
oscillations in the circulation patterns. To mimic the MJO Yamagata and Hayashi (1984)
incorporated 40-day periodic SST forcing into a simple model, which then resulted in
a standing wave for zonal wind. Forcing with diurnally-varying SST, recent work found
deep convection to strongly organize into mesoscale convective systems, which tend to
anticorrelate from one day to the next (Haerter et al., 2020) but can give rise to persis-
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tent dry patches at longer timescales (Jensen et al., 2021). Spatial SST gradients are known
to lead to convective organization effects (Tompkins, 2001; Kuang, 2012; Shamekh et al.,
2020), where regions of larger SSTs were found to align with increased mean precipita-

tion rates.

Yet, even without any boundary condition structure, convective self-organization
can bring about system-scale circulations. A prominent case is convective self-aggregation
(Held et al., 1993; Bretherton et al., 2005; C. J. Muller & Held, 2012; K. Emanuel et al.,
2014; Patrizio & Randall, 2019; Wing & Cronin, 2016; C. Muller et al., 2022), which, once
formed, is likely maintained by a complex feedback between cloud, radiation and the large
scale circulation, a mechanism that was also invoked highly-idealized simulations of the
Hadley Cell (Raymond, 2000). For varying horizontal domain sizes under homogeneous
surface boundary conditions Patrizio and Randall (2019) find that system-scale emer-
gent circulations exhibit low-frequency oscillations in domain-mean precipitation or out-
going longwave radiation (OLR). Imposing meridional sea surface temperature gradients
for idealized aquaplanets, Miiller and Hohenegger (2020) demonstrated that self-aggregation
effects can even be strong enough to overwhelm the forced Hadley Cell type circulations.
In recent work (Yang, 2021), the coupling between linear gravity waves and short-lived
moist convection was suggested as a means of obtaining convective self-aggregation.

In the current work, we focus on timeseries of tropical precipitation, which serve
as a signature of the large scale circulation. We address the question of how an intrin-
sic large-scale idealized Hadley Cell circulation is perturbed, when interacting with the
— temporally periodic — diurnal cycle. The former is established by imposing a spa-
tial large-scale surface temperature gradient, leading to a low-level moisture convergence
near the model equator. The latter is introduced by allowing for a diurnal variation of
surface temperature throughout the domain. We find that, generally, in the steady state,
both the intrinsic (termed w,) and diurnal (termed Q) frequency contribute. However,
when wy ~ (2, a form of resonance is found where oscillations are locked in with the di-
urnal cycle. When frequencies differ sufficiently the spectral weight of the diurnal cy-
cle is almost negligible. We construct a simple conceptual model which builds on a sim-
ple linear harmonic oscillator, but incorporates a nonlinear convective feedback to in-
duce a blend of frequencies.

2 Numerical Methods
2.1 Cloud-resolving model

All numerical simulations carried out in the study use the System for Atmospheric Mod-
eling (SAM) cloud-resolving model (Khairoutdinov & Randall, 2003), version 6.11. The
model resolves an anelastic form of the Navier-Stokes equation over a fully staggered Arakawa
C-type grid with stretched vertical and uniform horizontal meshes. Numerical fluxes are
calculated using the fifth-order finite difference scheme from (Yamaguchi et al., 2011)

and the solution is explicitly integrated in time with a third-order Adams-Bashforth scheme.
On top of the fluid conservative variables, the prognostic variables include the liquid/ice
water static energy, the total precipitating and nonprecipitating water. In order to al-
leviate computational costs, subgrid turbulence and microphysics parameterizations sim-
ply consist in, respectively, Smagorinsky-Lilly and single-moment closure models. Ra-
diative fluxes are evaluated using the Rapid Radiative Transfer Model (RRTM) (Mlawer

et al., 1997), with a diurnal top-of-the-atmosphere shortwave flux peaking to 1350 W/m?

at midday. Surface fluxes are computed using Monin-Obukhov similarity using a pre-
scribed sea surface temperature (SST) profile. A diurnal cycle can be imposed in the form
of top-of-the-atmosphere shortwave forcing with a sea surface temperature oscillation.
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Case L, [10°%km] AT,[K] Type of runs At [days]
1 1 10 Spin-up, RCE, DIU 30
2 2 10 Spin-up, RCE, DIU 30
3 4 10 Spin-up, RCE, DIU 30
4 4 5 Spin-up, RCE, DIU 30
5 4 2.5 Spin-up, RCE 30
6 4 0 Spin-up, RCE 30
7 4 10 BI-DIU (Forcing period: 48h) 30
8 8 10 Spin-up, RCE, DIU 30

Table 1. Summary of numerical experiments.

2.2 Domain configuration

This numerical study comprises eight different cases presented in Tab. 1. Each case
represents an idealized tropical ocean of domain size L, XL, XL, with z, y and z de-
noting longitude, latitude and altitude coordinates, respectively. For all cases, L, = 2,000
km and L, = 27 km with horizontal mesh resolution Az = 4 km and vertical reso-
lution Az stretching from 50 m at the first level (z = 25) to 716 m at the top of the
atmosphere. This amounts to a total of 64 vertical levels. Cases differ in the setting of
L,, which progressively increases from 1,000 to 8,000 km (Tab. 1).

The spatiotemporal mean SST is set to T;, = 298 K. To mimic the Intertropical
Convergence Zone (ITCZ), a latitudinal SST gradient AT is imposed as a half sinusoidal
function of range AT, . Finally, several simulations study the influence of the diurnal cy-
cle which is modeled as an additional sinusoidal SST forcing of amplitude AT, = 2.5
K. The forcing period 7, = 1d, except for run 7 which considers a bi-diurnal forcing
(14 = 2d). Together, the surface temperature Tq(z,y,t) reads:

27t
Ts(l"ay,t) = TO + ATyCOS (zy) — ATt CcOos (ﬂ—> (1)

y Ta

Hence, the SST is independent of z, and peaks along y = 0 (the model equator)
and at midday if the diurnal cycle is activated. The SST range AT is often set to 10
K, but subject to variation in the (L, = 4,000 km)-configuration (cases 3—7). Over-
all, SST gradients are varied by either modifying the amplitude AT} or the latitudinal
domain size L,. The influence of the diurnal cycle is investigated by contrasting runs
with constant SST, which have AT, = 0 and are denoted "RCE”, and runs with diur-
nally oscillating SST, which have AT, = 2.5 K and are denoted "DIU” (compare: Tab.
1). For RCE also the top-of-the-atmosphere radiative flux is set constant, to a value equal
to the diurnal average. Each of these runs is preceded by a 30 day-long run, termed ”spin
up,” using the RCE configuration to reduce the transient response resulting from the ide-
alized initialization (domain-averaged soundings corresponding to an equilibrated T, =
298 K reference case). After the spin-up the simulation branches into the RCE and DIU
runs.

3 Results

To analyze the effect of the diurnal cycle on the meridional circulation, we first dis-
cuss spatially-averaged timeseries (Sec. 3.1), before we explore more detailed spatio-temporal
dynamics (Sec. 3.2) and finally offer a simplified conceptual model for the observed os-
cillatory pattern.
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Figure 1. The effect of the diurnal cycle on precipitation variability. Timeseries

of horizontal-mean surface precipitation intensity for variable meridional domain sizes L, as
labeled on top of each panel for the 30-day analysis period. The latitudinal temperature differ-
ence AT, ,,, = 10K in all simulations shown. a—e, Simulations corresponding to RCE. f—j,

Simulations corresponding to DIU.

3.1 Domain-mean precipitation dynamics

The imposed meridional temperature gradient leads to the rapid organization of
the modeled circulation into an ITCZ-like, approximately zonally-symmetric, circulation
pattern: pronounced horizontal convergence forms near the meridional surface temper-
ature peak, the "equator,” with associated mean rising air masses and deep convective
activity. Outside of this band, which stretches several hundred kilometers in the merid-
ional direction, the atmosphere is dominated by subsidence, intermittent shallow con-
vection and nearly rainfree conditions.

The full (3+1)-dimensional spatio-temporal dynamics is complex. Yet, a substan-
tial simplification of the overall precipitation dynamics is achieved by considering the
timeseries of horizontally-averaged surface precipitation intensity R(t) = (R(x,y,t)),
where the subscript denotes the horizontal average over x and y and R(z,y,t) is the sur-
face precipitation field. For later use we also introduce the spatio-temporal rainfall av-
erage R = (R(x, Yst))y gt As mentioned (Sec. 2), for each numerical experiment (Tab. 1)
a 60-day period is simulated, which we split into an initial 30-day ”spin-up” and a sub-
sequent 30-day "analysis” period. We first fix the meridional extent to L, = 4,000 km
and examine the sensitivity to the meridional temperature range, AT,, which is varied
between zero and ten kelvins (Fig. S1). The surface temperature is here set constant in
time. Despite the time-independent surface temperature boundary condition, the time-
series of R(t) is highly variable: during both the spin-up and analysis period pronounced
oscillatory dynamics is clearly visible (panels a—d).

To analyze the typical oscillations, we compute the power spectra for each value
of AT, (Fig. Sle), we find that for each of the cases with AT, > 0, and for either of
the two 30-day periods, the frequency of oscillation is very similar, f, ~ .5d~!. In all
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these cases, the domain quickly organizes into the general Hadley Cell-like pattern, with
an I'TCZ-like convergence area near y = 0. The case of AT = 0K, which is similar to

a classical radiative-convective equilibrium setup, deserves a comment: since the hori-
zontal translational symmetry is here not broken by the surface temperature boundary
condition, all organization is purely emergent, that is, self-organized. Indeed, already dur-
ing the first 30-day period, spatial organization, typical of the early stages of convective
self-organization, is present, featuring characteristic emergent dry spots, which gradu-
ally expand over time. During the second 30-day period, these dry patches further ex-
pand and merge, such that eventually only two larger convective regions remain, each
performing time-periodic oscillations. For the spatial domain average R(t) these oscil-
lations are recognizable as an overall temporal oscillation (panels d). Examining the power
spectrum, it becomes apparent that the dominant frequency is now somewhat larger, f, ~
.7d~1, than for the finite AT, cases.

Note also the changes in overall mean precipitation, which increases consistently
with the larger meridional temperature gradient. We mainly attribute such changes in
mean precipitation to water vapor increases according to the (roughly exponential) Clausius-
Clapeyron relation, which would disproportionately favor cases of stronger temperature

variance, allowing for overall larger precipitation rates. We however note that in self-aggregation

studies, temporally and spatially averaged surface precipitation R has often been reported
to increase with increased aggregation (Bretherton et al., 2005), which was attributed

to enhanced upper tropospheric radiative cooling as a consequence of increased outgo-

ing thermal radiation in the very dry subsidence regions. Indeed, during the second 30-
day period, where the case of AT = 0K features pronounced self-aggregation, the rain-
rate shows an increasing trend.

This exploration of AT, allows us to assume that the oscillatory period does not
depend strongly on the spatial temperature gradient. We now thus to varying domain
size L,. Consider first the RCE case (Fig. la—e), where sustained oscillations are ap-
parent in all experiments. It is also obvious that the dominant frequency of oscillation,
seen in the global power spectral maxima (Fig. 1le), systematically decreases with L,
In fact, the power spectrum reveals an approximate proportionality of the intrinsic pe-
riod of oscillation, T, = f;!, with domain size, L,, that is,

Ty=fi' =Ly/c, (2)

where the proportionality constant ¢ &~ 2-10% km d~. We further note that, in the case
of RCE, the power spectrum is clearly dominated by a single peak for the smaller do-
main sizes L, = 103 km and L,=2 -10% km, whereas for the larger L, also secondary
peaks emerge.

Let us now turn on the surface temperature diurnal cycle, which is mimicked by
a prescribed 5K-amplitude temporal temperature oscillation. Starting from the same ini-
tial condition as the corresponding RCE cases (Fig. la—d) the analysis period is thereby
re-run for each of the four settings of L, (Fig. 1f—i). When examining the timeseries
in f—i a striking finding is that the curve corresponding to L, =8 - 103 km is all but
unchanged, when comparing to its RCE counterpart (Fig. 1d). In fact, even the detailed
dynamics of the curve is essentially preserved and diurnal perturbations are hardly vis-
ible. This qualitative finding is supported by the power spectrum, with only a marginal
secondary peak appearing at f, = 1d~! for L, =28- 103km and the main features
near f, = .4d~!' and .3d~! mostly preserved. For L,=4": 103km the primary peak
(near .5d ') is also preserved, however at a larger relative reduction. Conversely, a rel-
atively large secondary peak at f = 1d~! appears. For L,=2: 103km the primary
peak (near .95d~!) is strongly diminished and almost entirely replaced by a sharp peak
at f, = 1d~!. For the smallest domain size, L, = 1 - 103km, the trend is again re-
versed, with the primary peak near f = 1.8d’1y mostly preserved and a more moder-
ate peak near f = 1d~! appearing. Thus it seems that the larger the domain size L,
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the less the overall flow is impacted upon by diurnal perturbations — the large scales
carry essentially all predictability, up to weeks ahead.

It is also interesting to examine the amplitude of oscillation for the timeseries R(t)
corresponding to different values of L,. It is clear that the case of L, = 2:103km stands
out, when the diurnal cycle is imposed, with the amplitude nearly doubling, as compared
to its RCE counterpart. The case of L, = 4 - 103km also shows a significant increase
in amplitude, however it should be considered that there is substantial internal variabil-
ity, which could affect this finding. Overall these results suggest that the effect of the
diurnal cycle is not linearly dependent on the domain size L,. Rather, its effect seems
to be most pronounced, when the intrinsic frequency matches that of the diurnal cycle,
that is f, ~ 1d~! — suggesting a form of resonance mechanism.

Examining the change in R with domain size L, it is now apparent that R increases
monotonically with L,. Since the spatial temperature variance is now equal in all sim-
ulations (in contrast to Fig. S1), we here attribute the increase in R to more pronounced
segregation into a narrowing convective I'TCZ-like region near the ”equator,” which is
surrounded by predominantly subsiding sub-regions.

3.2 Meridional mode

To more closely explore the mechanisms, we now examine the case of L, = 2 -
103 km to characterize the dynamical features of the resonance, as seen in domain mean
precipitation. To reduce the internal inter-day variability, we focus on a ”composite pe-
riod” of the precipitation oscillations. We define such a composite by first detecting the
time points of all local maxima and minima from the domain mean precipitation time-
series (Fig. S2). We then use the timepoint of each minimum to define the zero of a re-
peated cycle. The timepoint of the subsequent maximum is used as the turning point
within the cycle and the subsequent minimum is used to define the cycle’s period. By
combining such data from each of the cycles available, we compute composite quanti-
ties, such as the composite cycle of domain mean precipitation intensity (Fig. 2). The
comparison of RCE and DIU confirms that the period for RCE is slightly longer than
one day (= 1.05d), whereas it equals one day for DIU, and that the amplitude of com-
posite precipitation intensity for RCE is much more modest than for the case of DIU.
Notably, for DIU the mean precipitation intensity all but reaches zero for the minima,
whereas its period maximum far exceeds that for the RCE case.

Variations in domain mean precipitation typically imply changes in the large-scale
circulation. We characterize the large-scale circulation by first performing a ”zonal” mean,
corresponding to an average along the z-coordinate direction. We then again perform
the composite average described above for the different time points during the approx-
imately periodic cycles. A trademark of fluctuations of the upper troposphere w.r.t. its
mean state are gravity waves, which can e.g. be derived from the linearized shallow wa-
ter equations for atmospheric pressure and horizontal wind (Kiladis et al., 2009). To cap-
ture the general dynamics of the intrinsic (RCE) pressure (or equivalently geopotential)
fluctuations, we plot the meridional pressure within the mid troposphere (z = 3.5 km)
for each composite time point (Fig. 3a). The time sequence of the curves (red— purple—
red) indicates a standing wave-like dynamics, with pressure maxima traveling between
the “equator” (y = 0) and the ”subtropics” in the course of one period. Comparing the
corresponding meridional rain rates (Fig. 3e), it is found that times of low precipitation
(red curves) correspond to local equatorial pressure maxima, whereas high rain rate cor-
respond to local pressure minima.

The meridional mid-tropospheric wind, v(3.5 km), as well as that near the surface,
Ugy-p» is predominantly directed towards the equator, e.g., v(3.5km) > 0 and Ugpp >
0 for y < 0. Cloud-base meridional wind, v(1.3 km) shows a more variable dynamics,
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with outflows during times of weak rain rates but inflows during times of heavy rainfall.
From continuity, the latter implies outflows for the upper troposphere.

Turning to DIU, qualitative changes occur: the mid-tropospheric pressure field varies
more strongly in time, but loses some of the meridional dependence found for RCE. Qual-
itative changes are also visible in v(3.5 km), where inflows into the equatorial regions are
weakened and reverse to become outflows during times of pronounced rainfall.

10 RCE 10 . DIU .
scending descending scending . descending
a 8 b 8{ tpeak = . .
= 6 . = 6
g g
E 4 £ 4
-4 o
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Figure 2. Composite precipitation diurnal cycle. The composite was obtained by collect-
ing maxima and minima in the respective timeseries (compare: Fig. S2) and separating ascending
and descending sections of each oscillatory period. a, RCE, L, = 2,000 km b, DIU, L, = 2,000

km

3.3 Conceptual model

To capture the domain mean dynamics of the different simulations, we propose a
simple, qualitative, toy model with the following basic ingredients: We consider that the
atmosphere undergoes periodic forcing due to the imposed diurnal cycle of period T, =
7t =277 = 1d. We capture all damping effects, such as surface drag and viscous
dissipation, within a damping parameter b. Further, the atmosphere also shows an in-
trinsic oscillatory mode. In line with standing linear gravity wave theory (Yamagata &
Hayashi, 1984; Yang & Ingersoll, 2013; Yang, 2021) and the results shown in Fig. 3, we
assume the period of this mode, T, = f;! = 2mwy?!, to increase approximately lin-
early with domain size L,. The fundamental gravity wave speed is thereby assumed to
be approximately independent of L,. Our model simplifies further compared to the re-
cent literature (Yang & Ingersoll, 2013; Yang, 2021): whereas Yang (2021) retain dynam-
ics along one spatial dimension, our starting point is to assume that convection is strongly
localized (pointlike) to the model ITCZ and the dynamics can thus be treated as an or-
dinary differential equation. Our primary model variable, y(t), represents some measure
of convective instability, e.g., low-level moisture convergence. A value of y = 0 will there-
fore be used to represent the activation of convection. We further idealize by assuming
the convective timescale to be very short compared to the period of the standing grav-
ity waves, and treat convection as a discrete Dirac delta signal (or d-pulse). In addition,
the model allows for a diurnal forcing, which we simply incorporate as a sinusoidal drive
of amplitude A. We now first introduce the linear model, where convection does not feed
back on circulation. We then describe the non-linearity introduced by convective heat-
ing.

Linear driven harmonic oscillator. Together with the diurnal forcing, the linear model
is that of a damped harmonic oscillator, namely:

Y’ +2by +wiy = Aei (3)

where primes denote temporal derivatives. As is well known, e.g., from Serway and Jew-
ett (2018), for the steady state one can make the ansatz that

y(t) = yoe' HH), (4)
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Figure 3. Meridional oscillatory mode. a—e, All panels show zonally-averaged quanti-
ties for simulations corresponding to RCE for L, = 2,000 km. The panels from (a) to (e) show
pressure at 3.5 km height, meridional velocity v at 3.5 km, 1.3 km and 50 m height, as well as

the precipitation rate. Paired panels correspond to the ascending and descending precipitation
intensity branches, respectively (as labeled on top of panels). f—j, Simulations corresponding to

DIU, otherwise analogous to (a)—(e).

where 3, is the amplitude of oscillation and ¢ the phase shift between the forcing and
the response. Inserting Eq. 4 into Eq. 3 yields the well-known relation between the am-
plitude of oscillation, y,, and the driving amplitude A,

vo = A (03 —w?)? + (2bw)?) 2. (5)

-1
Notably, ¥y, achives a maximum y§ = A (2b\/w(2) — b2) , often called a resonance, when
Q= Q* = \/w? — 2b2. The phase shift ¢ can be computed as

2012
¢ = arctan m (6)
and will approach ¢* = 7/2 at the resonance frequency Q*, meaning that forcing and
feedback are phase-lagged by a quarter period.

Importantly, the model in Eq. 3 has several qualitative shortcomings in describ-
ing the data at hand (Fig. 1): (i) the response y(t) has the same, unique, frequency 2
as the forcing and is only shifted in phase relative to the forcing; (ii) in the large-¢ limit
the function y(¢), in the absence of a forcing frequency Q, y(¢) should approach a con-
stant. Both outcomes (i) and (ii) are not found in the data. Rather: oscillations are present
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even under the absence of a periodic forcing (RCE, Fig. la—e) and the dynamics of the
response does not generally adjust to the forcing frequency (Fig. 1f—j).

Nonlinear model including convective drive. We thus modify the Eq. 3 by allow-
ing for a convective forcing that depends on the state of the circulation, y(¢). This con-
vective forcing is modeled as a fixed momentum source, Av, that is applied whenever
moist air masses converge near the equator, i.e., when y(¢) = 0. The convergence of moist
air masses is associated with convective updrafts which in turn give rise to tropospheric
heating and subsequent free tropospheric divergence, thus accelerating the circulation.

Eq. 3 is thus modified to take the form

y = v, (7)
v o= —2bv—wiy — Ae’¥ + v i(y)Av, (8)
B(y,v)

where we have re-written the second order equation as two first order equations and added
the term B(y,v) to account for a spatially-dependent energy input. B(y,v) has the ef-

fect of "boosting” the current velocity by the increment Awv, a process reminiscent of that
in the "kicked rotor” (Chirikov, 1979). The factor of v arises due to the change of vari-

ables in 5t —ty) St —t,)
o(y(t)) = = e, 9)
dy/dt(ty) v(to)
where {, is the time of zero crossing. Av > 0 is a constant, controlling the "boost” re-
ceived by the oscillator upon crossing the origin. Notably, by applying the signed value

of v, the boost always occurs to reinforce the direction of travel.

B(y,v) implicitly depends on time through the constraint that y(¢) = 0. Eq. 3
could hence be augmented to read

Y’ +2by’ +wiy = A + Z ot —t,)sgn(y’ )Av, (10)

where the times ¢,, are determined by the condition y(¢,,) = 0. As a linear equation,

the fundamental solution to the LHS of Eq. 10 could be used to integrate the dynam-

ics within any time interval [t ., ,]. It is thus to be expected that the solution to Eq. 10
be a superposition of oscillations at frequencies w, and (2.

Mimicking RCE. Consider first the case where the time dependent forcing is switched
off, that is, A = 0. In this case, the set of equations in Eq. 8 represents piece-wise ho-
mogeneous ODEs, since the abrupt ”"boost” is only applied upon each zero crossing. For
a given zero crossing, where y = 0, we can thus obtain the transient solution to Eq. 8
by assuming a given initial velocity at ¢, = 0, where we take the subscript to number
zero crossings. Let us further assume that b > 0, such that energy can always be dis-
sipated as some finite rate. An initial velocity v(t, = 0) = v, can be enforced by im-
posing the time-dependent forcing f(t) = vyd(t,). The transient response of Eq. 8 is
then the solution to

y” +2by" + Wiy = vd(ty) (11)
which is the fundamental solution

efbt
y(t) = Yo~ sin(gt) (12)

where ¢ = \/w2 — b? is the intrinsic frequency under the damping b. For the under-damped
case wy > b, thus ¢ € R, the fundamental solution therefore represents a sinusoidal
oscillation of constant period 2r¢g~! which is exponentially damped at a rate b. Since the
change of amplitude does not affect the period, we can compute the time of first zero
crossing, that is, t; = m/q. With the velocity,

_dy(t) _ v

v(t) = i . e~ [—bsin(gt) + gcos(gt)] (13)
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the velocity at t = t; becomes
v(t)) = vge P = —pye 0/, (14)
since y(t;) = 0 and cos(qt;) = —1.
At the time ¢; the "boost” Av will be applied, leading to the modified velocity
v(ty) = v(ty) — Av. (15)

Noting that upon each zero crossing the sign of v is reversed, we can simplify the nota-
tion by working only with the magnitude of v. The Eq. 15 then reads

[u(ty)] = lolr + Ao (16)

where we define r = e ™/4 as the amplitude decay during each period. Since the pe-
riod of the fundamental solution (Eq. 12) is independent of the initial velocity, we can
immediately compute the velocity at the second zero crossing, namely

v(t2)] = [v(ty)[r + Av (17)

where t, = 27/q. And thus for the n’th zero crossing,

lu(t,)] = |v(t,—1)lr +Av (18)
(Jo(t,_o)|r + Av)r + Av (19)
n—1
= |uglr™ + Av Z ™ (20)
m=0
= gl + v (21)
- 1—r "

In the steady state we can assume the limit n — oo, thus

Av Av
1—r 1—em/a’

|v(t,)| =
since lim,, , ™ = 0 for r < 1. Hence, after a sufficiently long transient time the os-
cillator will be independent of the initial condition and its dynamics will be determined
by the "boost” Av as well as the system parameters, which enter r. In particular, in the
limit » — 1, » < 1, for the special case of zero damping, the amplitude of oscillation,
will diverge.

For small damping, that is, 7b/q < 1, the exponential can be expanded to first

order, yielding
AY q\2
[oit,)| = =1+ Av0 ((b) , (23)

s T

thus, the steady-state speed at the time of any zero crossing will increase proportion-
ately with the the "boost” Aw, intrinsic frequency ¢ and inverse damping b~'. Notably,
in this case of b — 0, the maximum amplitude y,,,,,. reached between any two zero cross-
ings (Eq. 12) approaches
Av
_ & (24)

ymam ﬂ—b I

a value that does depend on the "boost” Av and the damping b, but is independent of
the intrinsic frequency gq.

To exemplify the dependence on the parameters we simulate the timeseries for dif-
ferent parameter combinations until a steady state is reached (Fig. 4). Indeed, as illus-
trated (Fig. 4a), the maximal displacement from the origin is visually proportional to
Awv, whereas this maximum displacement does not depend noticeably on f, (Fig. 4b).

—11-



330

331

332

333

334

335

336

337

338

339

340

341

342

a 1.0 d 1e9

_ e 1ol [
t 0.5 — Av=.3
s ol N
c [a]
g 00 Los
[
£-05
10 0.0 !
Lo——s le8
b - — =12 €75
£ 05 — fold =24
>
- o5.
5 g>°
@ ' 2.5
£-05
~1.0 0.0
1.0 — A=0 15159 — A=10
C _ — A=25 fi
2 o5 =i
~ 1.0
s 00 \/NV@W 2
G 0.5
§-05
_ 0.0 —
19246 a8 0 1
Time, t [days] Freq., fo [d~1]

Figure 4. Examples of timeseries simulated by the conceptual model. Numerical
simulations of Eq. 8 where the default parameters (shown as black curves in panels a—c) are
chosen as b=.1, f,=.6d"!, A=0, Av=.1. Note that the parameters are chosen such as to represent
the under-damped limit, here 7b/q ~ .09. a, Varying Av (see legend); b, Varying f, (see legend);
¢, Varying A (see legend); d—f, Power spectral density corresponding to the three finite-A time-

series in (c) as labeled in the legends.

At this stage we have a separate understanding of (a) the dynamics of the tempo-
rally forced harmonic oscillator alone (Av = 0), which performs oscillations at a fre-
quency equal to that of the harmonic driving force, €2, at amplitude y, (Eq. 5) and (b)
the spatially-forced non-linear oscillator (A = 0), which performs steady-state oscilla-

tions at the intrinsic system frequency w, and has an amplitude determined by the "boost”
Av.

Mimicking DIU. Allowing both Av > 0 and A > 0 joins the two types of oscilla-

tors into one model. As mentioned, we expect some superposition of oscillations at fre-
quencies wy and €2, yet, the relative weight of these two frequencies, the resultant phase
shift ¢ or the joint amplitude of oscillation are less obvious. To provide examples, we
simulate the previous timeseries, however now allowing for varying values of A > 0 (Fig. 4c).
To implement the contribution from B(y,v) numerically, we keep track of the value of

the previous value of y in the time integration routine. In the event that a change of sign

in y is detected, we apply a single increment of Av to the value of v, that is,

v — v+ sgn(v)Av, (25)

which ensures that the discrete quantity Av is applied to increment v. Noticeably, when
A = 2.5 is chosen, some departure from the purely sinusoidal oscillation of the refer-
ence case is visible. For even larger values of A, additional oscillations appear and for

A = 10 the timeseries is dominated by almost perfect one-day oscillations. The con-
tributions from the different underlying frequencies can be quantified by evaluating the
power spectrum of the respective timeseries (Fig. 4d—f), where the initial peak at f, =
.6d~! gradually disappears as A is increased.
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Figure 5. Examples of timeseries simulated by the conceptual model for finite A

and varying f.

To summarize the parameter space, the system is dependent on the intrinsic fre-
quency wy, the forcing frequency €2, the forcing amplitude A, the boost strength Av as
well as the damping b. To simplify the analysis, we use €2 as the unit frequency, since
it is set by the natural period of the diurnal forcing. We thus keep €2 fixed and will ex-
press w in units of 2. We will further work in the limit of small b < w, such that os-
cillations decay slowly w.r.t. a single period of oscillation. We are thus only left with three
remaining flexible parameters: the intrinsic frequency wy, the forcing amplitude A and
the boost strength Aw.

We now aim to re-enact the numerical experiments (Fig. 1) for our simple concep-
tual model (Fig. 5) by step-by-step reducing the value of the parameter f,, (a)—(d) in
Fig. 5, which corresponds to increasing system sizes L, in Fig. 1. The first column cor-
responds to (A = 0), whereas the second and third columns corresponding to A = 4
and A = 8, respectively. As expected, the numerical results show that the period of
oscillation increases linearly with fy! for the A = 0 case. For A = 4, variations in the
timeseries occur, which qualitatively depend on the intrinsic frequency fj: for the high-
est frequency (f, = 1.9d7!), some modulations of the timeseries are visible, yet, the
general shape of the timeseries is preserved, with the number of zero crossings unchanged
and the amplitude very similar to the case of A = 0. A stark contrast however is vis-
ible for f, = .95d"!, where the amplitude clearly increases, as does the number of zero
crossings. Observing the number of zero crossings it is in fact apparent, that they now
occur at the diurnal rate, f = 1d~!. For the lower frequency cases (f, = .475 and f, =
.33) the impact of the diurnal forcing is again much more modest, with the amplitude
remaining similar to that of the A = 0 case, and the number of zero crossings remain-
ing unchanged. Increasing the forcing even further (A = 8, third column), there is more
disruption for all curves, yet, again, the case of f, = .95 undergoes a strong increase
in amplitude, whereas the amplitude changes little in the other cases. However, the num-
ber of zero crossings for f, = .475 now adjusts to coincide with a diurnal rate. The even
lower frequency case of f, = .33 continues to resist the "takeover” by Q as the domi-
nant frequency, albeit substantial disruptions are now evident.

Returning to Fig. 1, many parallels are indeed evident: The "resonant” case of L, =
2 - 102 km, with intrinsic frequency f, ~ .95 also there reacts most strongly to the di-
urnal forcing, showing a strong increase in amplitude and an almost complete shift in
dominant frequency to f = 1d~'. The cases of higher and lower frequency tend to re-
sist the impact of the diurnal forcing, with much more moderate impacts on the time-
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series, e.g., little changes in amplitude or changes in the dominant frequency. In partic-
ular, for the lowest-frequency case of L, = 8.10% km, the timeseries remains essentially
unmodified when the diurnal cycle is applied (Fig. 1j). Further, the model reproduces

the interference between the domain intrinsic and diurnal modes (compare timeseries Fig. 1i
and Fig. 5d-right) which aliases the signal.

a  _100000 i eor
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-
§ 50000
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b 500001 __ 4774 o0
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S$0.2 5
0.0 i
0.6 0.8 1.0 1.2 1.4
Frequency per day, f,
Figure 6. Resonance for the toy model. Damping b = .1. a, Power spectral density

|g(1d™1)|, that is, the spectral weight corresponding to oscillations at the diurnal frequency, as a

function of the intrinsic frequency f,. Note the resonance near f, = 1d~' and the increase of the
resonance for larger values of Av. The curve for Av = 0 (see legend) corresponds to the ampli-
tude for the classical harmonic oscillator, as a function of the intrinsic frequency f;. b, Spectral

weight |g(f,)|, that is, the weight corresponding to oscillations at the frequency f,. The curve for
A = 0 (light blue, see legend) corresponds to the special case without periodic forcing (A = 0)
where |v(t,)] ~ q =~ f, (Eq. 23), i.e., the spectral weight increases linearly with the intrinsic
frequency. Note the dip near f, = 1d~!, when A > 0. c, Phase lag between forcing frequency and

response y(t) for the classic harmonic oscillator (purple curve) and the cases where Av > 0.

In Fig. 6 we summarize the model findings by plotting the spectral weight |g(f)]
for f = 1d~! (panel a) as well as for f = f, (panel b) as a function of the intrinsic
frequency f,. The curve for |g(1d~1)| equals that of the classical harmonic oscillator am-
plitude for Av = 0, with a pronounced resonance near f, = 1d~!, which diverges for
b =0 (compare: Eq. 5). For increasing Av > 0, the resonance is further increased. The
fo dependence of |g(f,)| is more complex: as expected, in the limiting case of A = 0
the spectral weight increases approximately linearly with f; (Eq. 23). However, when
a periodic forcing is applied, i.e., A > 0, a region of suppressed |g(f,)| appears in the
vicinity of f, = 1d~!. This suppressed region appears to grow when Av is diminished,
such that for Av — 0 we expect the diurnal cycle to entirely dominate the dynamics.
Conversely, for Av — oo, the slope of the curve for A = 0 diverges and we expect the
suppressed region to vanish and the intrinsic frequency to entirely dominate the dynam-
ics. Finally, we also plot the phase lag between the forcing and the position y(t) (Fig.
6¢), which again contrasts the classical harmonic oscillator to the mixed oscillator. The
main finding is that the phase lag disappears more quickly away from the resonance fre-
quency, when Awv is increased.
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4 Discussion and Conclusion

We have presented a suite of numerical simulations, which provide a highly sim-
plified representation of the Hadley Circulation, including an intertropical convergence
zone with a strongly localized latitudinal band of deep convection near the model equa-
tor. The simulations, which use horizontally cyclic boundary conditions but impose a
meridional temperature gradient away from the equator, further feature a prominent self-
organized oscillation in surface precipitation, thus deep convection, with a period wy ~
L,, where L, is the meridional extent of our simulations. We attribute this oscillation
to the emergent build-up of low wavenumber standing gravity waves, which sync with
convective activity near the equator.

We then explore the crosstalk with the surface temperature diurnal forcing, the most
dominant ”pacemaker” of tropical convection. Such diurnal forcing is implemented by
allowing for additional imposed temporal periodicity in the surface temperature forcing.
Our simulations show that the diurnal cycle can interfere with the system intrinsic mode
but does not dominates the resulting oscillations in surface precipitation. Indeed, only
when wy lies in the vicinity of the diurnal frequency, does the diurnal frequency dom-
inate the dynamics, and a resonance in rainfall intensity occurs. Otherwise, oscillations
at w, dominate the power spectrum.

We propose a simple ordinary differential equation model to re-enact the convec-
tive precipitation dynamics: a simple harmonic oscillator is thereby augmented by a mo-
mentum "boost,” applied whenever the oscillator crosses a threshold. The simple model
explains the resonance near the diurnal frequency and the prevalence of w, far away from
it. It demonstrates that, dependent on the intrinsic frequency wy,, the power spectrum
can be dominated by w, or €.

The diurnal cycle is a key element in tropical and mid-latitude rainfall and its un-
derstanding and proper representation in weather and climate models is still challeng-
ing. In particular, the relation between the diurnal cycle and the occurrence of extreme
convective events, such as mesoscale convective systems, is of great importance, due to
the implications for flooding (Tan et al., 2015; Schumacher & Rasmussen, 2020; Fowler
et al., 2021).

The interplay between organized convection and the large scale circulation has fas-
cinated the scientific community for decades (Lindzen, 1974; K. A. Emanuel, 1987; Neelin
et al., 1987; Wang, 1988; Takayabu, 1994; Wheeler & Kiladis, 1999; Kiladis et al., 2009;
Mapes, 2000; Majda & Shefter, 2001; Sobel & Bretherton, 2000; Hartel et al., 2000; Kuang,
2012; Yang & Ingersoll, 2013; Yang, 2021). Our phenomenological model builds on the
existence of low-wavenumber standing gravity waves and helps understand how the di-
urnal cycle interferes with such waves. The standing fundamental modes have been re-
ported to self-organize when convection aggregates and eventually "singles out” such system-
scale oscillations. While promising suggestions exist (Yang & Ingersoll, 2013; Yang, 2021),
building further evidence on how such modes come about within a coupled, self-organized
process, should provide the community with deeper understanding of convectively cou-
pled equatorial waves.
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Figure S1. Domain-mean precipitation for varying latitudinal temperature gradi-
ents. Panels show timeseries of horizontal-mean surface precipitation intensity for latitudinal
temperature differences AT, ;,, = T(v,y = L,/2,t) — T(x,y = 0,t) as labeled on top of each
panel. The meridional domaln size L, = 4000 km in all simulations shown. Left and right stacks
of panels correspond to the 30-day spinup and 30-day analysis periods, respectively. Note the
substantial internal variability for all simulations and in particular the shift in power spectral
density for AT, ,,, = 0K.
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Figure S2. Detecting timeseries peaks and minima. Timeseries for domain mean sur-

face precipitation R(t) for RCE (shown in a) and DIU (panel b) for equal meridional domain

size L, = 2,000km. Detected peaks and minima are highlighted by orange and green symbols,

respectively.
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