Chandru Dhandapani

and 5 more

Cloud responses to surface-based sources of aerosol perturbation depend in part on the characteristics of the aerosol transport to cloud base and the resulting spatial and temporal distribution of aerosol. However, interactions among aerosol, cloud, and turbulence processes complicate the prediction of this aerosol transport and can obscure diagnosis of the aerosols' effects on cloud and turbulence properties. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show a spurious in-plume cloud brightening due solely to the connections between updrafts, cloud condensation, and scalar transport. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.

Dean Henze

and 6 more

In-situ measurements of the trade cumulus boundary layer turbulence structure are compared across large-scale circulation conditions and cloud horizontal organizations during the EUREC4A-ATOMIC campaign. The vertical structure of turbulent (e.g. vertical velocity variance, total kinetic energy) and flux (e.g. sensible, latent, and buoyancy) quantities are derived and investigated using the WP-3D aircraft stacked level legs (cloud modules).The 16 cloud modules aboard the P-3 were split into three groups according to cloud top height and column-integrated TKE and vertical velocity variance. These groups map onto qualitative cloud features related to object size and clustering over a scale of 100 km. This grouping also correlates to the large scale forcings of surface windspeed and low-level divergence on the scale of a few hundred km. The ratio cloud top to trade inversion base height is consistent across the groups at around 1.18. The altitude of maximum turbulence is 0.75-0.85 of cloud top height. The consistency of these ratios across the groups may point to the underlying coupling between convection, dissipation, and boundary layer thermodynamic structure. The following picture of turbulence and cloud organization is proposed: (1) light surface winds and turbulence which decreases from the sub-cloud mixed layer (ML) with height generates clouds with generally uniform spacing and smaller features, then (2) as the surface winds increase, convective aggregation occurs, and finally (3), if surface convergence occurs, convection and turbulence reach higher altitudes, producing higher clouds which may precipitate and create colds pools. Observations are compared to a CAM simulation is run over the study period, nudged by ERA5 winds and surface pressure. CAM produces higher column integrated turbulent kinetic energy and larger maximum values on the days where higher cloud tops are observed from the aircraft, which is likely a factor that influences the development of deeper clouds in the model. However, CAM places the peak turbulence 500 m lower than observed, suggesting there may be a bias in CAM representation of turbulence and moisture transport. CAM also does not capture the large LHFs seen for two of the days in which lower cloud tops are observed, which could result in insufficient lower free tropospheric moistening in the model during this type of cloud organization. A large and consistent bias between the model and observations for all cloud groups is the negative SHFs produced in CAM near 1500 m. This is not observed in the measurements. This leads to a net negative buoyancy flux not observed and provides evidence of a specific shortcoming that can be addressed as part of the needed improvement in the representation of clouds by large-scale models.

Ehsan Erfani

and 4 more

Low marine clouds are a major source of uncertainty in cloud feedbacks across climate models and in forcing by aerosol-cloud interactions. The evolution of these clouds and their response to aerosol are sensitive to the ambient environmental conditions, so it is important to be able to determine different responses over a representative set of conditions. Here, we propose a novel approach to encompassing the broad range of conditions present in low marine cloud regions, by building a library of observed environmental conditions. This approach can be used, for example, to more systematically test the fidelity of Large Eddy Simulations (LES) in representing these clouds. ERA5 reanalysis and various satellite observations are used to extract and derive macrophysical and microphysical cloud-controlling variables (CCVs) such as SST, estimated inversion strength (EIS), subsidence, and cloud droplet number concentrations. A few locations in the stratocumulus (Sc) deck region of the Northeast Pacific during summer are selected to fill out a phase space of CCVs. Thereafter, Principal Component Analysis (PCA) is applied to reduce the dimensionality and to select a reduced set of components that explain most of the variability among CCVs in order to efficiently select cases for LES simulations that encompass the observed CCV phase space. From this phase space, 75-100 cases with distinct environmental conditions will be selected and used to initialize 2-day LES modeling to provide a spectrum of aerosol-cloud interactions and Sc-to-Cumulus transition under observed ambient conditions. Such a large number of simulations will help create statistics to assess how well the LES can simulate the cloud lifecycle when constrained by the ‘best estimate’ of the environmental conditions, and how sensitive the modeled clouds are to changes in these driving fields.

Rachel Atlas

and 3 more

In clouds containing both liquid and ice that have temperatures between -3C and -8C, liquid droplets collide with large ice crystals, freeze, and shatter, producing a plethora of small ice splinters. This process, known as Hallett-Mossop rime splintering, can cause clouds to reflect less sunlight and to have shorter lifetimes. Here, we use a novel suite of five global cloud-resolving models, which break up the Earth’s atmosphere into columns with 2-4 km horizontal edges, to show that this microscale process has global implications. Simulations that include Hallett-Mossop rime splintering have reduced cumulus cloud cover over the Southern Ocean and reflect 12 Wm^(-2) less sunlight back to space over the same region, better matching satellite observed radiative fluxes. We evaluate simulated clouds using high-resolution visible images from the Himawari satellite, and radar reflectivities and two-dimensional images of cloud particles from the SOCRATES aircraft campaign. Cumulus clouds from simulations with Hallett-Mossop rime splintering included have more realistic cloud morphology, cloud vertical structure and ice crystal properties. We show that Hallett-Mossop rime splintering is an important control on cumulus cloud cover and cloud radiative effects over the Southern Ocean, and that including it in simulations improves model performance. We also demonstrate the key role that global cloud-resolving models can play in detangling the effects of clouds on Earth’s climate across scales, making it possible to translate the behavior of tiny cloud particles (10^(-8) m^2) to their impact on the radiative budget of the massive Southern Ocean basin (10^(14) m^2).

Dennis Hartmann

and 3 more

4 Key Points: 5 • The SST contrast increases with warming, primarily because the clear-sky green-6 house effect feedback is stronger in the warm region. 7 • As the climate warms, the integrated cooling rate of the atmosphere increases by 8 moving upward into lower pressures and increasing in strength, giving a more top-9 heavy cooling profile. 10 • The more top-heavy cooling rate profile results in increased cloud ice as the cli-11 mate warms. Abstract 13 Warming experiments with a uniformly insolated, non-rotating climate model with a slab 14 ocean are conducted by increasing the solar irradiance. As the climate warms, the sur-15 face temperature contrast between the warm, rising and cooler, subsiding regions increases, 16 mostly as a result of the stronger greenhouse effect in the warm region. The convective 17 heating rate becomes more top-heavy in warmed climates, producing more cloud ice, prin-18 cipally because the radiative cooling rate moves to lower pressures and increases. To pro-19 duce this more top-heavy convective heating, precipitation shifts from the convective to 20 the stratiform parameterization. The net cloud radiative effect becomes more negative 21 in the warm region as the climate warms. At temperatures above about 310K surface 22 temperature contrast begins to decline, and the climate becomes more sensitive. The re-23 duction in SST contrast above 310K again appears to be initiated by clear-sky radiative 24 processes, although cloud processes in both the rising and subsiding regions contribute. 25 The response of clear-sky outgoing longwave to surface warming begins to accelerate in 26 the region of rising motion and decline in the region of subsidence, driving the SST con-27 trast to smaller values. One-dimensional simulations are used to isolate the most rele-28 vant physics. 29 Plain Language Summary 30 A global model of a non-rotating Earth with an ocean that stores heat but does 31 not transport it is run to equilibrium with different values of globally uniform solar heat-32 ing. Despite the complete uniformity of the system, it still develops regions of warm sea 33 surface temperature where rain and rising motion occur, and regions with downward, 34 subsiding air motion where rainfall does not occur. These contrasts look very similar to 35 what is observed in the present-day tropics. As the climate is warmed from current tem-36 peratures toward warmer temperatures, the warm regions warm faster, mostly because 37 the rising regions contain more water vapor. The clouds rise to higher altitudes in the 38 warmer climates, and produce more cloud ice. These changes are shown to arise from 39 well-understood physical processes that are expected to operate in nature. 40

Liran Peng

and 5 more

We design a new strategy to load-balance high-intensity sub-grid atmospheric physics calculations restricted to a small fraction of a global climate simulation’s domain. We show why the current parallel load balancing infrastructure of CESM and E3SM cannot efficiently handle this scenario at large core counts. As an example, we study an unusual configuration of the E3SM Multiscale Modeling Framework (MMF) that embeds a binary mixture of two separate cloud-resolving model grid structures that is attractive for low cloud feedback studies. Less than a third of the planet uses high-resolution (MMF-HR; sub-km horizontal grid spacing) relative to standard low-resolution (MMF-LR) cloud superparameterization elsewhere. To enable MMF runs with Multi-Domain CRMs, our load balancing theory predicts the most efficient computational scale as a function of the high-intensity work’s relative overhead and its fractional coverage. The scheme successfully maximizes model throughput and minimizes model cost relative to precursor infrastructure, effectively by devoting the vast majority of the processor pool to operate on the few high-intensity (and rate-limiting) HR grid columns. Two examples prove the concept, showing that minor artifacts can be introduced near the HR/LR CRM grid transition boundary on idealized aquaplanets, but are minimal in operationally relevant real-geography settings. As intended, within the high (low) resolution area, our Multi-Domain CRM simulations exhibit cloud fraction and shortwave reflection convergent to standard baseline tests that use globally homogenous MMF-LR and MMF-HR. We suggest this approach can open up a range of creative multi-resolution climate experiments without requiring unduly large allocations of computational resources.

Matthew Wyant

and 4 more

Camille Risi

and 6 more

One way to test our understanding of the impact of convective processes on the isotopic composition of water vapor and precipitation is to analyze the isotopic mesoscale variations during organized convective systems such as tropical cyclones or squall lines. The goal of this study is to understand these isotopic mesoscale variations with particular attention to isotopic signals in near-surface vapor and precipitation that may be present in observations and in paleoclimate proxies. With this aim, we run cloud resolving model simulations in radiative-convective equilibrium in which rotation or wind shear is added, allowing us to simulate tropical cyclones or squall lines. The simulations capture the robust aspects of mesoscale isotopic variations in observed cyclones and squall lines. We interpret these variations using a simple water budget model for the sub-cloud layer of different parts of the domain. We find that rain evaporation and rain-vapor diffusive exchanges are the main drivers of isotopic depletion within cyclones and squall lines. Horizontal advection spreads isotopic anomalies, thus reshaping the mesoscale isotopic pattern. Variations in near-surface relative humidity and wind speed have a significant impact on d-excess variations within tropical cyclones, but the evaporation of sea spray is not necessary to explain the observed enrichment in the eye. This study strengthens our understanding of mesoscale isotopic variability and provides physical arguments supporting the interpretation of paleoclimate isotopic archives in tropical regions in terms of past cyclonic activity.

Camille Risi

and 2 more

The goal of this study is twofold. First, we aim at developing a simple model as an interpretative framework for the water vapor isotopic variations in the tropical troposphere over the ocean. We use large-eddy simulations to justify the underlying assumptions of this simple model, to constrain its input parameters and to evaluate its results. Second, we aim at interpreting the depletion of the water vapor isotopic composition in the lower and mid-troposphere as precipitation increases, which is a salient feature in tropical oceanic observations. This feature constitutes a stringent test on the relevance of our interpretative framework. Previous studies, based on observations or on models with parameterized convection, have highlighted the roles of deep convective and meso-scale downdrafts, rain evaporation, rain-vapor diffusive exchanges and mixing processes. The interpretative framework that we develop is a two-column model representing the net ascent in clouds and the net descent in the environment. We show that the mechanisms for depleting the troposphere when precipitation rate increases all stem from the higher tropospheric relative humidity. First, when the relative humidity is larger, less snow sublimates before melting and a smaller fraction of rain evaporates. Both effects lead to more depleted rain evaporation and eventually more depleted water vapor. This mechanism dominates in regimes of large-scale ascent. Second, the entrainment of dry air into clouds reduces the vertical isotopic gradient and limits the depletion of tropospheric water vapor. This mechanism dominates in regimes of large-scale descent.

Rachel Atlas

and 6 more

Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in-situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud-resolving large-eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL global atmosphere model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (‘ERA5-based’) and once strongly nudged to an aircraft profile (‘Obs-based’). The ERA5-based LES can be compared with the global models, which are also nudged to reanalysis data, and is better for simulating cumulus. The Obs-based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests, and simulating multi-layer stratiform clouds. We use two-moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett-Mossop temperature range. We modify the Hallett-Mossop parameterization so that it activates within boundary layer clouds and we achieve better agreement between observed and simulated microphysics. The nudged GCMs achieve reasonable supercooled liquid water dominated clouds in most cases but struggle to represent multi-layer stratiform clouds and to maintain liquid water in cumulus clouds. CAM6 has low droplet concentrations in all cases and underestimates stratiform cloud-driven turbulence.