Jacqueline M Nugent

and 4 more

Pervasive cirrus clouds in the upper troposphere and tropical tropopause layer (TTL) influence the climate by altering the top-of-atmosphere radiation balance and stratospheric water vapor budget. These cirrus are often associated with deep convection, which global climate models must parameterize and struggle to accurately simulate. By comparing high-resolution global storm-resolving models from the Dynamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) intercomparison that explicitly simulate deep convection to satellite observations, we assess how well these models simulate deep convection, convectively generated cirrus, and deep convective injection of water into the TTL over representative tropical land and ocean regions. The DYAMOND models simulate deep convective precipitation, organization, and cloud structure fairly well over land and ocean regions, but with clear intermodel differences. All models produce frequent overshooting convection whose strongest updrafts humidify the TTL and are its main source of frozen water. Inter-model differences in cloud properties and convective injection exceed differences between land and ocean regions in each model. We argue that global storm-resolving models can better represent tropical cirrus and deep convection in present and future climates than coarser-resolution climate models. To realize this potential, they must use available observations to perfect their ice microphysics and dynamical flow solvers.
Sub-kilometer processes are critical to the physics of aerosol-cloud interaction but have been dependent on parameterizations in global model simulations. We thus report the strength of aerosol-cloud interaction in the Ultra-Parameterized Community Atmosphere Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to embed explicit cloud resolving models with enough resolution (250-m horizontal, 20-m vertical) to quasi-resolve sub-kilometer eddies. To investigate the impact on aerosol-cloud interactions, UPCAMâ\euro™s simulations are compared to a coarser multi-scale model with 3 km horizontal resolution. UPCAM produces cloud droplet number concentrations ($N_\mathrm{d}$) and cloud liquid water path (LWP) values that are higher than the coarser model but equally plausible compared to observations. Our analysis focuses on the Northern Hemisphere midlatitude oceans, where historical aerosol increases have been largest. We find similarities in the overall radiative forcing from aerosol-cloud interactions in the two models, but this belies fundamental underlying differences. The radiative forcing from increases in LWP is weaker in UPCAM, whereas the forcing from increases in $N_\mathrm{d}$ is larger. Surprisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining clouds, but a combination of weaker increase in LWP in non-raining clouds and a smaller fraction of raining clouds in UPCAM. The implication is that as global modeling moves towards finer than storm-resolving grids, nuanced model validation of ACI statistics conditioned on the existence of precipitation and good observational constraints on the baseline probability of precipitation will become key for tighter constraints and better conceptual understanding.