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Abstract15

Ocean-atmosphere coupled climate models struggle to produce a single northern hemi-16

sphere intertropical convergence zone (ITCZ), and instead simulate ITCZ bands in both17

hemispheres. This “double ITCZ” bias can negatively impact representations of large-18

scale modes of variability, such as the Madden-Julian oscillation and El Niño–Southern19

Oscillation. A new method to estimate model fluxes that would have been obtained with20

the COARE3.0 bulk flux algorithm indicates that twelve of fourteen CMIP6 models over-21

estimate surface fluxes in the ITCZ region, suggesting that biases rooted in model flux22

algorithms may contribute to ITCZ biases. This finding is supported by atmosphere-only23

simulations of two models where the original flux algorithms are replaced with the COARE3.024

algorithm. In the experiments, precipitation root mean square errors in the double ITCZ25

region were reduced by 26% and 15%, respectively. We interpret these findings through26

the lenses of global energy constraints and convection-boundary layer interactions.27

Plain Language Summary28

Models used to study Earth’s present and future climates often struggle to repro-29

duce the correct patterns of mean rainfall over the tropical oceans. When averaged over30

time and across all longitudes, models tend to produce two tropical rainfall peaks on ei-31

ther side of the Equator, whereas only a single peak just north of the Equator is observed32

in the real world. In this study, we show that the methods used to estimate the trans-33

fer of energy in and out of the ocean may be one reason for why models have difficulty34

with their representations of mean rainfall in the tropics.35

1 Introduction36

The intertropical convergence zone (ITCZ) is a zonally oriented band of enhanced37

cloudiness and rainfall observed over most of the globe. The latitude of ITCZ precip-38

itation migrates seasonally, both in a global sense, and within each ocean basin (Donohoe39

et al., 2013; Koutavas & Lynch-Stieglitz, 2004; Richter et al., 2017; Sikka & Gadgil, 1980;40

Wei & Bordoni, 2018). The ITCZ acts as a waveguide for tropical convective disturbances41

(Ferreira & Schubert, 1997; Gonzalez et al., 2017) and helps maintain ocean circulations42

that sustain biological activity and promote ocean CO2 uptake (Xie & Philander, 1994;43

Kessler, 2006).44

Global climate models that form the basis of the Intergovernmental Panel on Cli-45

mate Change (IPCC) assessment reports (on Climate Change (IPCC), 2023) have long46

struggled to simulate the observed single, northern hemisphere ITCZ, and instead ex-47

hibit strong preferences for double ITCZs (Fiedler et al., 2020). The double ITCZ bias48

has been implicated in the misrepresentation of large-scale modes of tropical climate vari-49

ability, such as the Madden-Julian oscillation (Jiang et al., 2020) and El Niño–Southern50

Oscillation (ENSO; Guilyardi et al. (2003); Wittenberg et al. (2006)). Its interference51

with the simulation of these modes contributes to uncertainty in predicted changes to52

tropical-extratropical teleconnection patterns with rising CO2 concentrations (e.g., Henderson53

et al. (2017); J. Wang et al. (2022)).54

Identifying the root causes of the double ITCZ bias has challenged the climate com-55

munity for decades. Models that simulate a double ITCZ in the eastern Pacific also tend56

to simulate excessively strong and westward-extended equatorial cold tongues (Lin, 2007;57

Samanta et al., 2019). These biases may be linked through an excessive Bjerknes feed-58

back (Lin, 2007; Li & Xie, 2014) that intensifies the cold tongue bias, SST gradient-driven59

boundary layer convergence (Lindzen & Nigam, 1987; Back & Bretherton, 2009) that60

favors the maintenance of convection on both sides of the Equator, or a too-positive feed-61

back of sea surface temperatures (SSTs) to surface fluxes and convective initiation (C. Zhang,62

2001). Other studies indicate that biases in the sensitivity of convection to free tropo-63
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spheric moisture contribute to weakening of subtropical subsidence on both sides of the64

Equator, thus favoring the formation of the southern ITCZ (Song & Zhang, 2018).65

ITCZ location (i.e., its mean latitude) can also be thought of as a response to in-66

terhemispheric imbalances in the atmospheric heating, which drives the vertically inte-67

grated and zonally averaged cross-equator atmospheric energy transport (AET) (Neelin68

& Held, 1987; Hwang & Frierson, 2013). With this paradigm, the ITCZ location is shifted69

toward the hemisphere with more net heating and the resulting asymmetric Hadley cir-70

culation transports heat to the hemisphere with less net heating (Bischoff & Schneider,71

2014, 2016), as shown in the upper panel of Figure 1a. The net heating in both south-72

ern and northern hemispheres set the interhemispheric imbalance and ITCZ asymme-73

try. This implies that biases far removed from the tropics, such as the albedo of South-74

ern Ocean clouds (Hwang & Frierson, 2013) or heat uptake by the Atlantic meridional75

overturning circulation (C. Wang et al., 2014; S. Yu & Pritchard, 2019), can affect the76

interhemispheric heating contrast, and thus the AET, and contribute to the double ITCZ77

bias by erroneously shifting the ITCZ to the Southern Hemisphere (Adam, Schneider,78

et al., 2016).79

Recent theoretical work based on the global energy budget suggests that the sen-80

sitivity of ITCZ meridional position to interhemispheric heating imbalances is modulated81

by the meridional structure of the net atmospheric energy input (AEI) about the Equa-82

tor (Bischoff & Schneider, 2016). AEI, which is sometimes also referred to as “net en-83

ergy input” (NEI), is defined as AEI = S−L−O where S and L are respectively net84

atmospheric heating by shortwave and longwave radiation, and O is the net ocean heat85

uptake. Bischoff and Schneider (2016) showed that the meridional curvature of zonally86

averaged AEI about the Equator affects the sensitivity of the ITCZ position to AET,87

as illustrated in Figure 1a–c. In particular, when AEI is small compared to the inter-88

hemispheric heating imbalance-driven AET, the ITCZ shifts farther into the warm hemi-89

sphere (Figure 1a). When AEI minimizes near the Equator, as observed on Earth, the90

curvature effect reduces the sensitivity of ITCZ position to AET, and the ITCZ shifts91

southward (Figure 1b), or bifucates into a double ITCZ for negative AEI (Figure 1c).92

The above examples illustrate how ITCZ position is sensitive to subtle changes in93

AEI near the Equator and provides a framework for understanding how AET and equa-94

torial AEI together control ITCZ position on Earth (Adam, Bischoff, & Schneider, 2016)95

and in models (Adam, Schneider, et al., 2016; Wei & Bordoni, 2018). It can be lever-96

aged to interpret changes to simulated ITCZ states that arise with changes to model set-97

tings such as e.g., turbulence and cumulus parameterization (Hagos et al., 2021; Lu et98

al., 2021; Talib et al., 2018; Song & Zhang, 2018) or ocean coupling (Talib et al., 2020;99

Lee et al., 2022). Many of these and other studies have identified clouds and their ra-100

diative feedbacks (Woelfle et al., 2019; G. J. Zhang et al., 2019) and ocean circulations101

(Green & Marshall, 2017) as being responsible for biases in both interhemispheric en-102

ergy imbalances and equatorial AEI that affect ITCZ biases. In contrast, less attention103

has focused on marine surface latent heat fluxes and their biases as a source of ITCZ bias104

in climate models.105

Zonally averaged mean surface latent heat fluxes, which dominate the ocean-atmosphere106

energy exchange, differ by as much as 50 W m−2 in the tropics (R. Zhang et al., 2018)107

and up to 18 W m−2 in the global mean (Wild et al., 2015; Wild, 2020) for models par-108

ticipating in the IPCC Coupled Model Intercomparison Projects 5 and 6 (CMIP5 and109

CMIP6; Taylor et al. (2012); Eyring et al. (2016)). In models, fluxes are computed with110

bulk surface flux algorithms that estimate the flux based on the simulated surface tem-111

perature and low-level wind speed, temperature, and humidity (i.e., the “bulk” inputs):112

LH = ρCeLvU10∆q (1)

where ρ is the density of water, Ce is the bulk transfer coefficient, Lv is the latent heat113

of vaporization, U10 is wind speed, adjusted to 10 m, and ∆q = 0.98q∗SST−q2m where114
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Figure 1. Schematic illustration of the relationship between ITCZ location and atmospheric

energy input (AEI; gray lines in each lower panel) for a given cross-equatorial atmospheric energy

transport (AET; gray arrows) as described in Bischoff and Schneider (2016). AET is the same

in a–c, but ITCZ position, denoted by clouds, varies with the meridional distribution of AEI.

The mean meridional moisture and energy transports are shown with green and orange arrows,

respectively. Note that AEI curvature about the Equator increases from a–c.
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q∗SST and q2m are saturation specific humidity at SST and specific humidity at 2 m, re-115

spectively, and the 0.98 factor applied to q∗SST accounts for the reduction in saturation116

specific humidity by ocean salinity effects (Zeng et al., 1998). Biases in surface fluxes can117

therefore be rooted in biases in any of the bulk inputs, as well as in the algorithm used118

to estimate the bulk transfer coefficient, Ce (L. Yu, 2019).119

It has been shown that different bulk flux algorithms can yield a wide range of fluxes120

given the same bulk inputs, and that the majority of flux algorithms appearing in the121

literature overestimate marine surface fluxes by 10–20% when compared to fluxes com-122

puted from direct covariance measurements (Brunke et al., 2003). These differences, which123

are rooted in the assumptions and methods used to empirically relate the bulk inputs124

to the flux, are most evident at high and low wind speeds (Brodeau et al., 2017), and125

are thus not uniformly distributed across the range of bulk input variables. Of the twelve126

bulk flux algorithms analyzed by Brunke et al. (2003), the COARE3.0 algorithm (Fairall,127

Bradley, Rogers, et al., 1996; Fairall et al., 2003) was judged to be one of the least prob-128

lematic when compared to in situ direct covariance-measured fluxes at several locations129

across the globe. The COARE3.0 algorithm (hereafter, simply referred to as “COARE”)130

is used to compute surface latent and sensible heat fluxes from in situ surface meteorol-131

ogy measured at tropical moorings (McPhaden et al., 2010)and is the basis of all mod-132

ern satellite-derived surface flux products (L. Yu, 2019). In contrast, surface fluxes in133

climate models are computed using a multitude of bulk flux algorithms (Brodeau et al.,134

2017), some of which include adjustments to account for flux dependence on low-level135

stability, subgridscale gustiness, or other factors (Zeng et al., 1998; Harrop et al., 2018).136

In this study, we present evidence to suggest that biases in climate models’ bulk137

flux formulae favors tropical AEI distributions that exacerbate the double ITCZ bias in138

those models. Replacing the original bulk flux algorithm with the COARE algorithm in139

atmosphere-only simulations of two climate models flattens their meridional AEI gra-140

dients and reduces their double ITCZ biases in a manner consistent with the results of141

Bischoff and Schneider (2016). These changes to mean eastern tropical Pacific precip-142

itation are considered through the lens of marine boundary layer-convection interactions.143

Our study is outlined as follows: Datasets and diagnostic methods are described144

in Section 2. Model flux biases are described in Section 3. In Section 4, we test the sen-145

sitivity of ITCZ structure to bulk flux algorithm in two global models by replacing the146

native flux algorithm with the COARE algorithm. Conclusions are given in Section 5.147

2 Methods and Data148

2.1 Data149

We analyze surface latent heat fluxes in historical simulations of models partici-150

pating in the International Panel on Climate Change 6th Assessment Report Coupled151

Model Intercomparison Project (CMIP6; Eyring et al. (2016)). Daily mean values of 10 m152

wind speed (U10; m s−1), 2 m specific humidity (q2m; g kg−1), SST (K) (i.e., temper-153

ature of the top-most layer of the ocean model) and LH (W m−2) are used to diagnose154

model fluxes as a function of bulk inputs, while daily mean 2 m air temperature (T2m;K)155

is used to assess stability of the marine atmospheric boundary layer. Fourteen model-156

ing centers (Table ??) provided these inputs at daily resolution, and we analyzed only157

the first available ensemble member (usually r1i1p1f1 ) for simulation years 1995-2014.158

Model output is compared to in situ observations of U10, q2m, and SST measured159

by moorings throughout the global tropics (30◦N–30◦S) and made available through the160

Global Tropical Moored Buoy Array (McPhaden et al., 2010). Sampling period, data qual-161

ity, and data continuity vary widely from mooring to mooring. Since our analysis does162

not require a continuous data stream, we only analyze “highest quality” observations of163

U10, q2m, and SST (i.e., data quality code 1). Simulated precipitation climatologies are164
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compared to the Integrated Multi-satellitE Retrievals for GPM from June 2000–May 2019165

(IMERG; Huffman et al. (2020)). All model and observational fields are interpolated to166

a 2.5×2.5 latitude-longitude grid prior to diagnosing the flux.167

2.2 Diagnosis of surface fluxes168

In this study, we do not compute surface fluxes, but diagnose their daily mean val-169

ues as a function of their daily mean bulk inputs. U10 is directly reported for both moor-170

ings and models, but ∆q must be calculated starting from q2m and SST. While SST used171

for bulk estimation of the flux refers to the ocean skin temperature (the temperature of172

the uppermost few microns of the ocean surface), SST measured by moorings corresponds173

to ocean temperatures at depths of ∼1 m while that reported by models equates to the174

mean ocean temperature of the uppermost model layer, which is typically O(10 m).175

Ocean temperature at depths 1 m or greater may vary substantially from ocean176

skin temperature owing to diurnal warming of the surface layer (O(1 m)) and molecu-177

lar thermal cooling of the surface skin (Fairall, Bradley, Rogers, et al., 1996; Kawai &178

Wada, 2007). When averaged over the course of a day, the diurnal warm layer and “cool179

skin” effects partially offset each other, but the cool skin effect, which is not diurnally180

dependent, slightly dominates, yielding a daily mean skin temperature approximately181

0.2 K cooler than the 1 m daily mean temperature measured by moorings (Donlon et182

al., 2007; Minnett & Kaiser-Weiss, 2012)). Hence, daily mean SST from moorings is re-183

duced by 0.2 K before computing q∗SST . We apply the same correction to model SST,184

although it is not always clear if diurnal warm layer and/or cool skin approximations have185

been applied before computing the flux. Fairall, Bradley, Godfrey, et al. (1996) (their186

Table 5) indicate that the combined effect of omitting these two SST corrections can in-187

flate the mean LH by about 5%, or 5 W m−2. However, as we show in the next section,188

this uncertainty is generally less than the flux difference arising from choice of bulk flux189

algorithm.190

3 Comparison of CMIP6 surface fluxes to COARE surface fluxes191

3.1 Diagnosis of model surface flux biases192

Fluxes and their bulk inputs from all available mooring observations are aggregated193

into a single diagnostic by computing the mean flux as a function of U10 and ∆q, as shown194

in Figure 2a. The relative frequency of U10–∆q pairs is shown with contours, while the195

average flux per U10–∆q bin—a function of the bulk transfer coefficient—is shaded. Con-196

sistent with Eq. 1, the flux increases with increasing U10 and ∆q.197

The single “grand flux matrix” in Figure 2a, which pools fluxes from across the global198

tropics, might mask changes to the flux that could arise from changes in SST, SST gra-199

dients, or low-level stability. To understand how these differences could affect the ob-200

served flux diagnostic, we computed a separate flux matrix for each mooring (FIGURE201

S1) and used the differences between individual flux matrices and the grand flux matrix202

in Figure 2a to compute the root mean square difference (RMSD). Figure 2b reveals that203

the magnitude of the bin-sampled flux varies little with geographic location. The largest204

absolute RMSDs, which amount to <5% differences, are observed infrequently, near the205

maximum and minimum values of U10 and ∆q. We further investigate the dependence206

of the flux on low-level stability by computing the flux difference for unstable and sta-207

ble boundary layers, as evaluated by the sign of the near-surface vertical temperature208

gradient, ∆T = SST − T2m, shown in Figure 2c. These differences are also small for209

the majority of U10–∆q bins. These results demonstrate that the differences in surface210

fluxes by region or by stability regime are generally small compared to the mean flux.211

We therefore use the result shown in Figure 2a as the basis for our assessment of trop-212

ical flux biases in climate models.213

–6–



manuscript submitted to Geophysical Research Letters

Figure 2. a) Surface fluxes compiled from all 30◦S–30◦N moorings; b) the flux root mean

square difference between fluxes at an individual mooring and the composite result in a); c)

mean flux difference for stable minus unstable boundary layer (i.e., where ∆T > 0 or ∆T < 0;

∆T = SST − T2m), d) the multi-model mean surface flux bias for the tropical oceans (ocean

points from 30◦S–30◦N and 0◦E–360◦E). The frequency of wind speed-∆q input pairs is con-

toured (interval 1%). Solid and dashed crosses respectively mark the mean ±1 standard deviation

of wind speed and ∆q for the equatorial western Pacific and subtropical eastern Pacific regions

shown in Figure 4.

The multi-model mean (MMM) tropical (30◦S–30◦N; 0◦E–◦360E) marine flux bias214

for historical simulations of fourteen CMIP6 models is shown in Figure 2d. In contrast215

to small observed flux differences that arise from mooring location or low-level stabil-216

ity, flux biases arising from model flux algorithms can be quite large. In general, mod-217

els tend to overestimate the flux for lower values of ∆q and with increasing values of U10.218

The mean flux matrix and flux bias for individual models at a point collocated with the219

165◦E, 0◦N mooring can be seen in Figures S1 and S2. Following (BONY 2004), we de-220

composed the flux bias into its contributions from input biases and algorithm biases (Fig-221

ure S3), which demonstrated that, for most models, biases arising from the choice of bulk222

flux algorithm are as significant as those arising from biases in the bulk inputs. Thus,223

model surface flux biases arising from the choice of bulk flux algorithm cannot be ignored224

when assessing model fluxes.225

The bin-by-bin ratio of the mooring-derived flux in Figure 2a to individual model226

flux can be leveraged to adjust the model flux to the COARE flux (Hsu et al., 2022). This227

offline correction yields a hypothetical flux timeseries for each model had the model-simulated228

U10 and ∆q been input to the COARE flux algorithm, rather the model’s native flux al-229

gorithm. We use this method to generate COARE-estimated fluxes for each model, and230

show a map of the multi-model mean flux difference in Figure 3.231

Consistent with the findings of Brunke et al. (2003) and the result shown in Fig-232

ure 2d, the flux correction reduces the flux throughout the tropics (Figure 3a). Flux cor-233

rections are larger in the subtropics than the tropics, with the largest corrections located234

upstream of precipitaiton biases, as inferred from low-level wind vectors in Figure 3a.235

The relative magnitude of the flux correction can be seen more clearly in Figure 3b which236

shows the same result after subtracting the MMM domain average correction. The large-237

scale pattern of the flux adjustment is robust across models, as indicated by stippling238

that denotes where the sign of the relative flux correction for each individual model agrees239

with that of the multi-model mean for at least twelve of the fourteen models (i.e., ≥86%).240

These results suggest that the COARE algorithm has the potential to reduce subtrop-241

ical surface fluxes, and perhaps precipitation, in a region of persistent double ITCZ bias.242

4 Simulated ITCZ with the COARE algorithm243

The above analysis suggests that differences in model surface flux algorithms and244

the COARE flux algorithm may contribute to AEI and precipitation biases associated245
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Figure 3. a) Multi-model mean (MMM) surface latent flux correction (W m−2; shading)

when adjusting model fluxes to COARE fluxes (see text and Hsu et al. (2022) for description of

method), MMM 1000 hPa mean winds (vectors), and MMM precipitation bias relative to IMERG

June 2000–May 2019 climatology (contours; interval 1 mm day−1). b) MMM relative flux correc-

tion (shading) obtained by subtracting the domain-mean flux correction shown in a). Stippling

indicates regions where the sign of the relative correction calculated for each model agrees with

the sign of the MMM correction. Magenta contours as in a), and black dashed and solid rectan-

gles indicate regions used to calculate standard deviations of U10 and ∆q from moorings shown in

Figure 2.

with the double ITCZ bias in climate models. To test this idea, we analyzed changes to246

surface fluxes, AEI, and precipitation in two atmosphere-only climate model simulations247

where the default flux algorithm in each model was replaced with the COARE flux al-248

gorithm. Atmosphere-only simulations were chosen to avoid changes to the flux and AEI249

driven by SST and ocean heat uptake differences. For the first model, the Department250

of Energy (DOE) Energy Exascale Earth System Model (E3SM; Golaz et al. (2019)), we251

analyze results provided by Eyre et al. (2021), who integrated the model for six years252

using a repeating cycle of SSTs from the year 2000. The same COARE flux code from253

the E3SM simulation was ported into the National Center for Atmospheric Research (NCAR)254

Community Earth System Model, version 2 (CESM2; Danabasoglu et al. (2020)) to per-255

form a 36 year simulation forced with observed SSTs from 1979–2014. The E3SM and256

CESM2 share a common lineage, and both compute surface flux bulk transfer coefficients257

according to Large and Yeager (2004) (hereafter LY) in their default configurations. Com-258

pared to the LY algorithm, the COARE algorithm uses three stability classes rather than259

two, computes roughness length as a continuously varying function of wind speed rather260

than as a constant value for each stability class, and includes a gustiness factor to bet-261

ter represent fluxes in low wind conditions.262

The zonally averaged AEI over oceans for both models and their differences for each263

flux experiment are shown in Figure 4a–c. Compared to the LY flux algorithm, the COARE264

algorithm in both models changes the sign of equatorial AEI from weakly negative to265

weakly positive in better agreement with observations (Bischoff & Schneider, 2016), and266

decreases subtropical AEI (Figures 4b, c). For both models, the meridional structure of267

AEI changes bears a strong resemblance to the meridional structure of LH changes (Fig-268

ure 4b), suggesting a strong connection between the two.269

Mean rainfall and its changes with the COARE algorithm are shown in Figure 4d–270

f. The models differ from IMERG climatology in two notable ways. First, they produce271

less rainfall on the Equator and, second, the meridional widths of their northern and south-272
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ern precipitation maxima are too broad (Figure 4d and dashed lines in Figure 4e). Re-273

placing the LY flux algorithm with the COARE algorithm reduces both of these biases274

in each model (solid lines in Figure 4d and Figure 4e).275

The changes to AEI and precipitation with COARE fluxes are partly consistent276

with theoretically determined constraints on ITCZ position arising from hemispheric asym-277

metries in AEI (Bischoff & Schneider, 2016). In particular, a change in sign of AEI at278

the Equator from negative to positive has been associated with a shift away from a dou-279

ble ITCZ toward a single ITCZ in the Northern Hemisphere (e.g., Figure 1b, c). Although280

the COARE algorithm increases AEI and rainfall on the Equator, a weak double ITCZ281

structure remains. That the weakly double ITCZ structure is seen in both IMERG ob-282

servations and in experiments with the COARE flux algorithm may reflect influences of283

other processes, including local effects, in determining ITCZ structure.284

We interpret changes to ITCZ width with the COARE algorithm through the lens285

of boundary layer buoyancy-convection interactions. Marine boundary layer buoyancy286

is regulated by fluxes of heat and moisture from the ocean surface, inputs of free tropo-287

spheric air across the boundary layer top by entrainment and convectively driven down-288

drafts, and horizontal advection of temperature and moisture (de Szoeke et al., 2017),289

as well as mass convergence driven by cold pools and SST gradients (Zuidema et al., 2012;290

Back & Bretherton, 2009). Wolding et al. (2022) have shown that the initiation and de-291

velopment of tropical convection is jointly regulated by the buildup of buoyancy in the292

boundary layer and the relative dilution of buoyancy in the lower free troposphere. A293

reduction in boundary layer buoyancy, or a delay in its increase following an air mass294

trajectory would therefore delay the onset of convection. Hence, we attribute COARE295

algorithm-induced precipitation reductions on the poleward flank of each ITCZ band (Fig-296

ure 4e) to the large subtropical surface flux reductions that occur upstream of precip-297

itation biases in each basin (Figure 3a).298

This line of reasoning is consistent with theoretically determined controls of ITCZ299

width based on energetic constraints by Byrne and Schneider (2016), who argued that300

ITCZ width should be sensitive to the tropical AEI, the advection of moist static energy301

by the Hadley circulation and by transient eddies, and the gross moist stability. The re-302

lationship of surface flux changes to the first two of these controls (AEI and advection303

of moist static energy) has been shown or inferred herein, while understanding the ef-304

fects of bulk flux algorithm on the latter two (transient eddies and gross moist stabil-305

ity) will require further analysis. Our findings are also consistent the ITCZ energetics306

analysis of CMIP5 models by Adam, Schneider, et al. (2016) ADAMS ET AL 2016, who307

found that tropical surface energy fluxes were not related to the spread in the asymmet-308

ric aspects of the double-ITCZ bias in climate models, but were instead related to bi-309

ases in tropical AEI, particularly the negative bias near the Equator.310

5 Conclusions311

Marine surface fluxes are an essential component of the Earth’s water and energy312

cycles, yet they remain poorly constrained owning to a relative lack of in situ observa-313

tions (Clayson et al., 2023). In climate models, a lack of consistent methods for estimat-314

ing surface fluxes contributes to uncertainties in their role in shaping mean cloudiness315

patterns that influence the mean state climate.316

This study leverages surface flux diagnostics, theoretical advances in understand-317

ing mean ITCZ structure, and model experiments to demonstrate that the choice of bulk318

flux algorithm in climate models can lead to surface flux biases which contribute to per-319

vasive ITCZ biases in climate models (e.g., Fiedler et al. (2020)). In atmosphere-ocean320

coupled models, these biases are often attributed to the excessive cold tongue bias in the321

equatorial eastern Pacific. Our experiments, which utilize atmosphere-only simulations322
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Figure 4. 30◦N–30◦S zonally averaged atmospheric energy input (AEI; top row) and pre-

cipitation (bottom row) for E3SMv1 (orange) and CESM2 (cyan) atmosphere-only simulations.

a) AEI by latitude for LY (solid) and COARE (dashed) fluxes; b) COARE minus LY difference

(∆) in AEI (solid) and LH (dashed); c) AEI percent change (∆AEI / |AEILY |); d) mean precip-

itation for IMERG (black) and for LY and COARE simulations; e) precipitation change (solid)

and precipitation bias (dashed) for LY simlations; f) precipitation percent change. Triangles at

7◦N in b–f mark location of maximum mean precipitation for regridded IMERG observations and

simulations.
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forced with observed SSTs, reveal that ITCZ biases can also be rooted in methods used323

to estimate ocean-to-atmosphere surface fluxes, even in the absence of SST biases.324

In our study, surface fluxes estimated using the COARE bluk flux algorithm are325

treated as “truth.” This algorithm, which is one of the least biased when compared to326

in situ surface flux observations (Brunke et al., 2003) is nevertheless subject to uncer-327

tainties common to many algorithms. To reduce these uncertainties, more observations328

are needed to better characterize surface fluxes in high wind conditions, across atmospheric329

stability regimes, in the vicinity of sharp SST gradients, and under a variety of sea states330

(i.e., wave conditions). As climate models incorporate these advances in their surface flux331

parameterizations, reductions in long-standing biases such as the double ITCZ and the332

eastern Pacific cold tongue may be reduced, thus building confidence in models’ abili-333

ties to simulate the current and future climate.334
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Tropical mooring data are available from the Global Tropical Moored Buoy Array336

at https://www.pmel.noaa.gov/tao/drupal/disdel/.337

CMIP6 multi-model ensemble data analyzed as part of this project were downloaded338

from the Earth System Grid Federation at https://esgf-node.llnl.gov/projects/339
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Python code used to compute the surface latent heat flux diagnostics shown in Fig-342
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