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Abstract14

Convolutional Neural Networks (CNNs) can detect patterns that are otherwise difficult15

to identify and have been shown to excel in predicting fault characteristics in laboratory16

shear experiments and slow slip in situ. Here we show that during the precursory phase of17

some natural earthquakes, a subtle change in the seismic background signal occurs that can18

be identified by a suitably designed CNN, and used as a probabilistic forecasting tool.19

We use 31 earthquakes of Mw ≥ 6 in Japan and vicinity, between March 2012 and February20

2020, all recorded by station IU MAJO (Japan main island) except one recorded by station21

IU MA2 (Kamtchatka). The CNN is trained on 24 events, where a 16 mn time window pre-22

ceding each earthquake is labelled as precursory (presumably containing a strong precursory23

signal), and another 16 mn time window far from the time of earthquake occurrence is24

labelled as noise (presumably containing weak or no precursory signal). The 7 remaining25

events were used for testing. The CNN achieves 98% training accuracy and a 96% testing accu-26

racy in discriminating noise and precursor windows. Time windows in the ∼ 3 hours preced-27

ing the earthquakes are progressively interpreted by the model as precursors as earthquake time28

approaches. To characterize the signal detected by the CNN, we analyse spectra from noise and29

from precursory windows. Discriminative features appear most dominant over a frequency range30

of ≈ 0.1-0.9 Hz (in particular ≈0.16 and ≈0.21 Hz) coinciding with microseismic noise and re-31

cent observations of broadband slow earthquake signal (Masuda et al., 2020).32

Plain Language Summary33

Subtle signals may be emitted by faults in the hours preceding an earthquake. Here we34

test this hypothesis by training a convolutional neural network to identify time intervals35

preceding magnitude 6 earthquakes from broadband seismic signals.36

1 Introduction37

In natural earthquakes, precursors are thought to arise either when faults reach critical38

stress conditions preceding shear failure (Scholz, 2019), or when slow slip impacts an39

extended nucleation patch, triggering rupture of small asperities (Ruiz et al., 2017; Guérin-40

Marthe et al., 2019; Kato & Ben-Zion, 2021). Recently, systematic changes in seismic wave41

statistical characteristics (Rouet-Leduc et al., 2019, 2018, 2017; Lubbers et al., 2018;42

K. Wang et al., 2021; Shreedharan et al., 2020; Corbi et al., 2020; Scuderi et al., 2016) have43

been observed prior to lab fault failure. Laboratory experiments show systematic changes44

prior to stick-slip events on simulated faults, that may be regarded as a proxy for natural45

earthquake faults. Prior to fault failure, laboratory simulated earthquakes show an increase in46

small shear failures, each of which emit impulsive acoustic emissions (P. A. Johnson et al.,47

2013). Machine learning, a field used to analyse the statistical characteristics of large quantities48

of data, can also be used as a tool to investigate changes in the acoustic signal emitted prior to49

rupture. Machine learning on faults were initially tested on laboratory faults (Rouet-Leduc et al.,50

2017, 2018, 2019; Hulbert et al., 2019). This work demonstrated highly accurate prediction of51

lab earthquake instantaneous characteristics such as friction, as well as earthquake timing, by iden-52

tifying statistical characteristics of the seismic signal emitted from the fault zone that were im-53

printed with information regarding fault slip.54

A subsequent study (Rouet-Leduc et al., 2019) applied similar machine learning55

techniques to seismic data from the Cascadia subduction zone. By posing the problem as a56

regression between the statistical characteristics of the continuous seismic data and the57

surface GPS displacement rate, the study showed that the Cascadia megathrust continuously58

emits a tremor-like signal with statistical characteristics that reflect the displacement rate on59

the fault. Although this approach provides real-time access to the physical state of the slowly60

slipping portion of the megathrust, it has not successfully been applied to seismogenic61

earthquake prediction. Systematic precursors to seismogenic earthquakes are yet to be62
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identified in the continuous signal applying machine learning (Mignan & Broccardo, 2020;63

C. W. Johnson & Johnson, 2021). Work on identifying impulsive precursors preceding fault64

failure using more classical means has been suggestive but not conclusive. For instance, Bou-65

chon and colleagues (Bouchon et al., 2011, 2013) have shown potential for applying statistical66

approaches for some earthquakes but the observation is far from conclusive.67

The difficulty in identifying natural precursors arises partly from the fact that without68

knowing the location of an impending earthquake, efforts cannot be focused towards detect-69

ing changes in the properties within and surrounding a specific fault zone prior to failure,70

especially where the signal to noise ratio is small (Scuderi et al., 2016; Rouet-Leduc et al.,71

2017). Additionally, precursors may often be masked by other earthquakes or earthquake72

swarms which are characterised by entirely different statistical properties (Ishibashi, 1988;73

C. W. Johnson & Johnson, 2021). There is hope that the significant increase in station74

density and sensitivity over the last 15 years will lead to advances in earthquake forecasting75

and precursor detection however (Rouet-Leduc et al., 2017), but an optimal location must be76

selected as a starting point. Meaning, a fault displacing measurably that is well instrumented.77

Because CNNs can detect features of different scales (Zhao et al., 2017), we may ex-78

pect that variations of the seismic signal over a wide interval of frequencies and amplitudes79

may be detected. CNNs have frequently been applied to earthquake detection, generating80

improved earthquake catalogues by efficiently analysing large quantities of seismic data81

(Van Quan et al., 2017; Perol et al., 2018; Mousavi et al., 2019; C. W. Johnson & Johnson,82

2021). However, research into the potential of CNNs and complex neural network architec-83

tures to improve earthquake predictability is more limited. For instance, recent efforts84

applying an encoder-decoder model to analyze continous seismic data emanating from a85

seismogenic fault in Earth—the San Andreas Fault (SAF) at Parkfield—were unsuccessful in86

predicting fault instantaneous displacement and future earthquake timing (C. W. Johnson &87

Johnson, 2021). The study concluded that the seismic signals of interest, if they exist on this por-88

tion of the SAF, are too weak to identify within a noisy environment. Huang et al. (2018) utilised89

a simple CNN to investigate the seismic data prior to earthquakes in Taiwan. Taiwanese seismic-90

ity maps were transformed into 2D images by encoding earthquake magnitude as brightness. A91

classification-based approach was employed to detect differences within seismicity maps up to92

30 days prior to large (Mw ≥ 6) earthquakes, and seismicity maps up to 30 days prior to small93

(Mw < 6) earthquakes. Their algorithm yielded an R-score of 0.303 (where an R-score of 0 is94

the result of an entirely random prediction and an R-score of 1 is an entirely successful predic-95

tion). This suggests that the CNN captured some precursory seismic pattern, however, no fur-96

ther investigation was conducted into the patterns which led to this classification result. In ad-97

dition, these results were not considered for probabilistic forecasting of earthquakes.98

Although CNNs are commonly used on 2D images (Huang et al., 2018), here we99

investigate precursors based solely on features of the raw seismic signal. We apply neural100

networks to detect systematic, pattern-based changes in raw time series. We apply a statisti-101

cal approach to test the potential of Deep Learning techniques in the short-term forecasting102

(minutes to hours) of an ensemble of earthquakes. Our goal in this investigation is to103

determine whether precursors can be detected without any substantial data pre-processing.104

Rather than considering long-term changes such as decreases in seismic wave speed105

and increased foreshock activity, which do not systematically occur prior to large106

earthquakes, here we focus on short-term fluctuations and attempt to detect patterns within107

the seismic data that occur over a smaller time-frame (minutes to hours) prior to large108

earthquakes. Focusing on a smaller time-frame and training a complex CNN for109

classification as a first step, may more robustly enable the detection of previously110

undiscovered patterns in seismic signals. Evidence of novel pre-rupture patterns would111

indicate that some sort of mechanism is active during the earthquake nucleation phase, that112

may emit a subtle signal which is detectable with sophisticated methods. In short our goal is113

a proof-of-concept by applying deep learning to an ensemble of events, to determine if such114

an approach yields precursor information.115
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2 Description of the data116

To increase the probability that predictive features are systematically present in the117

signal, seismic events that share a similar process and environment should be selected,118

possibly from the same region. This potentially reduces the generality of the training, but119

increases the chances of obtaining a positive proof of concept. However, confining the study120

to a limited geographical area reduces the total number of events available in the seismic121

catalogue for analysis. Therefore, a seismically active region is selected for our test.122

We chose the Japan subduction region during a time interval of relatively high seismic123

activity in the years following the 2011, Tohoku M9 earthquake. Located at the junction of124

four tectonic plates, the zone experiences around 400 Mw > 0 earthquakes per day (McGuire125

et al., 2005). Additionally, earthquakes in Japan account for over 20% of all M6 or greater126

earthquakes worldwide (Mogi, 1981). The largest recorded earthquake was the 2011 M9127

Tohoku Earthquake, which ruptured the central section of the Japan Trench to a depth of128

approximately 50 km (Ozawa et al., 2012). In addition to the dense seismic network and the129

high recurrence of relatively large earthquakes, aseismic slip with transient timescales of130

days to months has recently been observed in the Japan subduction zone using continuously131

monitored GPS arrays (McGuire et al., 2005). A continuously slipping subduction zone132

should increase the potential for precursors, however, it might also result in a significant num-133

ber of foreshocks that could substantially mask precursors in the seismic signal (McGuire et al.,134

2005).135

Next we choose the minimum magnitude of the target events whose precursory phase136

is investigated. Using small magnitude target events would limit the amplitude of the137

possible precursory signal, while using large magnitude limits the number of available target138

events. We settle for a threshold of Mw ≥ 6, the highest possible value still allowing for a139

reasonable number of earthquakes available within the geographical area and time interval140

investigated.141

The database includes earthquakes that occurred between March 2012 and February142

2020. The upper time limit, February 2020, was driven by the date at which the data were143

downloaded, and followed by the configuration, training and testing of the network. The144

lower time limit, March 2012, was selected to reduce the influence of significant stress145

changes and afterslip from the March 2011 M9 earthquake on the features learnt by the146

neural network during training and to improve generality of the algorithm.147

Changes in stress before, during and after the 2011 M9 Tohoku earthquake have been148

extensively investigated (see for example Becker et al. 2018 and references therein),149

confirming that the most significant modification to the stress field occurred at the time of the150

M9 Tohoku earthquake. As expected from stress changes occurring during a megathrust151

cycle (Herman & Govers, 2020), the region between northern Honshu and the Japan trench,152

previously under compressive horizontal stress, became extensional after the earthquake153

(Becker et al., 2018). Additionally, there was indication of a short-term transient increase of154

horizontal stress in the months following the Tohoku earthquake, until a plateau was reached155

after approximately one year. The frequency of aftershocks was similarly investigated and a156

sudden, short-term increase of the seismicity rate was observed immediately after the Mw 9157

earthquake (Toda, 2019). This was followed by an approximately exponential decrease in the seis-158

micity rate which is compatible with Omori’s law of aftershock decay (Utsu et al., 1995). Roughly159

one year following the start of the Mw 9 earthquake, the rate had become stable and lower com-160

pared to the rate prior to the earthquake.161

Data recorded by station IU MAJO (Fig. 1) preceding earthquakes that took place162

within 20o of the station, were used for training and testing of the network. An additional163

earthquake outside of the 20o radius was analyzed using recording from the IU MA2 station.164

The data for each event consists of ten hours of continuous seismic data preceding each165
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magnitude 6 earthquake, recorded on the three channels (BH1, BH2, BHZ) of Streckeisen166

STS-2 High-gain instruments at 40 Hz.167

If any precursory changes in the seismicity exist, they would likely be detectable by a168

station in the relative vicinity of the generating process, but attenuate with increasing169

distance.170

Inspection of seismograms from Mw ≈ 6 earthquakes at different distances from the171

station of interest, shows that the attenuation is significant (signal to noise ratio decreases172

significantly) by 2500 km from the station. The threshold of 20o (approximately 2500 km)173

was selected assuming that the attenuation shown in the earthquakes’ seismograms is a174

proxy, or possibly an upper limit, for the attenuation of unidentified, and weaker signals in175

the data that the model may identify.176

Having defined the region, magnitude range and time interval, all corresponding events177

were inspected and some were excluded from the database based on the following criteria.178

Some of the events were found to contain impulsive earthquake signals arising from smaller179

(Mw < 6) earthquakes. The presence of highly impulsive earthquakes may alter the charac-180

teristics of the seismic data and affect the features learnt by the neural network during train-181

ing (Ishibashi, 1988). This issue would be particularly significant when investigating very182

short-term precursors where the quantity of data input is very limited and therefore should be183

well representative of each class. Such events were discarded to encourage the network to184

analyse features of the background signal, removing the influence of earthquake waveforms185

(Rouet-Leduc et al., 2019). Events where the data recording was discontinuous or otherwise186

corrupted in the ten hours preceding the earthquake were also eliminated (Examples of discarded187

data in Fig. 3). Under such constraints, 31 events with Mw ≥ 6 remained to develop and test the188

deep learning model (Fig. 1 and Table 1).189

3 Description of the CNN algorithm190

We applied a classification procedure to determine if and when precursors are present,191

and separate them from background noise. We tested different existing network architec-192

tures, notably: Residual Networks (He et al., 2016); Dilated Residual Networks (Yu et al.,193

2017); Long-Short-Term-Memory Fully Convolutional Networks (Karim et al., 2018). None194

of these networks performed well, and therefore we integrated features from several of these195

model-types into a single Convolutional Neural Network (CNN) (see Fig. 2). We gradually196

increased the complexity of a simple network. Typically, experimenting with different197

techniques proves to be the best method for generating a network that performs well. The198

modifications made to obtain the final network structure (Fig. 2) are detailed as follows.199

Often, a convolution block in a CNN consists of one or two convolutional layers200

followed by a batch normalisation layer and a ReLU activation layer. Here, we added a201

max-pooling layer to each block after the convolution operation. Max-pooling enhances the202

strong activations from the convolution output (feature map) and discards the weak ones. All203

but one of the max pooling layers have a stride of 1, to avoid a change in the dimensions of204

the feature map (Fig. 2). This prevents a loss of information which occurs when the205

dimension of the output are reduced by using a stride > 1; however, we found that using a206

stride of 2 in a single convolutional block improved the performance on the test data.207

The number of convolutional layers was increased to 7 resulting in an increased208

number of filters, up to a maximum of 256 filters in the final two convolutional blocks.209

Dilation was added to all but the first 2 convolutional blocks, and was increased with210

depth in the network. Dilation produced only marginal improvement, possibly because the211

receptive field of the network was already large enough to contain the required information212

from the input. To avoid gridding artifacts (Yu et al., 2017) it was proposed (P. Wang et al.,213

2018) to use hybrid dilated convolution (where dilation rate increases and decreases in a214
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Time Lat.(o) Lon.(o) z (km) Catalog Mw ∆(o)
Training database:
2019-06-18T13:22:19 38.6370 139.4804 12.0 NEIC PDE 6.4 2.32
2019-04-11T08:18:21 40.4096 143.2985 18.0 NEIC PDE 6.0 5.55
2019-01-08T12:39:31 30.5926 131.0371 35.0 NEIC PDE 6.3 8.43
2018-09-05T18:07:59 42.6861 141.9294 35.0 NEIC PDE 6.6 6.78
2018-01-24T10:51:19 41.1034 142.4323 31.0 NEIC PDE 6.3 5.62
2017-11-09T07:42:11 32.5208 141.4380 12.0 NEIC PDE 6.0 4.83
2017-10-06T07:59:32 37.5033 144.0201 9.0 NEIC PDE 6.2 4.74
2017-09-20T16:37:16 37.9814 144.6601 11.0 NEIC PDE 6.1 5.33
2017-09-07T17:26:49 27.7829 139.8041 451.0 NEIC PDE 6.1 8.87
2016-04-14T12:26:35 32.7880 130.7042 9.0 NEIC PDE 6.2 7.18
2016-01-14T03:25:33 41.9723 142.7810 46.0 NEIC PDE 6.7 6.48
2016-01-11T17:08:03 44.4761 141.0867 238.8 NEIC PDE 6.2 6.93
2015-05-12T21:12:58 38.9005 142.0217 39.3 ISC 6.8 3.83
2015-04-20T01:42:58 24.0574 122.4319 28.1 ISC 6.4 18.43
2015-02-20T04:25:23 39.8189 143.6157 13.3 ISC 6.2 5.37
2014-11-09T14:38:15 46.9300 140.6300 10.0 ISC 7.6 10.54
2014-08-10T03:43:18 41.1340 142.2790 50.6 ISC 6.1 5.60
2014-03-13T17:06:51 33.6222 131.8077 83.4 ISC 6.3 5.99
2014-03-02T20:11:22 27.4238 127.3279 118.9 ISC 6.5 12.96
2013-04-21T03:22:16 29.9644 138.9741 431.3 ISC 6.1 6.61
2013-04-05T13:00:02 42.7359 131.0640 571.3 ISC 6.3 8.27
2012-12-07T08:18:23 37.8201 144.1594 35.3 ISC 7.2 4.91
2012-07-08T11:33:05 45.4209 151.3906 37.7 ISC 6.0 13.31
2012-05-23T15:02:27 41.3569 142.1267 64.1 ISC 6.0 5.70
Test database:
2018-11-14T21:21:50 (*) 55.6324 162.0008 50.2 NEIC PDE 6.1 7.18
2017-07-26T10:32:57 26.8975 130.1836 12.0 NEIC PDE 6.0 11.81
2016-11-11T21:42:59 38.4973 141.5658 42.4 NEIC PDE 6.1 3.30
2016-10-21T05:07:23 35.3676 133.8148 5.7 NEIC PDE 6.2 3.74
2016-09-20T16:21:16 30.5017 142.0478 9.0 NEIC PDE 6.1 6.84
2013-12-08T17:24:54 44.4691 149.1330 34.1 ISC 6.1 11.46
2013-10-25T17:10:17 37.1457 144.7540 14.7 ISC 7.1 5.27

Table 1. Events in the training and testing database. The event with an asterisk in the test database was

recorded by station IU MA2, while all others were recorded by station IU MAIO.

sawtooth pattern); however, the latter performed slightly worse, so continuously increasing215

dilation was kept in the final model.216

A dropout layer with a rate of 0.02 was added after the fully connected layer to217

regularise the network (Hatami et al., 2018). This slightly improved its generalisation to the218

test data.219

The kernel initialiser was changed from the default to random normal which uses a220

normal distribution to initialise the weights.221

A random layer (Fig. 2) was applied directly to the input (Lee et al., 2020) and this222

improved the performance of the network. A random signal was obtained by convolution223

with a kernel which was randomized before each epoch, then added to the input signal. The224

root mean square of the random signal was about 20%-30% that of the original signal. The225

random layer produced slightly different versions of the inputs with each epoch. The226

addition of noise is a proven regularization technique to reduce its generalization error but227
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not its training error. This is achieved by presenting slightly different data every epoch228

forcing the model to learn the more general features or those which remain consistent epoch229

after epoch. In addition, it aids in generalising the network; by increasing the number of230

different inputs, the model learns the more general features or those which remain consistent231

in the randomly augmented inputs. Also, randomisation prevents overfitting.232

The values in the two output neurons (bottom layer, Fig. 2) represent a score, with233

values between 0 and 1, for the two classes, noise and precursor. The scores are obtained by234

applying the Softmax activation function to the two values from the dropout layer, after235

computing their dot product with their weights. This process is repeated for each time236

window (16348 samples). The Softmax function is defined in such a way that the sum of the237

outputs is always 1 for each time window, so that they can be interpreted as probabilities.238

(Note that here we chose to show scores as [0-100%] rather than [0-1]).239

During training, the class with highest score is elected as the class to which the sample240

belongs. The success or failure to classify the windows correctly is used to improve the241

network during the training. In addition, the fraction of windows correctly predicted allows242

estimation of the accuracy of the network performance both in the final training run and in243

the test, as described in section (5.1).244

4 Data formatting for training and testing245

The 31 earthquakes selected (section 2) were split into two groups: 24 events were246

chosen randomly for the neural network training, while the remaining 7 were used for247

testing.248

Each event was split into 36 macro-windows of 1000 s (16 minutes and 40 s, or 40000249

time samples). For each window, we implemented mean removal (standardization) and250

normalisation of all three components jointly. As a result, the relative static offset of the251

three components was preserved. (Normalizing and standardizinq by individual components252

was also tested, but resulted in a lesser accuracy of the network). For the scope of the neural253

network training, the data in window no. 36 of each event (1000 s immediately preceding the254

earthquake) was labelled as precursor. This decision assumes that precursor energy255

progressively increases as failure is approached, as has been observed in laboratory studies256

(P. A. Johnson et al., 2013) and field studies (Bouchon et al., 2013). Note that the time inter-257

val is arbitrary and other time intervals could have been selected. In addition, windows clas-258

sified as noise may also contain the same precursory signature signal, only with a lesser ampli-259

tude than the time windows immediately preceding the earthquake. In short we are assuming the260

exponential increase in precursor activity observed in laboratory, Earth and simulation studies261

will be sufficiently pronounced for the classification procedure to work. Data labelled as noise262

was taken from either (A) the macro-windows no. 1 of each event (10 hours to 9 hours 43’20”263

before the earthquake) or (B) a random 1000 s in a time interval unrelated to any of the earth-264

quakes (at least 48 hours before or after any of the earthquakes). Two types of training were con-265

ducted, using noise (A) or (B), but the same precursor in both.266

To increase the number of samples in the training, a data augmentation technique was267

implemented. Each of the 1000 s (40000 samples) intervals classed as noise or precursor was268

split into 37 windows of 16384 samples with an overlap of 15374 samples. As a result, a269

total of 888 time windows (with three channels and 16384 time samples each) classed as270

precursor was obtained from the 24 earthquakes to train the neural network during the271

semantic segmentation training. Equally, 888 noise windows were obtained, resulting in a272

combined number of 1776 windows of both noise and precursors. The test data set273

–comprised of seven seismic events– was split according to the same sub-window274

length and overlap as above, resulting in 259 (37×7) noise and 259 precursor windows, for a275

total of 518 windows.276
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5 Results277

5.1 Evaluating the performance of the network278

To illustrate the performance of the network, we compute f as the percentage of
correctly classified widows, defined as:

f = 100× (TP +TN)/Ntot

to measure the accuracy of the model across the entire dataset. TP is the number of correctly279

identified precursor windows (they fall within the 1000 s before the earthquake), TN is the280

number of correctly identified noise windows (either ten hours before the earthquake for test281

A, or in time intervals unrelated to earthquakes for test B); Ntot is the total num-282

ber windows (precursory or noise). A random classification would result in a score f ≈ 50%,283

while a perfectly accurate classification would result in f = 100%.284

When using noise windows taken from signal ten hours before the earthquake (test A),285

the final network achieved an average training accuracy of 97% (1725/1776 correctly286

classified) an average test accuracy of 90% (467/518 correctly classified). The performance287

can also be visualised applying a confusion matrix as shown in Fig. (4). When using noise288

windows taken from signal unrelated to the earthquake (test B), the performance is not289

significantly different. In such a case, the final network achieved an average training290

accuracy of 98% and a test accuracy of 96%.291

Note that the maximum accuracy achieved, although generally high, can vary slightly292

depending on the TensorFlow (Martı́n Abadi, 2015) version used (here 1.13.1). The accuracy293

on the individual test events are reported in Table (2). All events except event 39 are from294

station IU MAJO, event 39 is from the IU MA2 station. The IU MA2 station is not been295

used to construct the train dataset, therefore, the network has never seen data from that296

station before. An accuracy of 97% suggests that what the network learned from the IU297

MAJO station is also relevant for other stations like in this case the IU MA2 station.298

One of the events from IU MAJO shows a low accuracy of 0.5 that we attribute to a299

classification error done by the operator during the pre-processing. However, we did keep the300

event in the test database, as such error would be a likely occurrence in any real-life301

application of the model (faulty data, operator error, etc). Therefore, including this can be a302

considered as a strategy to test the robustness of the model.303

Table 2. Accuracy of the network on the events in the test dataset.

Event Accuracy

12 1.00
13 0.89
14 0.50
15 0.95
29 1.00
30 1.00
39 0.97

5.2 Results obtained over the entire ten hour time span304

Although the training was performed using only the first and the last time windows in305

the time series of ten hours, as previously mentioned, we presume that precursors identified306

in the final minutes of signal may be present and detectable in earlier time windows. Thus307
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we further investigate the potential of the trained network to discriminate noise from precur-308

sory signal on all the time intervals (1-36) in the ten hours preceding the earthquake. To this309

end, the network was tested on the entire time interval (including intervals 2-35), producing310

the fraction of windows classified as precursors in each interval. This process was repeated311

five times independently (re-training the system on wfirst and last time windows with ran-312

domly initialised weights every time), to allow computation of a mean and a standard devia-313

tion. The fraction of precursory windows is represented as a function of time in the ten hours314

preceding the earthquake in Fig. 5, as an indicative measure of the precursory character of each315

time interval.316

We find that the precursory character increases persistently as the earthquake rupture317

time approaches, with a trend that clearly bounds the standard deviation at about 3.3 hours318

before the earthquake (in the case where the network was trained using interval 1 of 36 as319

noise, Fig. 5) or 2.5 hours (in the case where the network was trained using noise from time320

intervals unrelated to the earthquake, not shown).321

This increase in precursory character can be interpreted as the marker of an increasing322

intensity of precursory signal preceding the earthquake. The result can also be viewed as a323

proxy for the increasing probability that the network may detect a precursor as the time of324

the earthquake approaches.325

6 What pattern does the network detect?326

Ideally, the detection and the identification of earthquake premonitory signals should327

inform our understanding of the earthquake source mechanics, in particular of the nucleation328

phase and how it integrates in the seismic cycle. However, the end-to-end learning strategy329

of CNNs make their representations a black box, meaning that it is difficult to understand the330

logic of their predictions. As a consequence, it is not always straightforward to identify or to331

isolate the features, or the combination of features or the general pattern that triggers the332

CNN.333

CNN representations can be investigated with a number of techniques which fall under334

visualisation. These help to reveal what specific patterns and which segments of the data335

allow neural networks to detect features and classify samples. These techniques typically336

include feature map visualisation, feature map inversion, saliency maps, filter visualisation337

and occlusion. In our case most of these techniques were ineffective in shedding light on the338

network workings, with the exception of occlusion. In addition, we were able to find some339

characteristics of premonitory time windows by using more classical Fourier transform340

techniques and spectral analysis.341

6.1 Occlusion of time intervals342

Occlusion sensitivity is a simple technique for understanding what features in the input343

are most important for classification. In our case, different portions of the time series are344

excluded from the time window that is analysed, with the aim of quantifying the relative345

importance of different portions of the input in the classification result.346

For the occlusion exercise, we investigate a series of precursor windows in the test347

dataset, with a high gradient in the prediction score (a significant change in the prediction348

score from one window to the next). As the analysis time window is shifted ahead, the pre-349

diction score increases rapidly (Fig. 6), indicating that the newly incorporated time interval350

contains features specific to the precursor class (precursor-related features) or that the351

removed interval contained features associated with the noise class (noise-related features).352

We investigate the window with the greatest increase in certainty relative to the353

previous window (the window with a certainty of 81.1% in Fig. 6). We apply an occlusion354

mask, a short length of zeros that is moved along the input at a fixed stride, and determined355

–9–



manuscript submitted to Journal of Geophysical Research – Solid Earth

the prediction score for each position of the mask along the input (Fig. 7). All 3 channels356

contributed to the prediction scores. It was evident that when the data points between 15600357

and 16000 were removed, the network predicted the input as noise rather than precursor.358

This exercise demonstrated that the addition of information to the end of the window as359

opposed to removal of information from the start increased the prediction score of the360

window to the precursor class.361

The occlusion output did not drop below 0.5 unless all 3 channels were occluded. This362

indicates that the network used patterns between channels such as similarities or differences363

as well as channel specific patterns. However, when comparing the occlusion outputs for364

each individual channel, it became clear that channel 0 (horizontal, North component of the365

station) had a greater contribution to the network’s decision, enough to reduce the certainty366

to the precursor class from 81.1% to 56.2% certainty, while the other 2 channels did not367

reduce the prediction score as significantly. Therefore, at least in the case of the event368

investigated with occlusion, channel 0 appears to provide more precursor-related information369

than channels 1 and 2.370

6.2 Occlusion of frequency371

To investigate a type of frequency-related occlusion, we eliminated specific frequency372

bands in the signal, rather than specific time intervals. An 8th order (roll off = -48 dB373

/octave) low pass filter was applied. Starting at a cutoff frequency of 20 Hz (the maximum374

frequency in the input data), the cutoff frequency was reduced in intervals of 0.1 Hz until375

only frequencies below 0.1 Hz remained in the test data. Each time the cutoff frequency was376

reduced, the best weights obtained in the training were validated on the whole filtered test377

dataset, and the accuracy f was computed.378

The change in accuracy as a function of cutoff is shown in Fig. 8. The significant fre-379

quencies in discriminating noise from precursors appear to be mostly below 3.5 Hz. Indeed380

little deterioration of the prediction is induced by cutting higher frequencies. In addition, the381

accuracy seems to increase in particular within the two intervals [0.1–0.8] and [1.8–2.7].382

6.3 Spectral analysis383

To determine the importance of the frequency anomalies in distinguishing noise from384

precursors prior to all of the investigated earthquakes, we analysed the frequency-amplitude385

spectra in three different ways.386

First, a spectrogram was produced to verify if any relevant time change was detectable387

in the time window prior to one of the detected M6 earthquakes. The Fourier transform was388

computed within a sliding window of 1000 samples and a stride of 500. The result shown in389

Fig. (9) for the final 6.8 minutes before the earthquake, (corresponding to the time window390

where certainty increases to 97.3% in Fig. 6).391

Second, the Fourier amplitude spectrum for noise and precursor windows were392

obtained separately for each event in the train and test datasets (all 3 channels). Then the393

cumulative sum of the frequency responses for all events and their 3 channels were394

calculated for either noise-labelled and precursor-labelled data, and plotted on the same395

figure for comparison (Fig. 10). No obvious differences were evident when comparing the396

cumulative frequency responses for noise and precursor data in the training and test datasets.397

Although some small differences between noise and precursor data occurred in the very low398

frequencies of the training dataset (≈ 0.02 Hz - 0.04 Hz), these did not occur in the test data.399

Any non-systematic differences (differences not evident in both datasets) would unlikely400

have contributed to the classification result.401

Third, to magnify any possible difference between noise and precursor spectra, the402

relative percentage difference between the cumulative noise and precursor frequency403
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responses were calculated for all 3 channels in the train and test datasets. The relative404

percentage difference was obtained by computing the difference between the cumulative405

precursor and noise spectra and normalising by the cumulative noise spectrum. The results406

for both the train and test datasets are shown in Figure 11 where the dots are the results and407

the curves are smoothed versions of the results. The smoothed versions were obtained using408

Savitzgy-Golay smoothing with a width of 0.062 Hz. Differences between the cumulative409

precursor and noise frequency responses become clearer when represented as the relative410

difference, for both the test and train datasets. Significant and systematic differences occur at411

approximately 0.16 Hz and 0.21 Hz, as indicated by the two vertical dashed lines.412

The results obtained in Fig. 11 indicate two low frequencies that provided information413

for discriminating precursor windows from noise windows in the train and test data. From414

these investigations, it can be concluded that frequencies of ≈ 0.16 Hz and 0.21 Hz were415

significant during classification. The huge spike in amplitude at ≈ 12 Hz in the smoothed416

test plot (Fig. 11) is irrelevant to the classification result, as can be concluded from Fig. (8)417

which demonstrates that frequencies above 3.5 Hz did not significantly affect the prediction418

score on the test dataset.419

7 Discussion and conclusions420

We tested a classification Convolutional Neural Network to detect precursor activity in421

the hours preceding earthquakes. We used seismic data in the ten hours preceding 31422

earthquakes of magnitude 6 and above. The earthquakes took place in the Western Pacific423

area immediately surrounding Japan, and were recorded at a single three-channel broadband424

station UI-MAYO (Japan) of the Global Seismic Network. An additional earthquake425

recorded at station IU MA2 (Kamchatka) was processed to test the performance of the426

network on a different setting. We also used background signal recorded at time intervals427

distant from any moderate of large earthquake occurrence.428

The ten hours data preceding each earthquake was split into windows of 1000 s. The429

network was trained to classify each time window as either precursor or noise from direct430

input of data windows with all three components. The last window before each earthquake431

was labelled as precursor. Windows taken either ten hours before the earthquake, or from432

random time intervals unrelated to any moderate of large earthquake, were labelled as noise.433

After several network prototypes were tested without success, we designed a fully434

connected network comprising seven convolutional layers. 27 events were used for the435

training of the network, and seven were kept separate to be used in testing.436

The performance of the network was evaluated by counting the number of windows437

correctly classified, producing an accuracy percentage as the fraction of windows correctly438

classed. A significant (above error bar) accuracy is obtained about 3 hours before the439

earthquakes, and the accuracy increases with approaching earthquake time up to about 85%440

in the test batch (an accuracy of 50% represents a null result).441

Another measure of the system performance is a score consisting in the difference of442

the fraction of correctly predicted precursory windows to total precursory windows, minus443

the fraction of falsely predicted precursors to total noise windows. Such a score can be used444

to evaluate the confidence of the network; in the very last window before the earthquake the445

score is typically 97% (a score of 50% represents a null result). A positive outcome was also446

obtained by testing the network on an earthquake outside of the training area (Japan) and447

using another seismic station (Kamchatka); this is encouraging indication of possible448

portability of the network to other contexts, without re-training. However, all earthquakes449

analysed belong to a similar context (subduction zone tectonics within the same area of the450

Western Pacific rim).451
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These results show –for the database analysed– that (1) there must be a change in the452

signal in the hours preceding the earthquakes and (2) the change can be detected by the453

convolutional network. Such a change is very subtle and elusive to more traditional signal454

analysis. However, a convolutional network can be qualitatively compared to a series of455

frequency filters and cross-correlations. Although the interpretation of the inner workings of456

the neural network is not trivial, future work may focus on a detailed analysis of the457

convolutions constructed by the network during the training, with the aim of revealing458

features of the precursory signal in terms of specific waveforms, patterns (sequences of small459

impulsive sources) and frequency shifts (starting or stopping of tremor in specific frequency460

bands). So far, it has not been possible to identify from the deep network layers the precise461

pattern (or combination of patterns) associated with the positive forecasting.462

Here, instead, we directly investigated the signal previous to the earthquake by con-463

ducting a number of spectral analyses: by selectively filtering different frequency bands, we464

show that the significant band is below 3.5 Hz. Analysis of spectral amplitude also reveals465

tiny relative changes in amplitude at low frequency, in particular in the range 0.16–0.21 Hz.466

We can offer tentative interpretations in terms of the physics of earthquakes process467

and their nucleation:468

Slow slip episodes preceding earthquakes have been documented from timescales of469

seconds (Tape et al., 2018) to weeks or months (Ruiz et al., 2014, 2017; Socquet et al., 2017;470

McGuire et al., 2005; Bouchon et al., 2011, 2013; Hasegawa & Yoshida, 2015) in natural471

earthquakes, revealing the progressive growth of instability on a fault patch, and can be472

simulated in laboratory experiments (Nielsen et al., 2010; Latour et al., 2013; Guérin-Marthe473

et al., 2019), or numerical models (Ampuero & Rubin, 2008). Fault instability has been anal-474

ysed previously in the framework of rate-and-state friction, where a critical length hRR for475

the nucleation patch can be theoretically derived (Dieterich, 1992; Ruina, 1983; Rice & Ru-476

ina, 1983; Uenishi & Rice, 2003; Rubin & Ampuero, 2005; Ampuero & Rubin, 2008). Close477

to the instability, oscillations in the slip can take place with increasing amplitude. These may478

radiate a low-amplitude, low-frequency tremor that increases the relative amplitude of a given479

frequency range in the background noise.480

Slow slip will also trigger tiny foreshocks within the sliding area (Ruiz et al., 2017), or481

at the front of the expanding slip patch (Kato et al., 2012). These tiny foreshocks correspond482

to stick-slip episodes on small sticky patches of the fault (e.g., areas where the friction is483

locally velocity-hardening). Although their amplitude may be below the noise and these tiny484

events are not detectable individually, they will contribute to a background tremor and alter485

the quality of the background noise. The background chatter of these tine events can be486

amplified through constructive interference or resonance due to guided waves within a slab487

of lower seismic impedance around the fault zone.488

Several interesting follow-up paths arise from the present study:489

The generalisation and portability of the method to other regions should be tested;490

here, an initial portability test was conducted using the Kamchatka earthquake and station,491

with promising results.492

Further scrutiny of the network’s convolutional filters may help to identify the nature493

of the precursory signal, rather than using the network as a black box. This task may be494

facilitated by seeking for a simplified version of the current neural network, as all parts of its495

complex architecture may not be necessary. In addition, the design of an effective CNN is in496

essence a random search by trial and error. Is it possible to optimise the network design497

process by understanding why a subset of architectures are more successful for this problem?498

Finally, modelling of nucleation and preslip with a fault zone may help to elucidate the499

process. Models can be used to produce synthetic seismic data, which is then analysed by the500

CNN after addition of background noise. Selecting the models that produce similar results to501
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natural earthquakes when analysed with CNN may allow one to constrain regarding what502

type earthquake nucleation physics is most realistic. Henceforth, by looking at the signal of503

the model without the added noise, interesting features of the precursory pattern may be504

revealed.505

While the current study focused on data from a single station, a processing based on506

multiple stations would be a natural enhancement of the method. We also note that the cur-507

rent network output is limited to a binary answer (precursor / no precursor). No forecast for508

magnitude value has been attempted (and the data was from a narrow range of magnitudes509

anyways) nor for distance from the source or location of the events (the latter would require510

joint analysis of several stations). In addition, large time intervals between earthquakes have511

not been analysed, therefore it is difficult to evaluate how similar signals could occur without512

the consequence of an earthquake. This prevents an accurate estimate of the likelihood of513

obtaining a true detection of the signal combined with a false positive earthquake forecast.514

Therefore, while there is potential to develop CNN for probabilistic forecasting with risk515

mitigation and early warning techniques, this prototype network will need to be tested on more516

data and enhanced to allow a more robust output.517
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Figure 1. The 31 Mw ≥ 6 earthquakes in the northwest Pacific region surrounding Japan used for training

and testing of the CNN. Filled circles indicate the epicenter of earthquakes in the training dataset. Filled

squares indicate the epicenter of earthquakes in the unseen (test) dataset. The earthquakes were selected

within 20o of the station of interest, IU MAJO, indicated by a yellow triangle (the 20o radius circle around

IU MAJO is represented in white). An additional test earthquake outside of the 20o radius was tested (filled

diamond), using recording from the IU MA2 station (orange triangle). The color of the earthquake symbols

corresponds to hypocentral depth as indicated by the colorscale.
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Figure 2. CNN used to detect earthquake precursor patterns. (a) Representation of all layers in the net-

work. f is the number of filters, k is the length of the filter kernel and d is the dilation rate in the convolution

operation. r and s are the length of the window and the stride of the max-pooling operation. (Stride is set to

1 in all convolution and max-pooling operations, except in convolution bloc 2 where it is set to 2 only for

max-pooling). The first number in parenthesis represents the size of the input vector. Note that there are 3

components in the input vectors, they correspond to the three motion components of the seismic station (ver-

tical, horizontal 1 and horizontal 2). The second number is the same as f, or number of filters. (b-c) Detail of

structures of the different types of convolutional block in the network.
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Figure 3. Examples of the 3 channels of seismic data (vertical: blue; North-South: orange; East-West:

green curves) over the 10-hour period prior to the selected Mw≥6 earthquakes. (a) 10-hour period with no

impulsive earthquake signal above the noise level. Events such as this were included in the investigation. The

following are examples of excluded events: (b) Event containing impulsive signal above the background noise

level. (c) Spikes unrelated to earthquakes. (d) Files with channels of varying lengths.
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Figure 4. Confusion matrices indicating the performance of the classification model by summarising the

prediction results on the train and test datasets — (a) Confusion matrix obtained with the best weights (89%

test accuracy) on (a) the training dataset and (b) the test dataset. The confusion matrix indicates the relative

accuracy of the network in terms of four possible scenarios: 1. accurate prediction of an event (bottom right),

2. failure to predict an event (bottom left), 3. false prediction of an event (top right), 4. accurate prediction

of no event (top left). The numbers in each box indicate the number of windows classified in each scenario.

(Case where noise windows are extracted 10 hours before each M6 earthquake).
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Figure 5. Changes in the fraction of windows classified as precursor in the ten hours preceding the earth-

quakes (in 36 time intervals). The average of five independent network iterations is represented, with the

standard deviation shown on one side of the data points to improve clarity. The red, dashed line indicates the

time when the increase in precursory character is significant (exceeding the standard deviation).
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Figure 6. Example of sequential precursor windows (channel 0 only for simplicity) and increase in pre-

diction score (probability) as a specific new time interval is incorporated. The windows stride is 650 time

steps; this can be visualised by noticing that the region not shaded in blue is the same in each plot. The arrows

indicate the same time on each window. The certainty or prediction score of the network when classifying

each window (all 3 channels) as a precursor is indicated.
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Figure 7. Score sensitivity (top) for different positions of the occlusion mask on the precursor window

investigated (bottom). A mask length of 400 and a stride of 400 were used. Prediction scores below 0.5 (red

line) line indicate regions of the input containing significant, precursor-related information. All 3 channels

of the input (blue, orange, green) were used. The input with high importance is highlighted in yellow/dashed

line. Window length 16384, a mask length and stride 400.
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Figure 8. Changes in the test accuracy and test loss when applying the low pass filter to the test dataset

with a variable cutoff frequency. The red, dashed, vertical line indicates the cutoff frequency at which the test

accuracy started to decrease significantly.
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score:

Figure 9. Spectrogram of the sequential precursor windows (channel 0 only). The Fourier amplitude was

calculated within a sliding window of length 1000, stride 500 and plotted in colour. The prediction score of

the network when classifying each window (all 3 channels) as a precursor is indicated. The red circles high-

light a localised region of increased amplitude of frequencies 0.16Hz and 0.2Hz.
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Figure 10. Amplitude spectrum of noise windows (black) and precursor windows (red). (a) The cumulative

sum of the frequency responses for all events and their 3 channels were calculated separately for noise-

labelled windows (black) and precursor-labelled windows (red) in the training dataset. (b) Same as (a) but for

the test data set.
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Figure 11. Relative percentage difference between the cumulative frequency spectra in Figure (10) for

precursor-labelled and noise-labelled data. The test and train results are plotted on the same graph for ease

of comparison. The discrete frequencies are shown as blue and orange dots, while a smoothed spectrum is

shown as a red and a blue curve. The dashed, vertical lines are plotted at frequencies 0.16 Hz and 0.21 Hz

coinciding with significant amplitude differences between precursor and noise data in both the train and test

datasets (peaks in the smoothed plots). A horizontal, black line is plotted at a 0% difference.

–24–



manuscript submitted to Journal of Geophysical Research – Solid Earth

References525

Ampuero, J.-P., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults – Ag-526

ing and slip laws. J Geophys Res: Solid Earth, 113(B1). doi: 10.1029/2007JB005082527

Becker, T. W., Hashima, A., Freed, A. M., & Sato, H. (2018). Stress change before and af-528

ter the 2011 M9 Tohoku-oki earthquake. Earth Planet Sc Lett, 504, 174–184. doi: 10529

.1016/j.epsl.2018.09.035530

Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long531

precursory phase of most large interplate earthquakes. Nature Geosci, 6(4), 299–302.532

doi: 10.1038/ngeo1770533
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