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Abstract 15 

Compressional and contractional tectonics are of interest to various researchers, from rock 16 
mechanics and engineering to those studying the hazards, dynamics, and evolution of plate 17 
boundaries. We summarize here the terminology regarding deformation associated with 18 
compressional and contractional tectonics. We describe the now largely discarded geosyncline 19 
theory, which has its roots in contraction. Today, plate-tectonics is the primary theory for 20 
explaining the processes shaping the Earth, including earthquakes, volcanoes, and mountain 21 
ranges. We emphasize the importance of subduction zones, the most extensive recycling system 22 
on the planet, and suture zones, complex boundaries marking the collision zone between two 23 
plates. The effects and hazards associated with convergent and collisional plate boundaries are 24 
felt far afield and for long distances.  25 

1 Introduction: Notes about terminology 26 

Compressional tectonics is associated with terminology that will be defined here and in 27 
other sections. Rock deformation is divided into basic components: translation (change 28 
position), rotation (change orientation), dilation (change size passively), dilatation (change size 29 
in response to an active force), and distortion (change shape). In basic terms, compressive forces 30 
are directed toward each other (→←) and work to squeeze and shorten rock volumes (Figure 31 
1A). A rock responds to stress (σ), including compressional stress, by changing volume or form. 32 
Stress has units of force per area (N/m2 or lb/in2 or Pa, pascals) and is characterized by both a 33 
magnitude and an orientation on the surface in which it acts (Figure 1). Deformed rocks result 34 
from total (finite) deformation over time, from which the forces and mechanisms that created 35 
rock textures or structures are interpreted. 36 

Stress can be normal (perpendicular to the surface) or shear (parallel). Anderson (1905, 37 
1951) linked the orientation of the causative stress tensor relative to the Earth's surface relation 38 
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to fault types in the upper, shallower levels of the crust (see reviews in Simpson, 1997; Sorkhabi, 39 
2013). The magnitude of stress may not be the same in all directions and thus is defined as 40 
maximum σ1> intermediate σ2> minimum σ3. 41 

 42 
 43 
Figure 1. Relationship between stress axes and fault types (after Butler, 2021). (A) Rocks 44 
displaced by contraction, (B) extension, and (C) shear. The principal stress axes are identified. 45 

A rock experiences uniaxial or unconfined compression when stress is directed toward 46 
the center of a rock mass, but more force is applied in one direction, and lateral component 47 
forces are zero (σ1 > 0, σ2 = σ3 = 0) (Figure 1A). Shortening strain is the change in rock 48 
volume due to compressive stress. Compressional stress results in shortening features in rocks 49 
from the micro to mesoscale, depending on the pressure-temperature (P-T) environment and the 50 
nature of the materials comprising the rock.  51 

Rock composition and temperature are critical factors in evaluating how rocks respond to 52 
compressional stress. The initial deformation rock experiences during gradually increasing stress 53 
is elastic. During this time, changes in stress induce an instantaneous change in sample 54 
dimensions as measured by strain. With elastic deformation, the strain completely disappears 55 
when the stress is removed, and strain is recoverable (Twiss & Moores, 1992). Brittle materials 56 
fracture under compressive stress to release stored energy, whereas ductile materials deform and 57 
compress without failure. Rock layers may fold, or objects change shape, as evidenced by 58 
distributed strain. Plastic materials flow readily without fracture when the applied stress reaches 59 
conditions at or above specific yield stress (Twiss & Moores, 1992). 60 

This book focuses on the processes that occur when the maximum compressive stress is 61 
in a horizontal orientation (contraction) (Figure 1A). In this case, thrust faulting or folding 62 
occurs, shortening and thickening a rock or rock layers. Contraction is also observed as rocks 63 
lose volume through crushing, consolidation, or shear. In rock mechanics, contraction is a term 64 
that results in a reversible reduction in size, whereas compression results in a density increase. 65 
Contraction is exposed in the rock record as the shortening of rock layers, thrust or reverse faults, 66 
and folds. Thrust faults occur when rocks break along low angles and result in large earthquakes 67 
due to the large surface area affected by the process. In this volume, the dynamics of thrust 68 
faulting are described by Pashin et al. (Stratigraphic and Thermal Maturity Evidence for a 69 
Break-Back Thrust Sequence in the Southern Appalachian Thrust Belt, Alabama, USA) 70 
and Cemen and Yezerski (Strain Partitioning in Foreland Basins: An Example from the 71 
Ouachita fold-thrust belt Arkoma Basin Transition Zone in Southeastern Oklahoma and 72 
Western Arkansas). Reverse faults result from the rock breaking at high angles in response to 73 
compression (Figure 1A). Normal faults occur when the maximum compressive stress is vertical, 74 
horizontally extending, and vertically thinning rock (Figure 1B). We cover extensional tectonics 75 
in the second volume and strike-slip tectonics (Figure 1C) in the third volume of this series.  76 



manuscript accepted for AGU Books 

 

2 Setting the Stage: Geosynclinal Theory 77 

The origin of mountains on the Earth has always been debated among philosophers, 78 
geographers, and Earth scientists. Since the late 1960s, plate tectonics has been a unifying theory 79 
of mountain building (see the next section). Although many theories before plate tectonics were 80 
proposed regarding the formation of mountains, one that received wide recognition is the 81 
geosynclinal theory, commonly attributed to James Hall and his coworkers (Hall, 1859; Dana, 82 
1873; see Fisher, 1978; Frankel, 1982; Friedman, 1999; De Graciansky et al., 2011; Kay, 2014). 83 
James Hall based his theory on field observations in the Appalachian Mountains of New York 84 
and Pennsylvania, where they observed features characteristic of shallow water sedimentation, 85 
such as ripple marks, mud cracks, and shallow-water fossils in sedimentary units that were over 86 
10,000 meters in thickness. But they knew these sediments were deposited in basins where water 87 
was only about 100 meters deep. Consequently, Hall proposed that these thick Paleozoic 88 
shallow-water sediments must have been deposited in a slowly subsiding basin, receiving a thick 89 
succession of shallow-water sediments as it subsided. They coined the term geosyncline for this 90 
subsiding basin (Figure 2) (Glaessner & Teichert, 1947; De Graciansky et al., 2011). The 91 
formation can be further divided into miogeosynclines, eugeosynclines, and orthogeosynclines, 92 
depending on the rock strata, location, and nature of the mountain system.  93 

 94 
Figure 2. A diagram showing an imagined cross-section of the northern Appalachians prior to 95 
the Appalachian Orogeny (after Kay, 1948). A geanticline is a ridge that separates two belts of 96 
sedimentary rocks. A eugeosyncline is a deepwater trough with abundant volcanic rocks and 97 
deepwater sediments. A miogeosyncline is a basin of mainly shallow water sediments (see De 98 
Graciansky et al., 2011). 99 

 To explain the deformation that they observed in the Appalachian Mountains, Hall and 100 
his coworkers proposed that after thick sediments accumulated, horizontal compressional forces 101 
directed from the seaward side of the geosyncline squeezed the sediments, shortened, and 102 
thickened the crust, and produced a high-standing mountain chain while pushing much of 103 
sediments into the crust. In the 1870s, Dana proposed that the deeply buried sediments melted in 104 
high temperature and pressure conditions and generated magma that intruded into the sediments. 105 
During the 1890s and early 1990s, geosynclinal theory was widely recognized for explaining the 106 
formation of mountain chains, like the Appalachians, Ouachitas, Cordillerans, Urals, Alps, and 107 
the Himalayas (Mark, 1992; Şengör, 2021). However, Schaer & Şengör (2008) indicate that the 108 
geosyncline theory is not a "made in America" concept. For example, geologists in the Alps had 109 
noted the behavior of sediments in deep water basins and ascribed their formation to synclines 110 
(e.g., 1828 Elie de Beaumont) (Schaer, 2010). 111 

In 1912, Alfred Wegener published a paradigm-changing hypothesis in his book "The 112 
Origin of Continents and Oceans." His hypothesis, called continental drift, suggested that the 113 
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Earth's ocean basins and continents changed their positions throughout geological time. Wegener 114 
also suggested that all of the continents were together at one time. He called this supercontinent 115 
Pangea. Most scientists did not accept Wegener’s idea of continental drift in the early part of 116 
the first half of the 20th century because his lines of evidence were thought to be mostly 117 
coincidental. The acceptance of his idea had to wait until the late 1960s, when the data collected 118 
from the ocean floor provided evidence that the oceans were indeed temporary: they were 119 
opening, closing, and continents were drifting. 120 

Vine & Mathews (1963) worked on magnetic lineations obtained on either side of the 121 
mid-Atlantic ridge south of Iceland. They proposed that new oceanic crust is created by the 122 
solidification of magma injected and extruded at the crest of a Mid Ocean Ridge (MOR). When 123 
this magma cools below the Curie point, ferromagnetic behavior becomes possible, and 124 
magnetite in the basalt gets magnetized. The solidified magma (basaltic rocks) acquires a 125 
magnetization with the same orientation as the geomagnetic field. They based their hypothesis on 126 
the presence of stripes of magnetic anomalies on either side of the MOR. Their findings and 127 
those of others who studied the aspects of the geophysical dynamics of MOR gave birth to a 128 
unifying theory of Earth Sciences, plate tectonics (see review by Marvin, 2005). 129 

Although geosyncline theory for the evolution of the Earth is today largely discarded, the 130 
term is still retained by geologists describing specific basins (e.g., Arabian Gulf geosyncline, 131 
Elobaid et al., 2020; Adelaide Geosyncline of South Australia, Preiss, 2000; West Siberian 132 
geosyncline, Yolkin et al., 2007). Today, the term is a historical, practical, descriptive, and non-133 
genetic term not meant to be associated with interpretations of a specific tectonic environment 134 
(e.g., Preiss, 2000).  135 

3 Plate Tectonics and Compressional Motion 136 

3.1 What are plates? 137 

Plate tectonic theory divides the Earth into rigid layers of crust and upper mantle 138 
(lithosphere) above the Earth's asthenosphere, which can flow at much lower stress levels 139 
(Figure 3) (e.g., Anderson, 1995). By their original definition, plates are rigid and include ocean 140 
or continental crust or a combination. However, plates do not always correspond with continental 141 
margins (e.g., Gordon, 1998). Identifying tectonic plates requires examining geological, 142 
geophysical, and geodetic data at multiple sources and scales. These include detailed field 143 
mapping and structural analysis, earthquake fault plane solutions, estimates of average rates of 144 
plate and fault motion, transform fault azimuths, very long baseline interferometry, satellite laser 145 
ranging, Doppler Orbitography and Radiopositioning Integrated by Satellite, and Global 146 
Positioning System data (DeMets et al., 2010; Harrison, 2016). Information from these sources 147 
helps identify how many plates exist, which has dramatically increased with the technology used 148 
to identify them (e.g., n=52, Bird, 2003; n=159, Harrison, 2016). Only 25 tectonic plates occupy 149 
97% of Earth's surface (DeMets et al., 2010). The other 3% are microplates, defined as 150 
relatively small-scale, rigid, geological blocks with a consistent motion or behavior in present-151 
day space with boundaries that behave as plate boundaries (Li et al., 2018). Microplates are 152 
located at the major plate boundaries but rotate and behave independently (Hey, 2021). These 153 
features may grow into larger plates over time (Seton et al., 2012; Boschman and van 154 
Hinsbergen, 2016) or are transient (Hey, 2021). 155 
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 156 

Figure 3. Map of the Earth showing present-day plate configurations and convergent and 157 
collisional plate boundaries. Labels are included for some plates and plate boundaries. The map 158 
was created using ArcGIS (ESRI) with data from Bird (2003). Convergent and collisional plate 159 
boundaries are identified (Coffin et al., 1998). Abbreviations: SZ = suture zone, SSZ = Shyok 160 
Suture Zone, MSZ = Makran Suture Zone, Philippine T. = Philippine Trench. 161 

Plates are comprised of oceanic lithosphere and/or continental lithosphere. The 162 
lithosphere is the Earth's strong, solid outer shell (Anderson, 1995). The oceanic lithosphere is 163 
produced at ocean ridges by decompression melting of upwelling mantle, which cools, thickens, 164 
and increases in age as it moves away from ridges (e.g., Condie, 2022). The process creates mid-165 
ocean ridge basalt (MORB). This most abundant magma type can be recognized and classified 166 
geochemically by source and degree with interaction material recycled in the mantle, spreading 167 
rate, and even ocean basin (e.g., Anderson, 1995; Perfit, 2001; Wallace, 2021). The oceanic 168 
lithosphere covers ~60% of the Earth's surface (Minshull, 2002; Fowler, 2012), with ocean crust 169 
on average 6-8 km thick. Oceanic crust averages 7.1±0.8 km thick away from fracture zones and 170 
hot spots and ranges from 5.0-8.5 km (White et al., 1992).  171 

 The continental lithosphere is the part of the continental crust and upper mantle that can 172 
support long-term geological loads (Anderson, 1995). This layer covers ~40% of the Earth and 173 
has a granitic upper portion (32-56 km-thick) underlain by mantle peridotite (96-130 km thick) 174 
(DiPietro, 2013). The origin of continental lithosphere differs significantly from mantle 175 
lithosphere in that the modification of existing rock creates it through thinning or replacement 176 
(Condie, 2005; Sleep, 2005; Eagles, 2020; Şengör et al., 2021). On average, continents are 177 
thought mainly to be intermediate (andesitic) in composition with a felsic upper crust and mafic 178 
lower crust (Palin et al., 2021). However, based on seismic refraction data, the lower crust may 179 
be more felsic in some locations (49-62 wt% SiO2; Gao et al., 1998; Hacker et al., 2015). This 180 
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portion of the Earth experiences complex and dynamic interactions that can significantly change 181 
its nature, including metamorphism, mixing with mantle-derived melts or other reservoirs, and 182 
delamination (e.g., Kay & Mahlburg-Kay, 1991). 183 

Craton lithosphere or continental platforms are thick (~200 km) portions of 184 
continental thicknesses but differ in age and the mantle dynamics beneath them. Cratons formed 185 
during the Archean and platforms are younger features, not underlain by a buoyant mantle that 186 
drives convection (Sleep, 2005). Continental lithosphere can thin through extension, orogenic 187 
collapse, or underlying mantle processes (e.g., Dewey, 1988; Ruppel, 1995; Lee et al., 2000; Rey 188 
et al., 2001; Lavier & Manatschal, 2006;). The subcontinental lithospheric mantle (SCLM) can 189 
also be sheared away by cold, shallowly subducting crust, which has an impact on plate 190 
buoyancy (e.g., Hernández-Uribe & Palin, 2019) and magmatism (e.g., Wei et al., 2017). 191 
Although the oceanic lithosphere assumes the plates are located underwater, some continental 192 
lithospheric plates are underwater (e.g., Aegean microplate).  193 

3.2 What are plate boundaries? 194 

Plate boundaries are edges that mark the contact between two plates. Plate boundaries 195 
are classified into divergent (extensional, plates move apart), conservative (strike-slip if plates 196 
slide past each other and transform if they also connect divergent plate boundaries), convergent 197 
(plates move together and a plate is consumed in a subduction zone) or collisional (plates move 198 
together and plates are joined at a suture zone) (see reviews in Cox & Hart, 2009; Le Pichon et 199 
al., 2013). Convergent and collisional plate boundaries are classified into a single group 200 
(convergent) by most introductory textbooks. These textbooks will also discuss conservative 201 
plate boundaries as transform only, with faults classified as strike-slip. Figure 3 highlights the 202 
locations of convergent and collisional plate boundaries on Earth as bolder lines, many of which 203 
are in the northern hemisphere. Most of Earth's tectonic plates, including many smaller 204 
microplates, have a portion in compression (Harrison, 2016). 205 

Although plate boundaries are classified into end-member types, convergent and 206 
collisional plate boundaries may also be affected by strike-slip or normal deformation, especially 207 
when the plates interact obliquely (Fitch, 1972; Haq & Davis, 1997; Burbidge & Braun, 1998; 208 
Bevis & Martel, 2001; Gaidzik & Więsek, 2021). It has long been known that a significant 209 
number of plate boundaries have relative velocity vectors that are oblique from normal (>22◦, 210 
n=59%) and parallel to the boundary (n=14%) (e.g., Woodcock, 1986). Composite Transform 211 
Convergent (CTC) plate boundaries define convergent margin plate boundaries that are affected 212 
by regional strike-slip faulting along trends that parallel or subparallel the boundary (Ryan & 213 
Coleman, 1992). Examples of CTC boundaries may be primarily at subduction zones (Figure 4). 214 
Subduction zones occur when two lithospheric plates converge, and one plate abruptly descends 215 
beneath the other (e.g., Stern & Gerya, 2018; Crameri et al., 2020). CTC boundaries have been 216 
identified near volcanic island arcs at the Aleutian Ridge and the Philippines (Ryan & Coleman, 217 
1992). Volcanic island arcs are an arcuate continuation of islands with present-day prominent 218 
volcanic and seismic activity (Sugimura & Uyeda, 1973). CTCs are present if strike-slip faults 219 
develop in the overriding plate (Figure 4) (Beck et al., 1993; McCaffrey, 1993; Bevis & Martel, 220 
2001). The rate of strike-slip faulting in subduction zones is governed by both convergence 221 
obliquity and rate (Jarrard, 1986). Normal and strike-slip fault motion in oblique subduction 222 
zones have been observed to generate large earthquakes and significantly contribute to its 223 
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seismic hazards (e.g., Fitch, 1972; McCaffrey, 1996; McCaffrey et al., 2000; Moreno et al., 224 
2008; Melnick et al., 2009; Gaidzik & Więsek, 2021).  225 

 226 

Figure 4. North-south generalized cross-section through the accretionary Hellenic subduction 227 
zone showing the structural elements—map of the Mediterranean Ridge after Westbrook & 228 
Reston (2002).  229 

Convergent and collisional plate boundaries are characterized by distinct topographical or 230 
bathymetric features (Figure 5). Those associated with the oceanic lithosphere will show deep 231 
ocean trenches, shallower troughs, ridges of sediment accretion, volcanoes, including seamounts 232 
and island arcs, fault lines, and ridges. The US Board on Geographic Names (BGN) Advisory 233 
Committee on Undersea Features (ACUF) recommends names of undersea features and official 234 
standard names for use in the field or on hydrographic and bathymetric charts. Plate boundaries 235 
are often named based on those adopted by the ACUF or by their location, followed by the 236 
topographical features they generate (trough, trench, ridge), shape (arc), or nature of deformation 237 
(suture, subduction). 238 

However, based on the researcher's focus, the same convergent plate boundary may have 239 
several names. For example, the Hellenic subduction zone extends ~1200 km from 240 
approximately 37.5°N, 20.0°E offshore of the island of Zakynthos to 36.0°N, 29.0°E offshore of 241 
the island of Rhodes (Ganas & Parsons, 2009; Le Pichon et al., 2019). The same feature is 242 
sometimes referred to as the Aegean subduction zone (Wortel et al., 1990; Biryol et al., 2011; 243 
Crameri et al., 2020), Hellenic arc (Ganas & Parsons, 2009; Royden and Papanikolaou, 2011), or 244 
Hellenic arc and trench system (Le Pichon & Angelier, 1979; Papadopoulos et al., 2007). The 245 
ACUF assigns the same feature to the Hellenic Trough, Hellenic Trench, or Ionia Basin.  246 
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 247 
Figure 5. Bathymetry map of subduction zones located near Japan. Some contour lines are 248 
highlighted to emphasize particular boundaries and features. The names are after the U.S. Board 249 
on Geographic Names (BGN) Advisory Committee on Undersea Features (ACUF). 250 

Trenches, troughs, and arcs are often associated with ocean-continent or ocean-ocean 251 
subduction zones. Trenches are deeper water regions and exist on the oceanic side of an island 252 
arc, whereas a shallow sea exists on the continental side (Figure 4 and Figure 5). Trenches have 253 



manuscript accepted for AGU Books 

 

steep sides like river gorges (e.g., Bellaiche, 1980). Troughs are asymmetrical shallow 254 
depressions at the foot of a slope. For example, the Nankai Trough near Japan (Figure 3 and 255 
Figure 5) has a maximum water depth that does not exceed 5000 m (Yamano et al., 1984). In 256 
contrast, the Izu-Bonin Trench reaches 9780 m (e.g., Bellaiche, 1980). Arcs are curved 257 
subduction zones, with the curvature associated with the negative buoyancy and steep dip of the 258 
down-going slab (Turcotte & Schubert, 2002), rates of the plate motion, or specific mechanical 259 
conditions that govern their geometry (Mahadevan et al., 2010). 260 

3.3 Subduction and suture zones 261 

Subduction zones are considered the most extensive recycling system on the planet and 262 
play a key role in Earth's geodynamics and crustal evolution (e.g., Li et al., 2013). The majority 263 
of the driving force of plate motion today is generally thought to be slab pull caused by the 264 
densification of subducted ocean crust (Forsyth & Uyeda, 1975; Chen et al., 2020; Palin & 265 
Santosh, 2021). Subduction zones also form large-scale metal ore deposits (e.g., Sawkins, 1972, 266 
Glasby, 1996, Rosenbaum et al., 2005; Kerrich et al., 2005; Li et al., 2013). Igneous activity 267 
within these zones forms most of the world's ore deposits (Stern, 2002). These include porphyry 268 
copper ± molybdenum ± gold deposits (PCDs), considered the most representative and valuable 269 
magmatic-hydrothermal metallogenic systems (Sillitoe, 2010; Rosenbaum et al., 2005; Chen & 270 
Wu, 2020). PCDs are located in magmatic-hydrothermal systems in the crust above subduction 271 
zones (Sillitoe, 2010; Chen & Wu, 2020; Xue et al., 2021). Here, ore-forming elements are 272 
enriched in the mantle wedge due to metasomatism driven by subducting slab-derived fluids 273 
(e.g., Zheng, 2019). 274 

Subduction zones are classified based on the fate of ocean basin sediment and detritus 275 
accumulated through the erosion of continental and volcanoes that accumulate in the trench or 276 
trough (von Huene & Scholl, 1991). A thorough discussion of subduction zone dynamics is 277 
provided in this volume by Agard and coauthors (Subduction and obduction processes: the 278 
fate of oceanic lithosphere revealed by blueschists, eclogites, and ophiolites). Erosive 279 
subduction zones have crustal sedimentary material removed through subduction, whereas 280 
accretionary subduction zones show upper plate growth due to frontal accretion or underplating 281 
(e.g., von Huene & Scholl, 1991; Clift & Vannuchhi, 2004; Straub et al., 2020). Subduction 282 
erosion can still occur beneath accretionary margins and contribute to the geochemistry of arc 283 
volcanoes (Clift & Vannuchhi, 2004; Straub et al., 2020). 284 

Convergent plate boundaries are often evident on bathymetry maps based on the 285 
subduction of one plate as it is consumed (Figure 5). However, Dewey (1977) noted that suture 286 
zones that delineate the zones of collision between two continents are rarely simple and rarely 287 
create easily recognizable lines (Figure 6). These zones are locations where oceans and back-arc 288 
basins are closed (Burke et al., 1977). Their complexity is attributed to the irregular margins of 289 
colliding continental plates that generate broad and complex deformation zones (e.g., Chetty, 290 
2017). These locations can involve multiple fault structures, with many experiencing high-strain, 291 
intense, and sometimes multi-stage deformation (Abdelsalam & Stern, 1996). P paleolocation of 292 
crusts on either side of the zone helps identify such zones, often facilitated by paleomagnetism 293 
studies. 294 

As seen in Figure 6, suture zones incorporate a wide range of rock materials. They are 295 
critical locations for developing orogenic gold deposits where hydrothermal fluids are localized 296 
near and along convergent margins and in the middle and upper crust (e.g., Goldfarb et al., 2001; 297 
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Pour et al., 2016). Goldfarb et al. (2001) document numerous goldfields worldwide associated 298 
with suture zones over Earth's history. Collision granitoids within suture zones can concentrate 299 
economically critical minerals, such as tungsten (scheelite) and gold, rare-metal granites and 300 
pegmatite, and colored gemstones (e.g., Koroteev et al., 2009). Although these mountain-301 
building events occur with lower thermal gradients than subduction zone settings and thus are 302 
not favorable for the hydrothermal mobilization of ore-forming elements, they are sometimes 303 
preceded by subduction zone convergence which provides ample preliminary enrichment before 304 
collision (Zheng et al., 2019). 305 

  306 

Figure 6. A schematic example of a suture zone. The picture is from the Open University 307 
(Geological processes in the British Isles). 308 

Sedimentary rocks in suture zones have recorded multiple facies types attributed to the 309 
deep-water ocean's nature to erosion from the overriding continental plate. Shales, turbidites, and 310 
deep-water radiolarian chert are recorded in suture zones (e.g., Chakrabarti, 2016). Suture zones 311 
can contain chemically and mineralogically matured multicycle sediments (Chetty, 2017). Thick 312 
units of sedimentary rocks can be partially subducted under the overriding lithosphere, creating 313 
metamorphic assemblages that record the collisional process. Depending on protolith and 314 
collision conditions, these metamorphic assemblages can be high-pressure eclogites and 315 
Barrovian-grade metapelites. Suture zones are often characterized by high-pressure blueschist–316 
eclogite belts to even ultrahigh-pressure metamorphic (UHPM) complexes, remnants of the 317 
subduction zone that existed between two continents (Chetty, 2017). 318 
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 Various igneous rocks may be present within suture zones, including mafic (ophiolites, 319 
serpentinized gabbro, sheared volcanic, blueschists) and felsic assemblages (syn-tectonic high Si, 320 
peraluminous granites). Deformed alkaline rocks and carbonatites (DARCS) delineate the 321 
boundaries of major Proterozoic suture zones (e.g., Burke et al., 2003; Leelanandam et al., 2006; 322 
Catlos et al., 2008). Perhaps the most recognizable feature of suture zones is stratigraphically 323 
intact ophiolites, remnants of the crust and upper mantle portions of ocean lithosphere or back-324 
arc basins that disappeared between the two continents (e.g., Steinmann, 1906; Hess, 1955; 325 
Hawkins, 2003). Supra-subduction zone (SSZ) ophiolites are obducted oceanic crust with 326 
island arc geochemical characteristics that formed via seafloor spreading (synmagmatic 327 
extension) directly above the subducted oceanic lithosphere (Miyashiro, 1973; Pearce et al., 328 
1984; Shervais & Kimbrough, 1985; Hawkins, 2003; Pearce, 2003). Ophiolites in suture zones 329 
provide a critical record of deep oceanic crust and ancient seafloor processes (Chetty, 2017).  330 

The timing of collision and convergence of particular subduction and suture zones can be 331 
challenging and is often disputed. See a discussion about this topic as it relates to the 332 
development in the Himalayas by Robinson and Martin (Genesis of Himalayan stratigraphy 333 
and the tectonic development of the thrust belt) and Catlos [(Records of Himalayan 334 
Metamorphism and Contractional Tectonics in the central Himalayas (Darondi Khola, 335 
Nepal)]. For example, although the Himalayan collision is often cited as during the Paleocene 336 
(Patriat & Achache, 1984; Klootwijk et al., 1992; Rowley, 1996; Yin & Harrison, 2000; Najman 337 
et al., 2001; Ding et al., 2005), much younger constraints are also suggested (e.g., 338 
Eocene/Oligocene boundary, Aitchison et al., 2007). Collision may have been a two-stage 339 
process, with events occurring in the Paleocene (soft) and Miocene (hard) collision (van 340 
Hinsbergen et al., 2012; see review in Parsons et al., 2020). Each component in the suture zone 341 
environment has the potential to provide evidence for its history, including the onset of sediment 342 
deposition, timing of metamorphism and recrystallization, and paleomagnetic evidence for the 343 
locations of the continental block before the collision. Suture zones are often at sites of high 344 
topography, but the development of large mountain belts associated with plate convergence 345 
occurs significantly after initial contact. In this volume, Giri and Hubbard (Lateral 346 
heterogeneity in convergent mountain belt settings) discuss how orogenic belts worldwide 347 
record deformation along strike. 348 

Subduction Zone Initiation (SZI) is the onset of downward plate motion forming a new 349 
slab, which later evolves into a self-sustaining subduction zone (Crameri et al., 2020). In this 350 
volume, SZI is discussed as relevant to the Eurasian margin by Bo et al. (When and why the 351 
Neo-Tethys ocean begins to subduct along Eurasian margin: a case study from Iran) and 352 
along the Hellenic arc by Catlos and Çemen (A Review of the Dynamics of Subduction Zone 353 
Initiation in the Aegean Region). The Hellenic arc (Figure 4) has perhaps the most significant 354 
discrepancy between the onset subduction of the African (Nubian) slab beneath the Aegean 355 
microplate. Some studies suggest a Cenozoic SZI age, although estimates from the Eocene-356 
Pliocene (e.g., Meulenkamp et al., 1988; Spakman et al., 1988; Papadopoulos, 1997; Brun & 357 
Sokoutis, 2010; Le Pichon et al., 2019) to Mesozoic (Late Cretaceous-Jurassic) (Faccenna et al., 358 
2003; van Hinsbergen et al., 2005; Royden & Papanikolaou, 2011; Jolivet et al., 2013; Crameri 359 
et al., 2020, van Hinsbergen et al., 2021). Tools used to time SZI are similar to those at suture 360 
zones. They include sediment deposition in the accretionary prism (Figure 4), paleomagnetism, 361 
the analysis of topography combined with estimates of slab age and depth, reconstructions of 362 
subducted slabs using tomography, and the timing of metamorphism and volcanic activity that 363 
parallels the subduction zone (e.g., Crameri et al., 2020). 364 
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3.4 Hazards associated with compressional plate boundaries 365 

The theory of plate tectonics suggests that plate interaction occurs primarily at the plate 366 
boundaries (see review by Gordon, 1998). Plate boundaries are often shown as thin lines and 367 
narrow zones (e.g., Figure 3 and Figure 5). However, the effects of convergent and collisional 368 
plate boundaries are felt far afield. Figure 7 shows the compressional fault systems associated 369 
with convergent and collisional plate boundaries in parts of Europe, the Middle East, and Asia. 370 
The effects of these plate boundaries extend far beyond their contact zones. The figure also 371 
outlines several orogenic belts, which are deformation zones due to horizontal compression, 372 
gravity, heat, and climate-driven erosion (DiPietro, 2018). Orogenic belts are explicitly discussed 373 
in this volume by Yilmaz et al. (Tectonics of Southeast Anatolian Orogenic Belt). Orogens not 374 
only imply collisional dynamics and the nature of the kinematics in that region, but the term is 375 
also a culturally-relative statement that the velocity field in that region has more degrees of 376 
freedom than present data constrain (Bird, 2003). Orogenic belts form due to a collage of 377 
processes, including magmatism, metamorphism, sedimentation, and deformation (Chetty, 378 
2017). The end stages of orogenic belts are described in this volume by Foster et al. 379 
(Extensional Collapse of Orogens: A review with an example from the Southern Appalachian 380 
Orogen). 381 

 382 

Figure 7. Map (ArcGIS) showing the major collisional and convergent plate boundaries with 383 
significant earthquakes and volcanic eruptions overlain. Also included are the boundaries of 384 
orogenic belts (Bird, 2002) and fault systems with an element of compression only. Convergent 385 
and collisional plate boundaries are identified by Coffin et al. (1998). Global active fault lines 386 
from information collected by the Global Earthquake Model Foundation. 387 
 388 
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Figure 7 shows the relationship between some of Earth's largest earthquakes and 389 
destructive volcanoes and convergent and collisional plate boundaries. According to the USGS, 390 
all of the Earth's most destructive and largest magnitude earthquakes occurred at convergent or 391 
collisional plate boundaries (Table 1). According to Table 1, subduction zones around the Pacific 392 
plate account for most of these events, including the Aleutian arc, Japan Trench, Peru-Chile, 393 
Columbia-Ecuador, and Kurile-Kamchatka subduction zones. Subduction zones host Earth's 394 
most destructive megathrust earthquakes, which are also associated with devastating tsunamis 395 
(e.g., Plafker, 1969; Cisternas et al., 2005; McCaffrey, 2008; Melnick et al., 2009; Toda & 396 
Tsutsumi, 2013; Bletery et al., 2016). Tsunamis are catastrophic wave motions generated by 397 
shock waves that cover large parts of the sea and behave intricately in coastal zones (Sugawara et 398 
al., 2008). All events in Table 1, except for the 1950 Assam-Tibet earthquake, are tsunamigenic 399 
earthquakes. Tsunamis triggered by earthquakes are partially generated due to a shallow focus 400 
coupled with large rupture areas associated with lower-angle megathrust faulting at subduction 401 
zones (e.g., Sugawara et al., 2008; Bilek & Lay, 2018). The largest earthquakes in Table 1 were 402 
associated with significant rupture areas: the 1960 Great Chilean Earthquake (Valdivia) at the 403 
Peru-Chile trench had a rupture length of 920±100 km (e.g., Cifuentes, 1989), whereas the 1964 404 
Aleutian-Alaska megathrust fault ruptured a length of 600-800 km (Ichinose et al., 2007). The 405 
2004 Sumatra - Andaman Islands earthquake resulted in a rupture length of 1500 km (e.g., 406 
Gahalaut et al., 2006).  407 

Table 1. List of Earth’s twenty largest earthquakes (source: USGS, 2019) a 408 

Locationa 
Day and 
Time Lat. Long. Mag Depth Location 

Great Chilean 
Earthquake 
(Valdivia) 

1960-05-22 
19:11:20.00 -38.143 -73.407 9.5 25 Peru-Chile Trench 

Prince William 
Sound (Great 
Alaska) 

1964-03-28 
03:36:16.00 60.908 -147.339 9.2 25 

Aleutian Subduction 
Zone 

Sumatra - 
Andaman 
Islands 

2004-12-26 
00:58:53.45 3.295 95.982 9.1 30 

Sumatra–Andaman 
Subduction Zone 

Great Tohoku 
Japan 

2011-03-11 
05:46:24.12 38.297 142.373 9.1 29 Japan Trench 

Kamchatka, 
Russia 

1952-11-04 
16:58:30.00 52.623 159.779 9 21.6 

Kuril-Kamchatka 
Subduction Zone 

Ecuador-
Colombia 

1906-01-31 
15:36:10.00 0.955 -79.369 8.8 20 

Colombia–Ecuador 
Subduction Zone 

Quirihue, Chile 
2010-02-27 
06:34:11.53 -36.122 -72.898 8.8 22.9 Peru-Chile Trench 

Rat Islands, 
Aleutian 
Islands, Alaska 

1965-02-04 
05:01:22.00 51.251 178.715 8.7 30.3 

Aleutian Subduction 
Zone 

Unimak Island, 
Aleutian Islands 
Alaska 

1946-04-01 
12:29:01.00 53.492 -162.832 8.6 15 

Aleutian Subduction 
Zone 
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Assam-Tibet 
1950-08-15 
14:09:34.00 28.363 96.445 8.6 15 

Indo-Asia Collision 
(Mishmi Thrust) 

Offshore 
Sumatra 

2012-04-11 
08:38:36.72 2.327 93.063 8.6 20 

Sumatra–Andaman 
Subduction Zone 

Singkil, 
Indonesia 

2005-03-28 
16:09:36.53 2.085 97.108 8.6 30 

Sumatra–Andaman 
Subduction Zone 

Adak, Alaska 
1957-03-09 
14:22:33.00 51.499 -175.626 8.6 25 

Aleutian Subduction 
Zone 

Vallenar, Chile 
1922-11-11 
04:32:51.00 -28.293 -69.852 8.5 70 Peru-Chile Trench 

Tual, Indonesia 
1938-02-01 
19:04:22.00 -5.045 131.614 8.5 25 Banda Sea Arc 

Kuril’sk, Russia 
1963-10-13 
05:17:59.00 44.872 149.483 8.5 35 

Kurile-Kamchatka 
Subduction Zone 

Mil’kovo, 
Russia 

1923-02-03 
16:01:50.00 54.486 160.472 8.4 15 

Kurile-Kamchatka 
Subduction Zone 

Atico, Peru 
2001-06-23 
20:33:14.13 -16.265 -73.641 8.4 33 Peru-Chile Trench 

Sanriku-oki, 
Japan 

1933-03-02 
17:31:00.00 39.209 144.59 8.4 15 Japan Trench 

Bengkulu, 
Indonesia 

2007-09-12 
11:10:26.83 -4.438 101.367 8.4 34 

Sumatra–Andaman 
Subduction Zone 

a. Magnitude estimated using the moment magnitude scale (Mw) or Moment W-phase. 409 
Some locations are seen in Figure 7. 410 

The 1950 Assam-Tibet earthquake (Figure 7, Table 1) influenced rivers in India, Burma, 411 
East Pakistan, Tibet, and China. Many flooded and changed their courses permanently (Ben-412 
Menahem et al., 1974; Mrinalinee Devi & Bora, 2016). Sharma & Zaman (2019) describe the 413 
ecological impact of the Assam-Tibet earthquake on the Brahmaputra River as it was affected by 414 
liquefaction and contamination by sulfur emanating from underground coal beds and oil 415 
seepages. In addition, seismic seiches related to the earthquake were recorded in several fjords 416 
and lakes over 7000 km away in Norway (Kvale, 1955; McGarr, 2011). Seismic seiches are 417 
standing waves in closed or partially closed bodies of water due to the passage of seismic waves 418 
from an earthquake (Garr, 2019). Based on a historical assessment, earthquakes in the Himalayan 419 
region may not be expected to be as large as those in subduction zones (Srivastava et al., 2013). 420 
However, the variations in seismicity of collisional mountain belts are related to a complex 421 
interplay between rheology, fault style, kinematics, and the tectonic stress regime, but the 422 
parameters that control earthquake behavior in orogenic mountain belts remain unclear (e.g., Dal 423 
Zilio et al., 2018). 424 

Ground shaking due to earthquakes at convergent and collisional boundaries often 425 
triggers significant mass wasting events, including landslides, rockfalls, and liquefaction. 426 
Evidence for giant terrestrial landslides is present along several convergent and collisional plate 427 
boundaries worldwide (Mather et al., 2014; Roberts et al., 2014). Landslides develop over 428 
steepened slopes and are triggered by large earthquakes or volcanic eruptions. If these events are 429 
located near coastal areas, tsunamis can develop. Significant triggers for tsunamis are 430 
subaqueous earthquakes and slides (Sugawara et al., 2008). Submarine landslides generated by 431 
earthquakes have triggered devastating tsunamis in the Aegean region (e.g., Dominey-Howes, 432 
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2002; Okal et al., 2009; Ebeling et al., 2012). The sloping bottom of the Hellenic arc, coupled 433 
with thick accumulations and high rates of recent sedimentation, closely spaced active faults, 434 
active earthquakes, and magmatic diapirism (where less dense rock rises through buoyant 435 
forces, Rajput & Thakur, 2016), contribute to its high hazards of tsunamis in the region (e.g., 436 
Ferentinos, 1990; Hooft et al., 2017). The eruption of Santorini in 1610 BCE generated a tsunami 437 
that affected civilizations throughout the eastern Mediterranean (Dominey-Howes, 2004, 438 
Friedrich, 2006, Marinatos, 1939; Hooft et al., 2017). Detailed bathymetry across the 439 
Mediterranean is critical in understanding tsunami propagation and mitigating its impacts (e.g., 440 
CIESM, 2011). 441 

Figure 7 shows the relationship between convergent plate boundaries and significant 442 
volcanic eruptions. The Earth's most extensive volcanic fields in terms of basaltic and silicic 443 
eruptions are not found at convergent plate boundaries but are over large igneous provinces 444 
(LIPS) (e.g., (Coffin & Eldholm, 1994; Bryan & Ernst, 2008; Bryan et al., 2010). However, the 445 
origin of LIPS may lie in the subduction process that perturbs mantle dynamics, forces extension 446 
in the back-arc region, thins the lithosphere, and trigger large-scale and voluminous basalt 447 
eruption (Zhu et al., 2019). The return flow of slab avalanches from the mantle transition zone 448 
can also generate LIPS (Gurnis, 1988, Coltice et al., 2007; Condie et al., 2021). Slab avalanches 449 
develop when large-volume subducted slabs temporarily stagnate within the transition zone and 450 
periodically penetrate the lower mantle (e.g., Solheim & Peltier, 1994; Deschamps & Tackley, 451 
2009; Yang et al., 2018). Slab avalanches are controlled by mantle thermal instabilities and 452 
accelerate as slab sinking rates increase with time (e.g., Solheim & Peltier, 1994; Yang et al., 453 
2018). 454 

Subduction zones also produce eruptions that are most commonly observed and most 455 
dangerous to human populations (Siebert et al., 2015). Subduction zone volcanism propels 456 
volcanic gases (e.g., SO2, CO2, H2S) and ash into the stratosphere or troposphere and has 457 
affected short-term climate (Bryan et al., 2010; Cooper et al., 2018) and the carbon cycle (Zhu et 458 
al., 2021). Some sulfur gases convert to sulfate aerosols in the stratosphere and scatter radiation 459 
(e.g., Robock, 2000). The dust veil index (DVI/Emax) measures an eruption's release of dust and 460 
aerosols over the years following the event, especially the impact on the Earth's energy balance 461 
(Lamb, 1985). For example, the AD 1835 eruption of Volcan Cosiguina, Nicaragua, which is 462 
located on a convergent margin where the oceanic crust of the Cocos plate subducts beneath the 463 
western edge of the Caribbean plate, is recorded as a volcano has a DVI/Emax of 4000, with 464 
ashfall recorded as far as 1900 km away (Scott et al., 2006).  465 

Climate change is intrinsically related to collisional plate boundaries, as topographic 466 
barriers interact with the Earth's atmosphere (e.g., Burbank, 1992; Cronin, 2009; Ruddiman, 467 
2013; Song et al., 2021) and subducting slabs at collisional boundaries eliminate megatons of 468 
carbon (e.g., Clift, 2017; Plank & Manning, 2019). Controls on the subduction process may be 469 
related to climate change (Lamb & Davis, 2003; Iaffaldano et al., 2006). The onset of the 470 
Himalayan monsoon is related to India-Asia convergence and is widely studied for 471 
understanding the timing of mountain building (e.g., Clift et al., 2008; Allen & Armstrong, 2012; 472 
Webb et al., 2017). Mountain ranges are barriers to atmospheric circulation, and exposures of 473 
rocks in the mountainous regions can also drive the drawdown of atmospheric gasses through 474 
weathering processes that may be directly related to climate change (e.g., Stern & Miller, 2018). 475 
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4 Objectives and Organization of the Book 476 

This volume was written to create an up-to-date and relevant compendium valuable 477 
reference for Earth Sciences students, including advanced undergraduate and graduate students, 478 
postdocs, educators, research professionals, and policymakers in academia and industry. These 479 
papers aimed to synthesize current knowledge of complex geological topics surrounding global 480 
collisional and convergent plate boundaries with an accessible approach and transparent 481 
organization. The papers are meant to be readable for a range of consumers. Several reviewers 482 
helped to identify topical oversights and assure that citations fairly represent the body of existing 483 
information. The topics are mentioned in the preface, in the text of this introduction, and 484 
highlighted in the volume's table of contents. 485 
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