References
Bagard, M. L., Chabaux, F., Pokrovsky, O. S., Viers, J., Prokushkin, A.
S., Stille, P. et al. (2011). Seasonal variability of element fluxes in
two Central Siberian rivers draining high latitude permafrost dominated
areas. Geochimica et Cosmochimica Acta, 75 (12), 3335–3357.
https://doi.org/10.1016/j.gca.2011.03.024
Bruland, K. W. & Lohan, M. C. (2003). 6.02 – Controls of trace metals
in seawater: Treatise on Geochemistry, 6, 23–47,
https://doi.org/10.1016/B0-08-043751-6/06105-3
Björkvald, L., Buffam, I., Laudon, H., & Mörth, C. M. (2008).
Hydrogeochemistry of Fe and Mn in small boreal streams: The role of
seasonality, landscape type and scale. Geochimica et Cosmochimica
Acta, 72( 12), 2789–2804.
https://doi.org/10.1016/j.gca.2008.03.024
Crichton, R. (Ed.). (2001). Inorganic biogeochemistry of iron
metabolism: from molecular mechanisms to clinical consequences ,
Hoboken, NJ: John Wiley.
Egidarev, E. & Simonov, E. (2007). Wetlands, water
infrastructure . WWF Russia, Amur Branch, Vladivostok, Russia.
http://amur-heilong.net/Gis_site/gis_index.html
Egidarev, E., Simonov, E., & Darman, Y. (2016). Amur-Heilong River
Basin: Overview of Wetland Resources. In Finlayson, C., Milton, G.,
Prentice, R., & Davidson N. (Eds.), The Wetland Book (pp. 1–15).
Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6173-5_7-2
Gao, B. (1996). NDWI A normalized difference water index for remote
sensing of vegetation liquid water from space. Remote Sensing of
Environment, 58, 257–266. https://doi.org/10.24059/olj.v23i3.1546
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., &
Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sensing of Environment, 202,18–27. https://doi.org/10.1016/j.rse.2017.06.031
Ingri, J., Malinovsky, D., Rodushkin, I., & Baxter, D. C. (2006). Iron
isotope fractionation in river colloidal matter. Earth and
Planetary Science Letters, 245, 792–798.
https://doi.org/10.1016/j.epsl.2006.03.031
Kawahigashi, M., Kaiser, K., Kalbitz, K., Rodionov, A., & Guggenberger,
G. (2004). Dissolved organic matter in small streams along a gradient
from discontinuous to continuous permafrost. Global Change
Biology, 10( 9), 1576–1586.
https://doi.org/10.1111/j.1365-2486.2004.00827.x
Kothawala, D. N., von Wachenfeldt, E., Koehler, B., & Tranvik, L. J.
(2012). Selective loss and preservation of lake water dissolved organic
matter fluorescence during long-term dark incubations. Science of
the Total Environment, 433, 238–246.
https://doi.org/10.1016/j.scitotenv.2012.06.029
Laglera, L. M., & Vandenberg, C. M. G. (2009). Evidence for geochemical
control of iron by humic substances in seawater. Limnology and
Ocanography, 54( 2), 610–619.
https://doi.org/10.4319/lo.2009.54.2.0610
Levshina, S. I. (2012). Iron distribution in surface waters in the
Middle and Lower Amur basin. Water Resources, 39( 4),375–383. https://doi.org/10.1134/s0097807812040082
Martin, J. H., & Fitzwater, S. E. (1988). Iron deficiency limits
phytoplankton growth in the North-east Pacific subarctic. Nature,
336, 403–405. https://doi.org/10.1038/331341a0
Martin, J. H., Gordon, R. M., Fitzwater, S. E., & Broenkow, W. W.
(1989). Vertex: phytoplankton/iron studies in the Gulf of Alaska.Deep Sea Research Part A, 36, 649–680.
https://doi.org/10.1016/0198-0149(89)90144-1
Martin, J. H., Gordon, R., & Fitzwater, S. E. (1990) Iron in Antarctic
waters. Nature, 345, 156–158. https://doi.org/10.1038/345156a0
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon,
R. M., Tanner, S. J. et al. (1994). Testing the iron hypothesis in
ecosystems of the equatorial Pacific Ocean. Nature, 371,123–129. https://doi.org/10.1038/371123a0
Matsunaga, K., Nishioka, J., Kuma, K., Toya, K., & Suzuki, Y. (1998).
Riverine input of bioavailable iron supporting phytoplankton growth in
Kesennuma Bay (Japan). Water Research, 32, 3436–3442.
https://doi.org/10.1016/S0043-1354(98)00113-4
Moore, J. K., & Braucher, O. (2008). Sedimentary and mineral dust
sources of dissolved iron to the world ocean. Biogeosciences,
5( 3), 631–656. https://doi.org/10.5194/bg-5-631-2008
Nagao, S., Motoki, T., Kodama H., Kim V. I., Shesterkin P. V., &
Makhinov A. N. (2007). Migration behavior of Fe in the Amur River
Basin (Report on Amur - Okhotsk Project No. 4, pp. 37–48.). Kyoto,
Japan: Research Institute for Humanity and Nature.
Nishioka, J., Nakatsuka, T., Ono, K., Volkov, Y. N., Scherbinin, A., &
Shiraiwa, T. (2014). Quantitative evaluation of iron transport processes
in the Sea of Okhotsk. Progress in Oceanography, 126, 180–193.
https://doi.org/10.1016/j.pocean.2014.04.011
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H.
H., Dashtseren, A. et al., (2019). Northern Hemisphere permafrost map
based on TTOP modelling for 2000–2016 at 1 km2 scale.Earth-Science Reviews, 193, 299–316.
https://doi.org/10.1016/j.earscirev.2019.04.023
Olefeldt, D., Roulet, N., Giesler, R., & Persson, A. (2013). Total
waterborne carbon export and DOC composition from ten nested subarctic
peatland catchments-importance of peatland cover, groundwater influence,
and inter-annual variability of precipitation patterns.Hydrological Processes, 27( 16), 2280–2294.
https://doi.org/10.1002/hyp.9358
Olefeldt, D., Persson, A., & Turetsky, M. R. (2014). Influence of the
permafrost boundary on dissolved organic matter characteristics in
rivers within the Boreal and Taiga plains of western Canada.Environmental Research Letters, 9( 3) , 035005.https://doi.org/10.1088/1748-9326/9/3/035005
Patzner, M. S., Kainz, N., Lundin, E., Barczok, M., Smith, C., Herndon,
E. et al., (2022). Seasonal Fluctuations in Iron Cycling in Thawing
Permafrost Peatlands. Environmental Science & Technology, 56 (7),
4620–4631. https://doi.org/10.1021/acs.est.1c06937
Petrone, K. C., Jones, J. B., Hinzman, L. D., & Boone, R. D. (2006).
Seasonal export of carbon, nitrogen, and major solutes from Alaskan
catchments with discontinuous permafrost. Journal of Geophysical
Research: Biogeosciences, 111( 2), 1–13.
https://doi.org/10.1029/2005JG000055
Pokrovsky, O. S., Manasypov, R. M., Loiko, S., Shirokova, L. S.,
Krickov, I. A., Pokrovsky, B. G. et al., (2015). Permafrost coverage ,
watershed area and season control of dissolved carbon and major elements
in western Siberian rivers. Biogeosciences, 12,6301–6320. https://doi.org/10.5194/bg-12-6301-2015
Pokrovsky, O. S., Manasypov, R. M., Loiko, S. V., Krickov, I. A.,
Kopysov, S. G., Kolesnichenko, L. G. et al., (2016). Trace element
transport in western Siberian rivers across a permafrost gradient.Biogeosciences, 13( 6), 1877–1900.
https://doi.org/10.5194/bg-13-1877-2016
Price, N. M., Ahner, B. A., and Morel, F. M. M. (1994). The equatorial
Pacific Ocean: Grazer-controlled phytoplankton populations in an
iron-limited ecosystem. Limnology and Oceanography, 39, 520–534.
https://doi.org/10.4319/lo.1994.39.3.0520
Raudina, T. V., Loiko, S. V., Lim, A. G., Krickov, I. V., Shirokova, L.
S., Istigechev, G. I. et al., (2017). Dissolved organic carbon and major
and trace elements in peat porewater of sporadic, discontinuous, and
continuous permafrost zones of western Siberia. Biogeosciences,
14(14), 3561–3584. https://doi.org/10.5194/bg-14-3561-2017
Raudina, T. V., Loiko, S. V., Lim, A., Manasypov, R. M., Shirokova, L.
S., Istigechev, G. I. et al., (2018). Permafrost thaw and climate
warming may decrease the CO2, carbon, and metal concentration in peat
soil waters of the Western Siberia Lowland. Science of the Total
Environment, 634, 1004–1023.
https://doi.org/10.1016/j.scitotenv.2018.04.059
Shamov, V. V, Onishi, T., & Kulakov, V. V. (2014). Dissolved iron
runoff in Amur Basin rivers in the late XX century. Water
Resources, 41( 2), 201–209.
https://doi.org/10.1134/S0097807814020122
Shiraiwa, T. (2012). “Giant Fish-Breeding Forest”: A New Environmental
System Linking Continental Watershed with Open Water. In Taniguchi, M.
& Shiraiwa, T. (Eds.), The Dilemma of Boundaries (pp. 73–85).
Tokyo, Japan: Springer. http://dx.doi.org/10.1007/978-4-431-54035-9_8
Smedberg, E., Mörth, C. M., Swaney, D. P., & Humborg, C. (2006).
Modeling hydrology and silicon-carbon interactions in taiga and tundra
biomes from a landscape perspective: Implications for global warming
feedback. Global Biogeochemical Cycles, 20( 2).https://doi.org/10.1029/2005GB002567
Sunda, W. G. (2012). Feedback interactions between trace metal nutrients
and phytoplankton in the ocean. Frontiers in Microbiology ,3 , 204. https://doi.org/10.3389/fmicb.2012.00204
Suzuki, K., Hattori-Saito, A., Sekiguchi, Y., Nishioka, J., Shigemitsu,
M., Isada, T. et al. (2014). Spatial variability in iron nutritional
status of large diatoms in the Sea of Okhotsk with special reference to
the Amur River discharge. Biogeosciences, 11(9), 2503–2517.
https://doi.org/10.5194/bg-11-2503-2014
Takeda, S., & Obata, H. (1995). Response of equatorial Pacific
phytoplankton to subnanomolar Fe enrichment. Marine Chemistry,
50, 219–227. https://doi.org/10.1016/0304-4203(95)00037-R
Takeuchi, W., & Yasuoka, Y. (2004). Development of normalized
vegetation, soil and water
indices derived from satellite remote sensing data. Journal of the
Japan Society of Photogrammetry and Remote Sensing, 43(6), 7–19. In
Japanese. https://doi.org/10.4287/jsprs.43.6_7
Tashiro, Y., Yoh, M., Shiraiwa, T., Onishi, T., Shesterkin, V., & Kim,
V. (2020). Seasonal variations of dissolved iron concentration in active
layer and rivers in permafrost areas, Russian Far East. Water,
12( 9), 2579. https://doi.org/10.3390/w12092579
Tipping, E. (Ed.). (2002). Cation Binding by Humic Substances
(Cambridge Environmental Chemistry Series) , Cambridge, MA: Cambridge
University Press. http://dx.doi.org/10.1017/CBO9780511535598
Tucker, C. J., Townshend, J. R. G., & Goff, T. E. (1985). African
land-cover classification using satellite data. Science,
227( 4685), 369–375.
https://doi.org/10.1126/science.227.4685.369
Vorobyev, S. N., Pokrovsky, O. S., Serikova, S., Manasypov, R. M.,
Krickov, I. V., Shirokova, L. S. et al. (2017). Permafrost boundary
shift in Western Siberia may not modify dissolved nutrient
concentrations in rivers. Water , 9 (12), 985.
https://doi.org/10.3390/w9120985
Wang, L., Yan, B., Pan, X., & Zhu, H. (2012). The spatial variation and
factors controlling the concentration of total dissolved iron in rivers,
Sanjiang Plain. Clean – Soil, Air, Water, 40( 7),712–717. https://doi.org/10.1002/clen.201100251
Winterfeld, M., Mollenhauer, G., Dummann, W., Köhler, P., Lembke-Jene,
L., Meyer, V. D. et al., (2018). Deglacial mobilization of pre-aged
terrestrial carbon from degrading permafrost. Nature
Communications, 9 , 3666. https://doi.org/10.1038/s41467-018-06080-w