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Key Points:6

• Satellites produce global aerosol data, however, these data often suffer from low7

accuracy and spatial resolution due to data aggregation.8

• Machine-learning-based post-process correction leads to a significant improvement9

in the AOD accuracy over the conventional retrievals.10

• Post-process correction approach is also efficient for spatial downscaling of satel-11

lite aerosol data leading to high resolution AOD.12
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Abstract13

Poor air quality poses a great threat to human health. Accurate high-resolution satel-14

lite remote sensing of atmospheric aerosols would highly benefit satellite-based air qual-15

ity estimates. We have developed and validated a post-process correction and downscal-16

ing approach for satellite remote sensing of aerosols. We use NASA’s Moderate Reso-17

lution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) over Washing-18

ton D.C. - Baltimore area during the Distributed Regional Aerosol Gridded Observa-19

tion Networks (DRAGON) campaign in 2011 to evaluate our approach. We derive and20

evaluate the AOD fields with high 250 meter resolution. The results show that the post-21

process correction approach is suitable for deriving downscaled, high-resolution AOD es-22

timates and significantly improves the accuracy of the AOD retrievals.23

Plain Language Summary24

Satellites collect information about our atmosphere. We often use satellite data to25

monitor, for example, the atmospheric aerosols, which are small solid and liquid parti-26

cles in the air. However, the massive amount of satellite data and partially unknown at-27

mospheric processes and land surface properties force us to use simplified computations28

in aerosol monitoring. Unfortunately, the simplified computations lead to sub-optimal29

accuracy and low resolution in aerosol data. In this work, we have developed a new machine-30

learning-based algorithm that is used together with conventional satellite data process-31

ing to improve the data. Our algorithm takes advantage of accurate ground-based mea-32

surements. As a result, it significantly improves the accuracy and resolution of the aerosol33

data. We improved the resolution of satellite-based aerosol data from 3 km to 250 me-34

ters. New high-resolution data may allow some new applications for the satellite data,35

such as street-level air quality monitoring.36

1 Introduction37

Poor air quality poses a great threat to human health. New World Health Organ-38

ization (WHO) Global Air Quality Guidelines published in September 2021 provide clear39

evidence of air pollution’s damage to human health at lower concentrations than pre-40

viously conceived (World Health Organization, 2021). WHO estimates that people’s ex-41

posure to air pollution causes 7 million premature deaths every year. A key indicator42

in monitoring air quality and epidemiological studies is the PM2.5 parameter, the dry43
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mass concentration of fine particulate matter with an aerodynamic diameter less than44

2.5 micrometers (µg/m3 of air). Fine particulate matter originates from vehicle emis-45

sions, coal-burning, industrial emissions, and other human and natural sources. Air qual-46

ity monitoring networks often utilize in-situ measurements that measure air quality at47

pointwise locations. However, remote sensing and satellite observations are needed to48

get better spatial coverage of air quality estimates over large regions.49

The most widely used high-resolution satellite-based air quality datasets are based50

on downscaled aerosol optical depth (AOD) estimates combined with auxiliary data (Shaddick51

et al., 2018; van Donkelaar et al., 2019; Hammer et al., 2020; van Donkelaar et al., 2021).52

Auxiliary data brings, for example, aerosol vertical distribution and composition infor-53

mation to the computations. Then, statistical methods such as land use regression or54

graphically weighted regression are used to combine the available information and ob-55

tain an estimate for the surface PM2.5. An improvement in AOD estimates’ accuracy56

and resolution would directly translate into an improvement in PM2.5 estimates. There-57

fore, high accuracy, high-resolution satellite aerosol retrieval would greatly benefit satellite-58

based estimation of surface PM2.5.59

Moderate spatial resolution imaging spectroradiometers, such as Moderate Reso-60

lution Imaging Spectroradiometer (MODIS), Ocean and Land Colour Instrument (OLCI),61

and Sea and Land Surface Temperature Radiometer (SLSTR), with a native resolution62

of some hundreds of meters at best, would be an excellent and openly available source63

of satellite data to be used in air quality retrievals. Compared to optical instruments with64

high-resolution of tens of meters or even better, these moderate resolution instruments65

have advantageous characteristics for air quality retrievals, including wide swath, frequent66

return times, good signal-to-noise ratio, and broad spectral coverage. In the operational67

aerosol products of these instruments, however, the aerosol properties are based on ag-68

gregated data due to high computational costs and biases related to the aerosol retrieval69

algorithms. As a result, the most widely used aerosol data products have a spatial res-70

olution of 3-10 km (Levy et al., 2013).71

Recent advances in new methods to combine conventional retrieval algorithms and72

machine learning have significantly improved satellite AOD estimate accuracy (Lipponen73

et al., 2021, 2022). For example, the post-process correction approach for satellite AOD74

retrieval uses a machine learning-based model to predict the retrieval error in the satel-75
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lite AOD and uses that prediction to correct the retrieval. Previous studies have shown76

that the combination of physics-based retrievals and machine learning leads to better ac-77

curacy than a machine learning-based approach alone.78

This study develops and validates the post-process correction and downscaling ap-79

proach for MODIS AOD over Washington D.C. - Baltimore area during the Distributed80

Regional Aerosol Gridded Observation Networks (DRAGON) campaign in 2011 (e.g. Garay81

et al. (2017); Virtanen et al. (2018)). The DRAGON campaign provides very dense cov-82

erage of accurate ground-based AERONET AOD measurements for validation of high-83

resolution AOD products. Therefore, the DRAGON campaign is a unique setting to val-84

idate the post-process correction of high-resolution AOD retrievals. Furthermore, the re-85

cently published post-process correction approaches have only been applied to the cor-86

rection of the satellite retrievals and not for the additional downscaling of the data to87

high spatial resolution. In this study, we take advantage of the high-resolution MODIS88

level-1 observations and, in addition to correction, downscale the AOD to 250 meter spa-89

tial resolution.90

2 Materials and Methods91

In this study, we develop and validate the post-process correction and downscal-92

ing approach to satellite aerosol retrievals. We apply the correction to MODIS 3 km AOD93

and use the DRAGON 2011 campaign aerosol data to validate the satellite retrievals.94

We downscale the AOD spatial resolution by mapping the aggregated data to a high-95

resolution grid corresponding to the best native resolution of the MODIS instrument,96

250 meters, and evaluate the accuracy of the corrected high-resolution AOD data.97

2.1 Post-process correction satellite retrievals98

Let99

y = f(x) (1)

be an accurate satellite retrieval algorithm. Here y denotes the retrieval algorithm out-100

puts, such as AOD, f is an accurate retrieval algorithm, and x are the inputs for the re-101

trieval algorithm such as measurement geometry information and satellite measured TOA102

reflectances. In reality, however, due to, for example, complex and partially unknown103

atmospheric parameters and surface reflectance, accurate retrieval algorithms do not ex-104
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ist. In practice, the retrievals are computed with an approximative retrieval algorithm105

f̃ . The accurate retrieval algorithm (1) can be written as106

y = f(x) + f̃(x)− f̃(x) (2)

= f̃(x) +
[
f(x)− f̃(x)

]
(3)

= f̃(x) + e(x), (4)

where e denotes the retrieval error.107

In the conventional supervised machine learning-based approach, the aim is to train108

a model to directly predict the satellite retrieval outputs y given the inputs x. These trained109

models approximate the accurate retrieval algorithm f . As these models rely on the use110

of machine learning models only, we refer to these models as fully learned models.111

In the post-process correction approach, the aim is to train a machine-learning-based112

model to predict the retrieval error e and employ (4) to compute the retrieval output.113

This post-process correction approach combines the physics-based retrieval f̃ and ma-114

chine learning. We expect the retrieval error e to be a less complex function than the115

full retrieval algorithm f to be learned from finite number of learning data, and thus ex-116

pect the post-process correction to result in more accurate retrieval than the fully learned117

model.118

In the development of the post-process correction approach, we noted an interest-119

ing similarity between the post-process correction model architecture and the widely used,120

recently developed neural network architecture of residual neural networks (ResNet). In121

ResNets, the network architecture is constructed so that skip connections are added to122

allow information skip over some neural network layers and act as inputs for the sub-123

sequent layers. AOD post-process correction can be thought of to have a similar skip con-124

nection for a subset of input data corresponding to the AOD to be corrected. The skip125

connection for AOD is created from the model inputs directly to the final output layer126

of the neural network. Having these similarities, however, the starting points of the ResNet127

and post-process correction are fundamentally different - post-process correction aims128

at correcting the output of a physics-based retrieval algorithm, and the ResNets have129

been developed to tackle the problem of vanishing gradients in the training of deep neu-130

ral networks. As the practical implementations are quite similar between these two mod-131

els, we also expect that the post-process correction model may be relatively tolerant against132
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the problem of vanishing gradients in the training of the neural networks. Therefore, we133

expect this feature to even further improve the accuracy of the post-process correction134

models. We also tested the ResNet-type of algorithm in this study and found it perform135

similarly as the post-process correction model and therefore do not show the results here.136

2.2 Training and validation of the neural network models137

The dense network of AERONET stations available in the DRAGON campaign al-138

lowed validation of the downscaled 250 m resolution aerosol product. In the validation,139

we used a cross-validation approach in which some of the AERONET stations were used140

for training the models, while others were used in the validation of the results. We train141

and validate both fully learned and post-process correction models to compare the per-142

formance between these two approaches. For training and validation, we randomly di-143

vided the MODIS-AERONET collocated pixels into three separate groups by AERONET144

station.145

The division is carried out by AERONET station to avoid too similar data sam-146

ples between the training and validation datasets. As is well known, too similar data sam-147

ples could potentially lead to over-optimistic results. The evaluation of the accuracy of148

the models was carried out using cross-validation so that one group was used as train-149

ing data, one group was used as validation to monitor the convergence of the training,150

and the resulting model was applied to the third independent group of test data. This151

was repeated three times so that each AERONET station was present once in the val-152

idation data. Training of every model was carried out 20 times with different random153

initial weights of the neural networks and the best performing model was always selected154

to be used in the evaluation of the test data.155

Based on results shown in Lipponen et al. (2022) and our preliminary tests, we uti-156

lized fully connected feed-forward networks and fixed both the fully learned and post-157

process correction neural network architectures to 3 hidden layers. In addition, we set158

the batch size for training to 8, used an initial learning rate of 5×10−5 with the Adam159

optimization algorithm, used mean square error loss, and selected rectified linear unit160

(ReLU) as the activation function for all hidden layers and linear activation for the out-161

put.162
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To determine the optimal number of neurons for each layer of the neural networks,163

the Asynchronous Successive Halving (ASHA) method was used (Li et al., 2020). The164

ASHA optimization tested all combinations of 8, 32, 128, 512, and 1024 neurons for each165

layer as a grid search and computed the validation losses for each trained network. The166

optimization was repeated for 10 different random initializations of the neural networks167

and the best average validation loss neural network structures were selected for the fi-168

nal models to be trained. The optimal number of neurons for the three layers in the fully169

learned model was found as 128, 1024, 128, and for the post-process correction model170

512, 32, 512.171

We also carried out full processing of the MODIS AOD data in the region of in-172

terest (ROI) during the whole DRAGON campaign period to produce AOD maps. In173

contrast to cross-validation evaluation of the model accuracies, for this use we trained174

separate fully learned and post-process correction models using full datasets. In the train-175

ing of the full dataset models, eight AERONET stations were selected to be validation176

stations that were used to monitor the training convergence and the rest of the data were177

used as training data. The training of these models was also carried out 20 times with178

different random initial weights and the models with the smallest validation loss were179

selected as the final models for the data processing.180

The dataset used for the training and validation of the models consisted of 2728181

samples with 26 and 33 input parameters for the fully learned and post-process correc-182

tion models, respectively. The model training and data processing used in this study were183

not computationally very expensive and were carried out using a regular laptop computer184

without GPU capabilities.185

2.3 Region of interest and data gridding186

We use Washington, D.C. - Baltimore, Maryland, USA, region as our region of in-187

terest (ROI). The size of the ROI is 120 by 120 km and it is divided into 480 by 480 pixel188

grid with 250 meter pixel size. The Universal Transverse Mercator (UTM) map projec-189

tion zone 18 is used for constructing the grid. All spatially distributed parameters are190

projected to this grid using nearest-neighbor interpolation before the model training and191

evaluation computations. The ROI is shown in Figure 1.192
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2.4 Satellite data193

We use MODIS data of both Terra and Aqua satellites in this study. As the top-194

of-atmosphere (TOA) reflectance data, MODIS collection 6.1 level-1b data of bands 1-195

13, 15, and 19-22 were used. Bands 14, 16-18 were not used as a significant portion of196

the data was missing. MODIS bands 1 and 2 have native spatial resolution of 250 me-197

ters, bands 3-7 500 meters, and other bands 1 km at nadir.198

The physics-based AOD retrieval f̃(x) we used was the MODIS collection 6.1 aerosol199

data product MOD04 3KM Dark Target AOD over land with native 3 km spatial res-200

olution. The measurement geometry information, solar and view zenith and azimuth an-201

gles, the scattering and glint angles, and also the topographic land altitude were also taken202

from the MOD04 3KM data product to the aerosol retrieval data.203

We only accepted pixels with the MODIS view zenith angle less than 50 degrees.204

This selection was made to restrict the pixels to the central part of swath pixels. As the205

MODIS pixel size grows towards the edges of the swath, this selection kept the pixel size206

reasonable and filtered out too large pixels to be used for high-resolution retrievals.207

2.5 Ground-based AERONET AOD data208

As an accurate ground-based reference AOD data, we used the sunphotometer-based209

AOD of AERONET stations in the ROI during the DRAGON 2011 campaign. The du-210

ration of the DRAGON campaign was from June 1 to August 15, 2011. The DRAGON211

campaign consisted of more than 40 AERONET stations deployed to Washington D.C.212

- Baltimore region. In this study, we use level 2.0 AERONET AOD at 550 nm which is213

computed from AOD measurement at 500 nm and Ångström exponent for 440-870 nm.214

AERONET AOD at visible wavelengths have been reported to have a low uncertainty215

of 0.01 and therefore we consider the AERONET AOD estimates accurate (Eck et al.,216

1999). We use AERONET AOD both for training and validation of our models.217

2.6 Auxiliary high-resolution data218

As we aim at high spatial resolution aerosol data, in addition to satellite-based data,219

we also used a high-resolution digital elevation model (DEM) as auxiliary data for machine-220
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learning-based models. These auxiliary data were added as additional input parameters221

in the models.222

We used GMTED2010 DEM which has 7.5 arc-seconds (about 225 meters) reso-223

lution (Danielson & Gesch, 2011). For our use, GMTED2010 DEM data was interpo-224

lated to the 250 meter grid in our ROI.225

In the post-process correction model, surface reflectance at three different wave-226

lengths and AOD fields at four different wavelengths retrieved with Dark Target were227

added as auxiliary inputs. As the 3 km Dark Target AOD fields are noisy and therefore228

contain sharp changes between the neighboring 3 km pixels, we smoothed the AOD fields229

before the post-process correction. A 2D convolution using a Gaussian kernel with a 3230

km standard deviation was used for the AOD field smoothing.231

2.7 MODIS-AERONET collocation232

For the MODIS-AERONET collocation, we followed a similar protocol as in Bilal233

et al. (2013). That is, we required the distance between the high-resolution grid pixel234

center and AERONET station to be less than 750 meters and restricted our data to a235

maximum number of nine pixels per overpass around an AERONET station. For tem-236

poral collocation, we used a maximum time difference of ± 250 seconds. With our col-237

location protocol and data criteria, we ended up having data from 37 different AERONET238

stations. The excluded stations did not contain any valid pixels.239

3 Results240

Figure 2 shows the MODIS-AERONET AOD comparison for the Dark Target, fully241

learned model, and the post-process corrected model. The post-process corrected model242

is clearly the best performing model. The post-process corrected model has all the best243

metrics with the only exception of bias. The bias of the fully learned model and the post-244

process corrected models are the same (-0.004). The root mean squared error (RMSE)245

of the post-process corrected data is only 0.038, which is 28% smaller than the fully learned246

model RMSE and about 64% smaller than the Dark Target RMSE. The fully learned247

model has some problems in predicting large AOD values and the highest AOD values248

are significantly underestimated whereas the highest AODs predicted by the post-process249

corrected model are all within the Dark Target expected error (EE) envelope. The Dark250
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Target, on the contrary, is overestimating AOD in almost all AERONET overpasses. This251

type of systematic over- or underestimation is not observed in machine-learning-based252

AODs. The maximum absolute value of the retrieval error in the post-process corrected253

AOD is less than half of the one obtained with the fully learned model. The fraction of254

retrievals within the Dark Target EE envelope is also clearly better in the post-process255

corrected AOD (96.4%) than in the fully learned AOD retrievals (91.6%). The Dark Tar-256

get fraction within EE envelope was 67.2%.257

All MODIS overpasses of the DRAGON campaign were processed using the final258

trained fully learned and post-process correction models. Figure 1 shows the average AOD259

and the average of daily AOD anomalies with respect the daily mean of the AOD in the260

ROI for the DRAGON campaign duration for the Dark Target, fully learned model, and261

post-process correction model. Average AERONET AOD for the DRAGON campaign262

duration collocated with MODIS overpasses are also shown. The AOD anomalies were263

constructed by first computing daily anomalies as the differences of the full AOD fields264

and the daily ROI average AODs and then temporally averaging the daily anomalies over265

the whole duration of the DRAGON campaign. On average, there were 2.8 daily MODIS266

overpasses during the campaign. The map figure shows that the Dark Target AODs are267

significantly higher than the AOD obtained with fully learned or post-process correction268

approaches. The machine-learning-based AOD datasets match better the AOD from the269

AERONET stations. Near the coastline both of the machine-learning-based approaches270

seem to work well and do not show any clear anomalies near the coast whereas Dark Tar-271

get shows elevated AOD values near the coast with no clear physical explanation to it.272

AERONET observations do not show elevated AOD values near the coastline. The AOD273

anomaly maps show higher AOD values over the urban areas in Washington D.C. and274

Baltimore and between them. The average positive AOD anomaly is stronger in the DT275

dataset, about 0.2 over the densest urban areas, than those based on machine learning276

that have anomaly value of about 0.1 over the densest urban areas. Both of the machine-277

learning-based datasets have a good agreement with the AERONET over urban areas.278

To evaluate the possible contribution of surface reflectance to the retrieved AOD,279

we studied the correlation between the MODIS nadir bidirectional reflectance distribu-280

tion function (BRDF)-adjusted surface reflectance from the MCD43A4 data product and281

AOD over the ROI. This surface reflectance dataset is based on atmospheric correction282

that treats the aerosols independently of the DT algorithm. The same daily surface re-283
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Figure 1. Top row: average MODIS AOD at 550 nm during the DRAGON campaign. Middle

row: Average daily MODIS AOD at 550 nm anomaly. Bottom row: Correlation between AOD

and MODIS surface reflectance at 550 nm. Correlation is shown with data aggregated to 1 km

spatial resolution. Left column: Dark Target. Middle column: Fully learned model. Right col-

umn: Post-process corrected Dark Target.
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Figure 2. MODIS-AERONET AOD at 550 nm comparison. Left: Dark Target (DT) 3 km.

Middle: Fully learned model. Right: Post-process corrected Dark Target. Each marker in the

image corresponds to a single collocated MODIS-AERONET overpass. The following metrics

are shown for each model: the number of samples N, the fraction of retrievals within the Dark

Target expected error (DT EE) envelope 0.05 ± 15%, root mean squared error (RMSE), mean

bias (BIAS), and the maximum absolute error (MAX(ABS(ERROR))).

flectance data were used for computing the correlations for all AOD datasets. The cor-284

relations between AOD and surface reflectance at 550 nm is shown in Figure 1. To re-285

duce the noise in the correlation maps, the correlations were computed with data aggre-286

gated to 1 km spatial resolution. The maps showing the correlation between the surface287

reflectance and AOD for DT and post-process corrected AOD do not have a clear con-288

trast between the dense urban and surrounding regions. Both of the machine-learning-289

based datasets generally show opposite signed correlation between the southeast and north-290

west corners of the ROI. The fully learned model results in mainly positive correlation291

on the northwest corner and negative on the southeast corner, and the post-process cor-292

rected AOD behaves the opposite way. We did not find a clear explanation for this be-293

havior. For the fully learned model AOD and surface reflectance correlation, the urban294

areas of Washington D.C. and Baltimore are visible as they have a negative correlation,295

whereas the nearby surrounding regions have a positive correlation. Furthermore, the296

fully learned model AOD was observed to be underestimated in most retrievals over AERONET297

stations associated with the highest surface reflectances. This type of behaviour was not298

observed with DT or the post-process corrected AOD.299
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Regardless of the DRAGON campaign being a unique campaign for high-resolution300

validation of satellite data, the distance between the stations is still not good enough for301

very high resolution evaluation. In this study, regardless of the dense and unique AERONET302

setting in the ROI, the average distance between two AERONET stations was 1.2 km,303

and the average distance of a pixel in our ROI to the nearest AERONET station about304

12 km. As the distances are significantly larger than our pixel size 250 meters, we need305

to visually inspect these retrieval maps and see some features to assess the results. We306

do not observe any very local and clearly distinctive AOD features in any of the aver-307

age AOD datasets. This was expected as aerosols are easily transported and mixed lo-308

cally in the atmosphere and we expected the average AOD fields to be relatively smooth.309

Over cities, the average satellite-based AOD fields are clearly higher than in the surround-310

ing regions in all datasets.311

We used SHapley Additive exPlanations (SHAP) to explain the variables that have312

the largest impact on the correction of AOD (Lundberg & Lee, 2017). We used the Deep-313

Explainer model of the Shap Python library and computed the average SHAP values for314

10000 randomly selected pixels based on set of background values of another 10000 ran-315

domly selected pixels. The results show that, on average, the most significant variables316

to explain the retrieval error correction terms are the AOD at 440 nm, 675 nm, and 550317

nm, the GMTED2010 surface elevation, TOA reflectances at bands 11 and 9, and the318

AOD at 2100 nm. The mentioned variables explain about 60% of the AOD correction319

term. As the DT AOD is typically overestimated, it is expected that AOD input terms320

explain quite a large fraction of the correction. Topographic altitude terms in the list321

for this ROI probably act as a proxy for some other quantity and indicate some indirect322

effect, such as distance from the coastline, not the real dependency of the AOD correc-323

tion to surface altitude. The most important TOA reflectance bands correspond to wave-324

lengths 526-536 nm and 438-448 nm.325

Figure 3 shows AOD time series for the DRAGON ARNLS station and AOD fields326

corresponding to two MODIS overpasses for the Dark Target, the fully learned model,327

and the post-process correction. The DRAGON ARNLS station was one of the 8 sta-328

tions not used in the actual training of the models but the convergence monitoring only.329

The figure shows Dark Target mostly overestimates AOD at this location. Both of the330

machine-learning-based models follow well the changes in AOD over the whole campaign331

duration. The AOD maps corresponding to single overpasses clearly show the coarser332
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3 km resolution of the Dark Target. Both the fully learned and post-process corrected333

models result in smooth AOD fields. Regardless of the high spatial resolution and the334

independent treatment of all pixels in both fully learned and post-process correction ap-335

proaches, the AOD fields are highly consistent and look feasible. There are no single pix-336

els that would have significantly higher or lower AOD than the neighboring pixels. The337

AOD fields do not seem to contain significant noise. The MODIS overpass correspond-338

ing to 24 July 2011 15:45Z has a significant fraction of missing data. This indicates most339

of the ROI was covered by clouds at the satellite overpass time. The maps show that all340

retrieval approaches do work well in the vicinity of clouds and do not show any behav-341

ior correlated for example with the distance from the cloud.342

4 Summary and Conclusions343

In this study, we developed a machine-learning-based post-process correction ap-344

proach to correct and downscale the MODIS AOD. The post-process correction approach345

combines both the physics-based conventional retrieval algorithms and machine learn-346

ing. In the development, we concentrated on downscaling and improving the accuracy347

of the satellite-based AOD. We used the AERONET year 2011 DRAGON campaign over348

the Baltimore - Washington D.C. area to evaluate our approach.349

We compared our post-process corrected AOD to the 3 km MODIS Dark Target350

aerosol data product and the fully-learned machine learning approach in which the machine-351

learning model was trained to carry out the AOD retrieval. The results show that our352

post-process correction approach is suitable for the downscaling of existing aerosol data353

products and results in clearly improved AOD accuracy over both the Dark Target and354

fully learned AOD.355

Accurate high-resolution AOD would be highly beneficial, for example, for the air356

quality applications. Improvements in satellite-based AOD estimates will directly trans-357

late into improved PM2.5 estimates. The post-process corrected AOD serves as a highly358

promising starting point for satellite-based air quality PM2.5 estimates.359

Extension of the post-process correction approach is straightforward to other re-360

trieved quantities and instruments as long as suitable training data is available. We ex-361

pect the post-process correction approach to be highly beneficial, especially for appli-362

cations with scarce training data. With a small number of training data samples, the fully363
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Figure 3. Top row: AOD 550 nm time series for the DRAGON ARNLS station. Middle row:

MODIS overpass on 10 July 2011 at 15:30Z. Left: Dark Target AOD. Middle: Fully learned

AOD. Right: Post-process corrected AOD. Bottom row: MODIS overpass on 24 July 2011 at

15:45Z. Left: Dark Target AOD. Middle: Fully learned AOD. Right: Post-process corrected

AOD. The purple and orange dashed lines on the top time series figure correspond to middle and

bottom row overpasses, respectively. The red diamond symbol on the maps indicates the location

of the AERONET station.
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learned models may generalize poorly and fail with inputs not present in the training364

data. By the support of physics-based retrieval algorithms, we expect better generaliza-365

tion in the prediction of the retrieval error than the retrieval itself and therefore expect366

post-process correction to be a successful approach in many applications.367

5 Open Research368

The AERONET DRAGON 2011 campaign data used in this study are openly avail-369

able and were obtained from the NASA AERONET website https://aeronet.gsfc.nasa370

.gov/. All MODIS data used in this study are open data and were obtained from the371

NASA Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive372

Center (LAADS DAAC) https://ladsweb.modaps.eosdis.nasa.gov/. The GMTED2010373

digital elevation model data is public domain and were obtained from the U.S. Geolog-374

ical Survey Earth Resources Observation and Science (EROS) Center website https://375

www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global376

-multi-resolution-terrain-elevation.377

Software (version 1.0.0 / 24 May 2022) associated with this manuscript to carry378

out and reproduce the data download, pre-processing, downscaling and post-process cor-379

rection and validation of AOD is licensed under MIT and published on GitHub https://380

github.com/TUT-ISI/DRAGONcorr/ (Lipponen, 2022).381

Acknowledgments382

We thank the researcher for establishing and maintaining the AERONET DRAGON383

2011 stations used in this investigation. The MODIS datasets were acquired from the384

Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active385

Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/). We thank the U.S.386

Geological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) for387

the GMTED2010 digital elevation model used in this study. We thank the Stamen De-388

sign for the map tiles used in creating the map figures of this study. This study was funded389

by the European Space Agency EO science for society programme via POPCORN project390

(grant no. 4000131074/20/I-DT). The research was also supported by the Academy of391

Finland, the Finnish Center of Excellence of Inverse Modeling and Imaging (project 336791)392

and Academy of Finland (project 321761).393

–16–



manuscript submitted to Geophysical Research Letters

References394

Bilal, M., Nichol, J. E., Bleiweiss, M. P., & Dubois, D. (2013). A simplified high395

resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed396

surfaces. Remote sensing of environment , 136 , 135–145.397

Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation398

data 2010 (GMTED2010). US Department of the Interior, US Geological Sur-399

vey Washington, DC, USA.400

Eck, T. F., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O’neill, N., . . . Kinne, S.401

(1999). Wavelength dependence of the optical depth of biomass burning, ur-402

ban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres,403

104 (D24), 31333–31349.404

Garay, M. J., Kalashnikova, O. V., & Bull, M. A. (2017). Development and assess-405

ment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth prod-406

uct using AERONET-DRAGON data. Atmospheric Chemistry and Physics,407

17 (8), 5095–5106.408

Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C.,409

. . . Martin, R. V. (2020). Global estimates and long-term trends of fine410

particulate matter concentrations (1998–2018). Environmental Science &411

Technology , 54 (13), 7879–7890.412

Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., & Hsu, N.413

(2013). The collection 6 MODIS aerosol products over land and ocean. Atmo-414

spheric Measurement Techniques, 6 (11), 2989–3034.415

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., . . .416

Talwalkar, A. (2020). A system for massively parallel hyperparameter tuning.417

Proceedings of Machine Learning and Systems, 2 , 230–246.418

Lipponen, A. (2022). MODIS aerosol optical depth spatial downscaling and post-419

process correction for the DRAGON campaign 2011. 24 May 2022 release420

(version 1.0.0) [Software]. Zenodo. doi: 10.5281/zenodo.6575797421

Lipponen, A., Kolehmainen, V., Kolmonen, P., Kukkurainen, A., Mielonen, T.,422

Sabater, N., . . . Arola, A. (2021). Model-enforced post-process correction423

of satellite aerosol retrievals. Atmospheric Measurement Techniques, 14 (4),424

2981–2992.425
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