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Abstract 31 

Satellite, reanalysis, and ocean in situ data are analyzed to evaluate regional, hemispheric and 32 

global mean trends in Earth’s energy fluxes during the first twenty years of the 21st century. 33 

Regional trends in net top-of-atmosphere (TOA) radiation from the Clouds and the Earth’s Radiant 34 

Energy System (CERES), ECMWF Reanalysis 5 (ERA5), and a model similar to ERA5 with 35 

prescribed sea surface temperature (SST) and sea ice differ markedly, particularly over the Eastern 36 

Pacific Ocean, where CERES observes large positive trends. Hemispheric and global mean net 37 

TOA flux trends for the two reanalyses are smaller than CERES, and their climatological means 38 

are half those of CERES in the southern hemisphere (SH) and more than nine times larger in the 39 

northern hemisphere (NH). The regional trend pattern of the divergence of total atmospheric 40 

energy transport (TEDIV) over ocean determined using ERA5 analyzed fields is similar to that 41 

inferred from the difference between TOA and surface fluxes from ERA5 short-term forecasts. 42 

There is also agreement in the trend pattern over ocean for surface fluxes inferred as a residual 43 

between CERES net TOA flux and ERA5 analysis TEDIV and surface fluxes obtained directly 44 

from ERA5 forecasts. Robust trends are observed over the Gulf Stream associated with enhanced 45 

surface-to-atmosphere transfer of heat. Within the ocean, larger trends in ocean heating rate are 46 

found in the NH than the SH after 2005, but the magnitude of the trend varies greatly among 47 

datasets. 48 

 49 

 50 

  51 
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1. Introduction 52 

Earth’s energy flows encompass the exchange of energy between Earth and space and 53 

between Earth’s atmosphere, ocean, lithosphere, and cryosphere. These exchanges occur over a 54 

range of time and space scales and influence weather and climate at any given location and time. 55 

A thorough understanding of Earth’s energy flows is thus necessary in order to project how 56 

regional and global climate will change in response to radiative forcing. Observations of Earth’s 57 

energy flows are essential for evaluating and improving the climate models used to make these 58 

projections. Ideally, the observations must provide accurate descriptions of the mean state of 59 

Earth’s energy flows as well as their variations on seasonal, interannual, and decadal time scales.  60 

Efforts aimed at quantifying Earth’s mean energy flows date back to the early 20th century 61 

(Hunt et al., 1986). So-called “radiation budget diagrams” of global mean values of shortwave and 62 

longwave radiation within the climate system first appeared in 1908 (Abbot and Fowle, 1908 a, 63 

b). These diagrams were later extended to include non-radiative contributions (Dines, 1917; 64 

London, 1957). Energy budget diagrams were further refined following the launch of the first 65 

orbiting satellites, which included instruments designed to observe Earth’s radiation budget (ERB; 66 

House et al., 1986). A key advance was made by Keihl and Trenberth (1997), who used adjusted 67 

global mean top-of-atmosphere (TOA) radiative fluxes from the Earth Radiation Budget 68 

Experiment (ERBE), surface radiative fluxes derived from radiative transfer calculations, surface 69 

latent heat flux inferred from estimates of global mean precipitation, and sensible heat flux 70 

determined as a residual ensuring a global energy balance at the surface. Subsequent studies by 71 

Trenberth et al. (2009), Stephens et al. (2012), Wild et al. (2013) and L’Ecuyer et al. (2015) further 72 

refined the global mean energy budget diagram using increasingly more sophisticated datasets and 73 

analysis techniques. 74 
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Early efforts aimed at quantifying energy transports within the climate system focused 75 

primarily on meridional transports (e.g., Vonder Haar and Oort 1973; Oort and Vonder Haar 1976; 76 

Trenberth 1979) using satellite observations to determine the required total energy transport and  77 

radiosonde data to determine the atmospheric transports. The ocean transport was then computed 78 

as a residual. Alternately, the ocean heat transport was also determined directly using hydrographic 79 

cross sections of temperature and salinity (Bryan, 1982). However, both approaches suffered from 80 

large sampling errors due to lack of data coverage over the oceans. The use of reanalysis combined 81 

with satellite observations of ERB for determining atmospheric and oceanic transports 82 

significantly reduced sampling error (Masuda, 1988; Trenberth and Caron, 2001), leading to more 83 

reliable results compared to the earlier studies. Furthermore, Trenberth and Fasullo (2017) show 84 

that surface fluxes derived as a residual between satellite TOA net downward radiation and 85 

estimates of the divergence of the vertically integrated atmospheric energy from reanalysis 86 

overcome many of the known issues in determining surface flux directly—such as near-surface 87 

meteorological variables and bulk flux parameterizations (Yu et al., 2019). 88 

The combination of ERB satellite and atmospheric reanalysis has been used not only to 89 

study the global mean energy budget and mean meridional transports but also their annual cycles 90 

and land-ocean exchanges (Fasullo and Trenberth, 2008a,b), cross-equatorial heat transports 91 

(Trenberth and Fasullo, 2008; Donahoe et al., 2013; Frierson et al., 2013; Marshall et al., 2013; 92 

Loeb et al., 2015; Mayer et al., 2017; Liu et al., 2020), as well as El Niño–Southern Oscillation 93 

(ENSO) and other interannual variability (Loeb et al., 2014; Mayer et al. 2014; Trenberth and 94 

Fasullo, 2017). Recently, refinements have been made to the formulation of the atmospheric 95 

energy budget to include contributions from vertical enthalpy fluxes at the surface associated with 96 

precipitation and evaporation (Mayer et al., 2017; Trenberth and Fasullo, 2018; Kato et al., 2021). 97 
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It has recently been demonstrated that TOA ERB data from the Clouds and the Earth’s 98 

Energy System (CERES) provide robust trends since 2000 (Loeb et al., 2021). At the same time, 99 

there has been tremendous progress made in atmospheric and ocean reanalysis systems, with new 100 

versions seeing improvements over their predecessors as a result of updates to the underlying 101 

model, assimilation system and input data stream (Dee et al. 2014; Buizza et al. 2018; Hersbach 102 

et al. 2020; Gelaro et al., 2017; Storto et al., 2019; Zuo et al., 2019, 2021).  103 

A question that has yet to be addressed in detail is to what extent can we trust multi-decadal 104 

time-scale trends in different components of Earth’s energy budget and energy flows within the 105 

climate system. Here “trend” refers to the relatively short 20-year period since 2000, which is 106 

likely influenced by both anthropogenic forcing and internal variability (Raghuraman et al., 2021). 107 

We do not expect that these trends are necessarily representative of longer-term trends, though 108 

aspects have been tied to climate change (e.g. Hartmann and Ceppi 2014). Rather our goal is to 109 

investigate the strengths and weaknesses of using observation based data to determine trends in 110 

TOA radiation, atmospheric energy transport, surface flux, and ocean heating rate. The latter is 111 

determined from the tendency in OHCA. While evaluations of atmospheric reanalyses for trends 112 

in atmospheric moisture transport (Trenberth et al., 2011) and latent heat flux (Robertson et al., 113 

2020) have been conducted, similar analyses for other components of Earth’s energy budget are 114 

lacking. 115 

We limit our investigation to satellite observations from CERES, atmospheric and oceanic 116 

reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), and ocean 117 

heating rate calculations benefiting from data collected by the revolutionary Argo array of profiling 118 

floats (mapped alone, mapped in combination with sea-surface height data from satellite 119 

altimeters, and assimilated into reanalyses). The limited number of datasets used enables a more 120 
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focused assessment of the impact data assimilation in reanalysis on trends. In addition, to our 121 

knowledge, ECMWF data are the only source that have been used to calculate the divergence of 122 

lateral atmospheric energy transports using the most recent methodological advances (Mayer et 123 

al., 2021). The datasets used in the analysis are described in Section 2. This is followed by a 124 

description of the methodology applied to the data in Section 3, and results are presented in Section 125 

4. A summary of our main findings are provided in Section 5. 126 

 127 

2. Data 128 

We use TOA and surface radiation fields from CERES and ECMWF reanalyses, total 129 

atmospheric energy transport estimates from those same ECMWF reanalyses, as well as ocean 130 

heating rate estimates derived from two different ECMWF ocean reanalyses, an observational 131 

product combining Argo temperature profiles with sea-surface height maps from satellite 132 

altimeters, and an Argo-only observational product. 133 

2.1 CERES TOA and Surface Radiation Data 134 

Satellite radiation data are from the CERES Energy Balanced and Filled (EBAF) Ed4.1 135 

product (Loeb et al., 2018a), which provides monthly mean TOA and surface shortwave (SW), 136 

longwave (LW), net (NET) radiative fluxes and solar irradiance measurements on a 1°´1° grid 137 

along with imager-derived cloud properties. TOA absorbed solar radiation (ASR) is determined 138 

from the difference between spatially and temporally averaged monthly solar irradiances and 139 

reflected SW fluxes. The solar irradiances are determined from time-varying instantaneous total 140 

solar irradiance measurements from various sources (Loeb et al., 2018). Satellite incoming and 141 

outgoing radiative fluxes are presently not at the level of accuracy required to resolve TOA fluxes 142 

to a few tenths of a Wm-2 in an absolute sense (Loeb et al., 2018). However, CERES TOA fluxes 143 
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are highly precise as the instruments are very stable (Loeb et al., 2016; Loeb et al., 2018b; Shankar 144 

et al., 2020; Loeb et al., 2021). The EBAF product uses an objective constrainment algorithm 145 

(Loeb et al., 2009) to adjust SW and LW TOA fluxes within their ranges of uncertainty to remove 146 

the inconsistency between average global net TOA flux and heat storage in the earth–atmosphere 147 

system, determined primarily from ocean heat content anomaly (OHCA) data (Johnson et al., 148 

2016). Use of this approach to anchor the satellite EEI to the in situ EEI does not affect the 149 

variability and trends in the data. 150 

We also use TOA fluxes from the Terra and Aqua CERES SSF1deg Ed 4.1 products 151 

(Doelling et al., 2013; Loeb et al., 2018a) in order to compare CERES fluxes from different satellite 152 

platforms. Unlike CERES EBAF, which combines CERES instruments on different satellites, 153 

SSF1deg is determined separately for each satellite CERES instruments fly on. The CERES 154 

SSF1deg product is derived directly from the CERES Single Scanner Footprint TOA/Surface 155 

Fluxes and Clouds (SSF) Level 2 product, which consists of instantaneous footprint-level fluxes.  156 

Two sources of surface radiation are considered. The first is from the CERES EBAF Ed4.1 157 

product (Kato et al., 2018) and the second is Aqua-only SYN1deg-Month. EBAF Ed4.1 surface 158 

fluxes are derived by making adjustments to the inputs used to compute all-sky and clear-sky 159 

surface fluxes in SYN1deg Ed4.1 (Rutan et al., 2015). The adjustments ensure that computed and 160 

EBAF-observed TOA radiative fluxes agree to within observational uncertainty. The modified 161 

inputs are then used to derive surface radiative fluxes that are self-consistent with the observed 162 

EBAF TOA fluxes. The SYN1deg surface radiative fluxes are determined from radiative transfer 163 

model calculations initialized using cloud inputs from the Moderate Resolution Imaging 164 

Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellite platforms and hourly 165 

geostationary (GEO) imager data between 60°S-60°N, atmospheric state inputs from the Goddard 166 
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Earth Observing System (GEOS), version 5.4.1, reanalysis (Rienecker et al. 2008), surface albedo 167 

inputs from Rutan et al. (2009), and aerosol inputs based upon an updated version of the 168 

assimilation system described in Collins et al. (2001).  169 

Because trends in surface radiative fluxes derived using cloud information from GEO 170 

imagers are impacted by changes in the design and quality of the GEO instruments over the CERES 171 

period (Doelling et al., 2013; Kato et al., 2018), we also determine surface fluxes using a modified 172 

version of SYN1deg, which we refer to as Aqua-only SYN1deg-Month. This version uses the same 173 

atmospheric state and surface property inputs as Terra+Aqua+GEO SYN1deg-Month, but replaces 174 

the GEO cloud properties with those derived from MODIS-Aqua only (Minnis et al., 2020). 175 

Instantaneous MODIS cloud retrievals are averaged into 1°´1° grid boxes. MODIS-Aqua provides 176 

cloud properties twice a day for most of non-polar grid boxes. Hourly daytime cloud properties for 177 

a grid box are derived by interpolating daytime cloud properties from MODIS across days within 178 

a month for the grid box (Doelling et al, 2013). Hourly nighttime properties for a grid box are 179 

derived in a similar manner using nighttime MODIS cloud properties. In addition, daytime or 180 

nighttime monthly mean cloud properties are used for all hours before the first MODIS 181 

observations in the month and after the last MODIS observations in the month. That is, there is no 182 

interpolation of cloud properties across different months. In addition, the MATCH aerosol 183 

transport model used in Aqua-only SYN1deg-Month only assimilates aerosol optical thickness 184 

derived from MODIS Aqua as opposed to both Terra and Aqua for Terra+Aqua+Geo SYN1deg-185 

Month. Aqua-only surface net shortwave and longwave flux trend plots are determined using 186 

anomalies for August 2002-February 2020 since that is the period for which Aqua-only SYN is 187 

available.  188 
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2.2 ERA5 and Integrated Forecasting System (IFS) AMIP 189 

ERA5 is the most recent atmospheric reanalysis effort by ECMWF (Hersbach et al., 2020). 190 

It provides global data on an N320 Gaussian grid (equivalent to 0.288° spatial resolution) at 1-191 

hourly temporal resolution in 137 atmospheric levels up to a pressure of 0.01 hPa. ERA5 is 192 

currently available from 1979 onward and consists of analyses and shortrange forecasts. The 193 

analyses are a physically consistent blend of observations and a short-range forecast based upon 194 

the previous analysis. Shortrange forecasts are initialized from the analyzed fields daily at 0600 195 

and 1800 UTC. ERA5 uses forcing files from CMIP5 through 2005 and Representative 196 

Concentration Pathways 2.6 (RCP2.6) for 2006-2020 (Hersbach et al., 2015, 2020).  197 

Here we use profiles of hourly ERA5 analyses of atmospheric wind, temperature, and 198 

humidity to calculate vertically integrated divergence of total atmospheric energy transport 199 

(TEDIV; Section 3.1). We also consider ERA5 short-term forecasts of TOA and surface radiative 200 

fluxes as well as surface turbulent heat fluxes for a check on model fidelity.  201 

The IFS AMIP is a continuous atmospheric model integration with a similar setup as 202 

ERA5, but uses a slightly newer model cycle. It is initialized in March 2000 and integrated until 203 

the end of February 2020 without data assimilation, but with prescribed SSTs and sea ice. 204 

2.3 Ocean Data 205 

The Ocean and sea-ice ReAnalyses System 5 (ORAS5) (Zuo et al., 2019) is a reconstruction 206 

of ocean and sea-ice states derived from an ocean-sea-ice coupled model driven by atmospheric 207 

surface forcing and constrained by ocean observations using data assimilation (Balmaseda et al., 208 

2015). It consists of a behind-real-time component of the OCEAN5 ocean reanalysis-analysis 209 

system at ECMWF. The ocean model and data assimilation method are kept frozen during the 210 

production of the reanalysis. The Ocean ReAnalysis Pilot system-6 (ORAP6) is a new ocean and 211 
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sea-ice reanalysis system that has been developed based on the ECMWF operational OCEAN5 212 

system (Zuo et al., 2021). Despite sharing the same model configurations as OCEAN5, ORAP6 213 

uses updated atmospheric forcing (based on ERA5) and is produced with the most up-to-date 214 

reprocessed observation datasets. The ORAP6 data assimilation system has been updated to 215 

include a new flow-dependent SST nudging scheme, and to assimilate L3 sea-ice concentration 216 

data, among others. ORAP6 uses 3DVar to assimilate in-situ temperature and salinity profiles from 217 

Argo, Moorings, XBTs, shipboard CTDs, gliders, and marine mammals, satellite sea-level 218 

anomaly and sea-ice concentration data, as well as SST and sea-surface salinity (SSS) nudging in 219 

the surface (Zuo et al., 2021). Two sets of ocean data from ORAP6 system have been used in this 220 

study. ORAP6.1 is the first version of ORAP6 reanalysis that includes assimilation of all 221 

observations. We also consider a control version of ORAP6.1 called “ORAP6-ctrl”, which uses 222 

the same model setup and atmospheric forcing (from ERA5) as ORAP6.1, but only uses SST and 223 

SSS nudging at the surface. The difference between ORAP6.1 and ORAP6-ctrl thus indicates the 224 

impact of data assimilation on ocean heating rates. 225 

In addition to the above ocean reanalyses, we determine ocean heating rates from two Argo-226 

based datasets. The first is an Argo-only time series obtained from the combination of a 10/2021 227 

update of the Roemmich and Gilson (2009) climatology and the Asia-Pacific Data-Research 228 

Center’s Argo gridded 3°x3° monthly product on standard depth levels, documented online (at 229 

http://apdrc.soest.hawaii.edu/projects/Argo/index.php). The second Argo-based dataset is an 230 

updated version of the 0–2,000 m ocean heat uptake estimate used in Loeb et al. (2021), which is 231 

based upon Argo in-situ and satellite altimetry data. It uses local correlations between sea-surface 232 

height and ocean heat content anomalies to employ satellite altimetry data as a first guess at ocean 233 

heat content where (or when) in situ temperature data are sparse (Willis et al., 2003). 234 



 11 

3.0 Methodology 235 

3.1 Inferred Surface Total and Turbulent Heat Fluxes 236 

The surface energy flux (𝐹!) defined here as positive downwards is inferred using the residual 237 

method from the atmospheric energy budget (Trenberth and Fasullo, 2017; Mayer et al., 2017; Liu 238 

et al., 2020) as follows: 239 

𝐹! = 𝐹"#$ − ∇ ∙ 𝐹$ − 𝐴𝐸𝑇 (1) 240 

where 𝐹"#$ is the net downward radiation at the TOA, ∇ ∙ 𝐹$ is the divergence of lateral 241 

atmospheric energy transports (TEDIV), and 𝐴𝐸𝑇 is the vertically integrated atmospheric energy 242 

tendency. We use CERES EBAF Ed4.1 to determine 𝐹"#$. The ∇ ∙ 𝐹$ term is computed from 243 

hourly ERA5 analyses of atmospheric wind, temperature, and humidity profiles using an improved 244 

budget formulation that treats lateral and vertical moisture enthalpy fluxes in a consistent manner 245 

(Mayer et al., 2017) and ensures mass consistency following J. Mayer et al. (2021). Maps of ∇ ∙ 𝐹$ 246 

are smoothed using a tapered filter truncating at T42. The 𝐴𝐸𝑇 term is calculated from differences 247 

of analyses of the total atmospheric energy at the first of each month, but AET is small on the time 248 

scales considered.  249 

In addition to the estimates described above, availability of ERA5 short-term forecasts and 250 

IFS AMIP data provides two additional estimates of 𝐹"#$ and 𝐹! and two alternative estimates of 251 

∇ ∙ 𝐹$. For ERA5, we use short term forecasts and subtract 𝐹"#$ and 𝐹! (Eq 1). Neglecting the 252 

effect of assimilation increments in this estimate will lead to differences with the divergence 253 

estimate based on analysed state quantities (J. Mayer et al 2021). The short-term ERA5 forecasts 254 

are initialized from analyses that are constrained by observations and in that sense are still 255 

influenced by observations. The divergence estimate from short-term forecasts can thus be viewed 256 

as falling somewhere between an analysis-based estimate and an estimate from a free-running 257 
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model. The difference between divergence trends estimated from analyses and short-term forecasts 258 

provides insight into the degree to which the model can represent observed changes in the 259 

atmosphere. It may also reveal areas where the model damps out potential spurious jumps from 260 

changes in the observing system. The third divergence estimate is similar to the one based on short-261 

term forecasts but uses IFS AMIP data. Trends in that estimate reflect changes the model captures 262 

due to changes in the boundary conditions like SSTs and sea ice. 263 

We determine “inferred” surface turbulent heat fluxes from: 264 

𝑄! = 𝐻% + 𝐻! = 𝐹! − 𝑅! (2) 265 

where 𝑄! is the sum of surface latent (𝐻%) and sensible (𝐻!) heat flux and 𝑅! is net downward 266 

radiation at the surface. We determine 𝑅! from CERES. 267 

3.2 Trends 268 

Trends are determined from deseasonalized monthly anomalies using least squares linear 269 

regression. To determine trend uncertainties, we first calculate residuals of the linear regression fit 270 

to a monthly anomaly time series. Next, we calculate the autocorrelation function (ACF) of the 271 

residuals and assess whether or not the ACF at any lag is significant by comparing it with 272 

confidence intervals given by: 273 

𝐶𝐼& = ±𝑡'𝜎& (3) 274 

where 𝑡' is the student-t statistic at significance level 𝛼 and 𝜎& is the standard deviation at lag 𝑘 275 

derived using the formulation in Mélard and Roy (1987): 276 

𝜎&( =
)
*
41 + 2∑ 𝜌+(&,)

+-) 9 (4) 277 

where N is the number of samples and 𝜌+  is the ACF at lag 𝑖. If 𝜌+ at any lag lies outside the 278 

confidence intervals in Eq. (3), we account for autocorrelation in determining the trend uncertainty 279 

by calculating the effective sample size following Gelman et al. (2013):  280 
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𝑁. =
*

)/(∑ 1!"
!#$

 (5) 281 

We determine 𝑚 as the first lag satisfying both 𝜌2/) < 0 and 𝜌2/) + 𝜌2/( < 0. This criterion 282 

minimizes uncertainty associated with sampling noise in the ACF. If none of the 𝜌+ fall outside the 283 

confidence intervals, we assume the effective sample size (𝑁.) is equal to N. Once 𝑁. is known, 284 

Eqs. 3-5 in Santer et al. (2000) are used to calculate the trend uncertainty. While trend uncertainties 285 

are evaluated using 2.5–97.5% confidence intervals, we set 𝛼=0.8 in Eq. (3) (corresponding to 10-286 

90% confidence intervals) in order to use a less stringent test for autocorrelation in the data. In 287 

practice, we generally find statistically significant autocorrelation for monthly data but that is not 288 

always the case when using annual mean data with a short 20-year record. 289 

4.0 Results 290 

4.1 Top-of-Atmosphere 291 

Regional trends in TOA net radiation for 03/2000-02/2020 show marked differences 292 

between CERES, ERA5 and IFS AMIP (Figs. 1a-c). As noted in prior studies (Myers et al., 2018; 293 

Loeb et al., 2018b, 2020), CERES shows pronounced positive trends in net TOA flux over the 294 

Eastern Pacific Ocean off of North America. This increase is driven mainly by an ASR increase 295 

associated with a reduction in low cloud cover, which in turn is due to increasing SSTs (Myers et 296 

al., 2018; Loeb et al., 2018b; Mayer et al., 2018). In contrast, ERA5 shows negative net TOA flux 297 

trends throughout most of the Eastern Pacific Ocean region (Fig. 1b), while IFS AMIP shows 298 

weaker positive trends and stronger positive trends along the equator (Fig. 1c). That neither ERA5 299 

nor IFS AMIP capture the large positive trend off the west coast of North America observed by 300 

CERES may suggest that the low cloud response to SST change is too weak in ERA5 and IFS 301 

AMIP. In a similar comparison between CERES and seven CMIP6 models run in AMIP mode 302 

(Loeb et al., 2020), most of the models showed increases in net TOA flux in this region but the 303 
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magnitude of the change varied amongst the models. Over the Arctic, CERES shows weak trends 304 

in net TOA flux—the result of a cancellation between larger trends in ASR and outgoing longwave 305 

radiation (not shown). Net TOA flux trends over the Arctic from IFS AMIP are closer to CERES 306 

than ERA5, which shows strong negative trends. All three products show positive net TOA flux 307 

trends along the climatological Arctic sea ice edge, where the net radiative effect of the retreating 308 

sea ice is visible as noted in Hartmann and Ceppi (2014). ERA5 and IFS AMIP show better 309 

agreement with CERES over the Atlantic off the coast of North America, to the southwest of Spain 310 

and in the west-east trend dipole in the Indian Ocean around 20°-30°S. There is also very good 311 

agreement over the sea ice regions off the coast of Antarctica. 312 

Average southern hemisphere (SH) and northern hemisphere (NH) TOA fluxes from 313 

CERES for 03/2000-02/2020 show hemispheric symmetry in ASR, stronger LW cooling in the 314 

NH, and a larger net heat uptake in the SH (Table 1). The hemispheric asymmetry in net TOA flux 315 

requires a 0.17 PW SH-to-NH cross-equatorial heat transport by the ocean-atmosphere system for 316 

energy budget closure (Donohoe et al., 2013; Frierson et al., 20013; Marshall et al., 2013; Loeb et 317 

al., 2016; Liu et al., 2020). With the exception of NH ASR, the ERA5 ASR and -OLR values in 318 

Table 1 fall within the 95% uncertainty of CERES (Loeb et al., 2018a). However, ERA5 mean net 319 

fluxes are about half as large as CERES in the SH and more than nine times larger in the NH, while 320 

the global mean difference is only 0.05 Wm-2. The ERA5 hemispheric asymmetry in mean net 321 

TOA flux implies a -0.006 PW SH-to-NH cross-equatorial heat transport by the ocean-atmosphere 322 

system, which is in marked contrast to CERES. For IFS AMIP, the discrepancy with CERES is 323 

even greater as the hemispheric contrast in net TOA flux implies a -0.22 PW SH-to-NH cross-324 

equatorial heat transport, and the global mean net flux is negative, both of which are unrealistic. 325 

The latter is related to model inconsistencies in the version of the IFS used (see Roberts et al. 326 
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2018). A possible reason for the inconsistent hemispheric values could be due to an unrealistic 327 

representation of how clouds are distributed between the hemispheres in ERA5 and IFS AMIP. 328 

Stephens et al. (2015) showed that increased reflection by clouds in the SH offsets greater 329 

reflection by the larger land mass in the NH, resulting in hemispheric symmetry in albedo.  330 

Anomaly standard deviations and trends in ASR, -OLR and NET are fairly symmetric 331 

between the hemispheres for CERES (Table 1). The hemispheric trends in CERES between SH 332 

and NH differ by only 0.07 Wm-2 per decade for ASR, 0.01 Wm-2 per decade for -OLR, and 0.08 333 

Wm-2 per decade for NET, implying an insignificant 0.02±0.1 PW change to the combined ocean-334 

atmosphere cross-equatorial heat transport over the past 20 years. We note that this does not 335 

preclude the possibility of strong but opposing trends in atmospheric and oceanic transport.  In 336 

contrast to CERES, none of the ERA5 hemispheric and global mean trends in TOA radiation are 337 

significant at the 95% level (Table 1). Monthly anomaly standard deviations from ERA5 differ by 338 

-22% to -7% relative to CERES. Accordingly, ERA5 monthly anomalies track CERES (Fig. S1), 339 

but systematic differences are apparent in ASR and -OLR prior to 2003, and in ASR and NET 340 

after 2012. Systematic differences between ERA5 and IFS AMIP for ASR and NET are also 341 

apparent after 2012 (Fig. S2). This is likely due to changes in the input data stream in ERA5. After 342 

removing the trends in the hemispheric and global monthly mean anomaly time series, the 343 

correlation coefficient between ERA5 and CERES is 0.80 for ASR and 0.9 for -OLR and NET. 344 

Anomaly standard deviations for IFS AMIP are weaker than ERA5 Forecasts and CERES, but 345 

trends are in better agreement with CERES, albeit much smaller in magnitude. 346 

To examine the robustness of the CERES trends, we compare SH, NH and global trends 347 

between CERES instruments flying aboard the Terra and Aqua satellites (Fig. 2). The CERES data 348 

products in this comparison are the SSF1deg-Terra and SSF1deg-Aqua products, which are used 349 
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as input to CERES EBAF (Loeb et al., 2018a). Importantly, in-orbit calibration  adjustments with 350 

time for CERES instruments on Terra and Aqua are entirely independent of one another. The 351 

CERES Terra net TOA flux trends as a function of record length from 03/2000 onwards for SH, 352 

NH and global (Figs. 2a-c) show large fluctuations for record lengths shorter than ten years due to 353 

internal variability, but patterns of change remain fairly stable for longer record lengths. Global 354 

and NH trends exceed the 95% significance level for record lengths greater than 12 years, while it 355 

takes 17 years in the SH. Trend differences between Terra and Aqua are smaller than 0.05 Wm-2 356 

per decade and fall within the 95% significance level for 07/2002-02/2020 (Figs. 2d-f). The Terra 357 

ASR trends (Figs. S3a-c) decrease rapidly with record length early in the record but begin to 358 

increase after the record length reaches 14 years, which corresponds to when the Pacific Decadal 359 

Oscillation shifted from negative to positive (Loeb et al., 2021). ASR trends from Terra and Aqua 360 

are within 0.04 Wm-2 per decade of one another for the full period, and remain below the 95% 361 

significance level for most shorter record lengths (Figs. S3d-f). Similarly, -OLR trends from Terra 362 

and Aqua differ by 0.06 Wm-2 per decade of one another, which is also within the 95% significance 363 

level (Figs. S4d-f). 364 

Further validation of the CERES record is provided in Loeb et al. (2021), who compared 365 

CERES EBAF variations in global mean net TOA flux with estimates of planetary heat uptake 366 

from in situ data for mid-2005 to mid-2019. The in situ data used is derived by an inventory of the 367 

rates of changes of energy stored in all components of the climate system, with the primary 368 

contribution from differences of overlapping annual 0–2,000 m ocean heat content anomalies from 369 

Argo float profiles. As shown in Loeb et al. (2021), the trend in the difference between the CERES 370 

and in situ data is 0.068±0.29 W m−2 decade−1, which is similar in magnitude to the comparison 371 

between CERES Terra and Aqua. Independent analyses of the CERES data by Stephens et al. 372 
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(2022) and Datseris and Stevens (2021) confirm our findings. Additionally, Hakuba et al. (2021) 373 

use a combination of altimetric and gravimetric observations from GRACE to find a similar trend 374 

in EEI. These results stand in marked contrast with Matthews (2021), who claim that there are 375 

“spurious calibration drifts” in the CERES record based upon an analysis of lunar reflectance 376 

measured by CERES. A direct comparison between the adjusted CERES Terra reflected SW 377 

values proposed by Matthews (2021) and the official CERES SSF1deg Ed4.1 product reveals that 378 

Matthews (2021) made the largest “corrections” to the CERES record (reaching -0.8 Wm-2) prior 379 

to when CERES Terra even started making lunar observations in 10/2002 (Fig. S5a). If we restrict 380 

the comparison only to dates when CERES scans of the moon exist (Fig. S5b), there is virtually 381 

no trend difference between the two records (trend difference of -0.012 Wm-2 per decade). The 382 

CERES lunar data thus confirms that CERES onboard calibration sources are performing 383 

nominally.  384 

4.2 Within-Atmosphere Transport 385 

Trends in TEDIV for 2000/03-2020/02 from ERA5 Analysis, ERA5 Forecasts and IFS 386 

AMIP are provided in Figs. 3a-c. Regions with positive TEDIV trends correspond to increasingly 387 

divergent lateral energy fluxes, and negative trends correspond to convergent fluxes. The trends 388 

based on ERA5 forecasts and IFS-AMIP are similar to those from ERA5 Analysis over ocean, 389 

suggesting that the ERA5 Analysis patterns are not a spurious signal from changes in the observing 390 

system. All three results show that the magnitudes of TEDIV trends generally exceed those for net 391 

TOA flux (Figs. 1a-c). Large positive trends in TEDIV are observed over the eastern Pacific Ocean 392 

to the north and south of the Intertropical Convergence Zone (ITCZ), where trends are weakly 393 

negative but intensify towards the west over the Maritime Continent. Trends over the Indian Ocean 394 

and North Atlantic are generally negative, except over the Gulf Stream, where a strong positive 395 
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trend is apparent in all three results. Except for the area of positive TEDIV trends stretching from 396 

the Barents and Kara Seas, trends over the Arctic Ocean are generally negative, but the magnitude 397 

of the trends differs between these three results, with ERA5 forecasts showing the strongest 398 

negative trends. Over the Barents and Kara Seas, the increase in divergence is likely due to sea ice 399 

loss, which leads to enhanced surface-to-atmosphere heat flux and divergence of energy. 400 

Over land, trends for ERA5 analysis are notably greater in magnitude compared to both 401 

ERA5 forecast and IFS-AMIP. This points to a greater uncertainty associated with TEDIV derived 402 

directly from atmospheric profiles over land. Before computing TEDIV, we perform a vertically 403 

uniform correction to the winds to achieve mass conservation. As such, there is no correction for 404 

errors in the vertical structure of the wind divergence (as the vertical error structure is hard to 405 

estimate), which over topography are likely larger (also arising from numerical noise). TEDIV 406 

also contains vertical covariances between atmospheric energy and wind divergence (i.e., the 407 

vertical error structure of the wind divergence will project on TEDIV). Since the wind divergence 408 

errors likely have trends as well (e.g. from changes in the observing system), we see noisy trend 409 

patterns in TEDIV over land. While a substantial fraction of the noisy patterns seen from the ERA5 410 

fields is related to numerical noise over topography, some of the non-zero trends over land are 411 

similar in ERA5 analysis and ERA5 forecasts (e.g. over central Africa), which suggests spurious 412 

jumps in the observing system in that area affecting both analyses and short-term forecasts. Some 413 

of the features of TEDIV trends over land may also be realistic and balance observed trends in net 414 

TOA flux, such as the negative trends over northern China (compare Figs 3b and 1a). 415 

Despite large regional trends in TEDIV, hemispheric average trends are near zero for 416 

ERA5 Analysis (Table 2). Global TEDIV trends based on analyses should be exactly zero. This is 417 

not the case for ERA5 forecasts since the effect of assimilation increments are not included. Global 418 
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trends in IFS-AMIP TEDIV should also be close to zero since the model conserves energy (to a 419 

relatively high degree). 420 

4.3 Surface 421 

Trend maps of 𝐹! using the Inferred method (Eq. 1), ERA5 forecasts and IFS AMIP are 422 

provided in Figs. 4a-c. In the latter two cases, 𝐹! is determined from the sum of 𝑅!, 𝐻%, and 𝐻!. 423 

Comparing Figs. 3a and 4a, it is evident that regional trend patterns and magnitudes in 𝐹! are 424 

mainly determined by those in TEDIV. This is consistent with what previous studies have shown 425 

for spatial patterns in climatological mean 𝐹! (Liu et al. 2020; Mayer et al. 2017; Trenberth and 426 

Fasullo 2017). As a consequence, trends for the Inferred method over land are largely spurious 427 

(see Section 4.2). 428 

Over ocean, large-scale patterns of surface flux trends from the three methods are similar 429 

over the Southern Ocean, Southern Indian Ocean, Barents Sea, and the Kuroshio Current and Gulf 430 

stream. Trends over the Gulf Stream are particularly noteworthy, as all three results show large 431 

negative trends, implying increased surface-to-atmosphere heat flux. In this region, the 432 

climatological mean 𝐹! is also strongly negative since the atmosphere is supplied energy from 433 

warm water masses transporting energy poleward (Trenberth and Fasullo, 2017; Mayer et al., 434 

2021). We also find large negative trends for Inferred (Fig. 4a) and ERA5 forecasts (Fig. 4b) over 435 

the East Pacific off of North and South America and a line of positive trends along the equatorial 436 

Pacific stretching from the Maritime Continent to Central America. All three products show 437 

significant positive trends in the Atlantic between the equator and ~40N. The trends are generally 438 

more pronounced for Inferred than for ERA5 Forecasts. In contrast, this trend pattern is less 439 

evident for IFS AMIP (Fig. 4c), which entirely misses the positive trends along the equator.  440 
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In order to further decompose trends in 𝐹! in terms of radiative and non-radiative 441 

components, we compute trends in net total radiative flux at the surface (𝑅!) from CERES (Fig. 442 

5a) and determine the “inferred” surface turbulent flux (𝑄!) trends based upon Eq. (2) in Fig. 6a. 443 

These are compared with regional trends in 𝑅! and 𝑄! for ERA5 Forecasts (Figs. 5b and 6b). In 444 

Fig. 6b, 𝑄! is obtained directly from the sum of 𝐻% and 𝐻!. While the trend patterns in 𝑅! are 445 

similar between CERES and ERA5 Forecasts, their magnitudes are quite different. Large 446 

differences are evident over the west tropical Pacific Ocean, where ERA5 Forecasts shows large 447 

positive trends that are absent in CERES. Regional trend patterns in 𝑄! are similar over ocean, but 448 

the inferred method produces generally larger values. There is good agreement over the eastern 449 

Pacific off the west coast of the Americas, where trends are predominantly negative. Trends in 𝑄! 450 

are generally much larger than those in 𝑅!, suggesting a dominant role for surface turbulent heat 451 

flux over net surface radiation at regional scales.  452 

Trends in surface turbulent flux from the SeaFlux V3 (Roberts et al., 2020) and OAFlux 453 

V3 (Yu and Weller, 2007) products for 08/2002-07/2018 (Figs. S6a-b) are generally in poor 454 

agreement everywhere. The lack of agreement is surprising since SeaFlux and OAFlux are 455 

dedicated surface turbulent heat products. According to Robertson et al. (2020), trends from these 456 

products are less reliable due to problems with wind speed retrievals from Special Sensor 457 

Microwave Imager/Sounder satellite sensors and excessive upward trends in Optimal Interpolation 458 

Sea Surface Temperature (OISST) data. 459 

4.4 Within Ocean 460 

A benefit of ocean reanalysis is that it provides continuous coverage of the global oceans 461 

and therefore can resolve higher frequency variability of ocean heating rate than methods that rely 462 

primarily on in situ data like Argo. We compare ORAS5, ORAS6.1 and ORAS6-ctrl global 463 
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monthly anomalies in full-depth global ocean heating rate for 03/2000-02/2020 (Figs. 7a-c) and 464 

the hemispheric and global averages, anomaly standard deviations and trends (Table 3). Anomalies 465 

for ORAS5 and ORAP6.1 are similar and show a correlation of 0.5. In contrast, ORAP6-ctrl shows 466 

much weaker variability than the other two reanalyses, with a monthly standard deviation that is 467 

38% smaller than ORAP6.1, and a correlation with ORAP6.1 of only 0.31. This implies that 468 

assimilating more data significantly increases higher-frequency variability. ORAP6.1 shows a 469 

sudden decrease around 2005 (Fig. 7b) that is not apparent in ORAS5 or ORAP6.1-ctrl. This dip 470 

causes the trend in ORAP6.1 for 07/2005-12/2019 (Table 4) to be much larger than for 03/2000-471 

02/2020 (Table 3). The dip in ORAP6.1 is likely caused by the model bias correction method. 472 

Prior to 2005, ORAP6.1 heating rates are similar to ORAS5 but ocean temperatures are much 473 

warmer than ORAS5 in the Southern Ocean. When Argo data are assimilated, the ORAP6.1 data 474 

assimilation increment cools the ocean, causing a sudden decrease in ocean heating rate around 475 

2005. This problem illustrates one of the greatest challenges in ocean reanalyses: how to balance 476 

the temporal consistency of the model simulation with the increased accuracy of the state 477 

estimation in the data rich periods. This underscores the need for improved treatments of model 478 

error in reanalyses. 479 

Agreement among global annual variations in CERES net TOA flux and ocean heating rate 480 

for the three ocean reanalyses, Argo-only, and combined Argo and satellite altimetry data 481 

(Argo+SA) is mixed (Figs. 8a-e). Of the three reanalyses (Figs. 8a-c), ORAP6-ctrl provides the 482 

best agreement with CERES prior to 2013. After 2013, ORAP6-ctrl ocean heating rates are smaller 483 

than those for ORAS5 and ORAP6.1, which show better agreement with CERES for that period. 484 

This suggests that surface forcing and SST information alone are sufficient to estimate ocean 485 

heating rate variability during some periods, but in other periods subsurface information may be 486 
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necessary. When only Argo data are considered, annual variations are very noisy (Fig. 8d). The 487 

variability is much greater for 0-2000 m than 0-700 m, a finding also noted in Trenberth et al. 488 

(2016). The noise is significantly reduced when Argo and satellite altimetry data are combined 489 

(Fig. 8e). Nevertheless, the Argo-only and Argo+SA global trends are similar to CERES while 490 

ORAP5 and ORAP6-ctrl show weaker trends (Tables 1 and 4). As noted earlier, ORAP6.1 trends 491 

are much larger due to the discontinuity around 2005.  492 

With the exception of ORAP6.1, all of the datasets show larger hemispheric mean ocean 493 

heating rates for the SH than the NH for 07/2005-12/2019 (Table 4). Overall, ORAS6-ctrl shows 494 

the best agreement with Argo and Argo+SA. For ORAP6.1, the SH heating rate is a factor of 2.5 495 

smaller than the NH value, and a factor of 3 smaller compared to the SH values from the other 496 

datasets in Table 4.  497 

A general consensus amongst all of the ocean datasets is a tendency for larger trends in 498 

ocean heating rate in the NH than the SH after 2005 (Table 4), but there is poor agreement on the 499 

magnitude of the trends. This makes determination of trends in ocean heat transport derived as a 500 

residual between net surface flux and ocean heating rate highly uncertain.  501 

5. Summary  502 

 This study uses satellite and atmospheric and oceanic reanalysis datasets to address the 503 

following question: To what extent can we trust observed 20-year trends in different components 504 

of Earth’s energy budget and energy flows within the climate system”. We focus on trends after 505 

2000 in TOA radiation, TEDIV, surface flux, and within-ocean heating rate using satellite 506 

observations from CERES and different versions of atmospheric and oceanic reanalysis datasets 507 

from ECMWF. As the trends are likely influenced by both anthropogenic forcing and internal 508 

variability, there is no expectation that these are solely representative of longer term trends.  509 
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Regional trends in TOA net downward radiation from CERES, ERA5 and IFS AMIP are 510 

markedly different over the Eastern Pacific Ocean off of North America, where large increases in 511 

SST have been observed during the CERES period. Whereas CERES observes large positive 512 

trends associated with a reduction in low cloud cover, ERA5 shows negative net TOA flux trends 513 

throughout most of the Eastern Pacific Ocean region and IFS AMIP shows weaker positive trends. 514 

These results suggest that the low cloud response to SST change may be too weak in ERA5 and 515 

IFS AMIP. ERA5 and IFS AMIP show better agreement with CERES over the Atlantic off of 516 

North America and Europe, the Indian Ocean between 20°-30°S, and over sea ice regions off the 517 

coast of Antarctica. Trends are generally inconsistent over the Arctic Ocean, except in areas near 518 

the sea ice edge that are associated with steep declines in sea ice concentration. We find that 519 

CERES global mean trends appear to be robust based upon multiple lines of evidence, including 520 

direct comparisons between CERES instruments on Terra and Aqua (consistent to < 0.1 W m-2 521 

decade-1), comparisons with in-situ measurements from Argo and results that use a combination 522 

of altimetric and gravimetric observations from GRACE. 523 

CERES trends in net TOA flux between the SH and NH are very close to one another, 524 

implying an insignificant 0.02±0.1 PW change to the combined ocean-atmosphere cross-equatorial 525 

heat transport over the first 20 years of the 21st century. ERA5 and IFS AMIP also show 526 

insignificant hemispheric trend differences, but their SH, NH and global mean trends are smaller 527 

than CERES. Surprisingly, ERA5 climatological average net TOA fluxes are approximately half 528 

as large as CERES in the SH and more than nine times larger in the NH, while the global mean 529 

difference is only 0.05 Wm-2. The ERA5 and IFS AMIP hemispheric asymmetries in mean net 530 

TOA flux imply a NH-to-SH cross-equatorial heat transport by the ocean-atmosphere system. That 531 

is in marked contrast to CERES, which shows a 0.17 PW SH-to-NH cross-equatorial heat 532 
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transport, consistent with expectation (Frierson et al., 2013). A possible reason for the inconsistent 533 

hemispheric values in ERA5 and IFS AMIP could be due to an unrealistic representation of how 534 

clouds are distributed between the hemispheres.  535 

We compare TEDIV calculated directly from ERA5 analysed profiles of temperature, 536 

humidity and winds (ERA5 Analysis) with TEDIV obtained as a residual between TOA and 537 

surface fluxes from ERA5 short-term forecasts and IFS AMIP. Trends based on ERA5 forecasts 538 

and IFS AMIP are similar to those from ERA5 Analysis over ocean, suggesting that the ERA5 539 

Analysis patterns are not a spurious signal from changes in the observing system. Regional trends 540 

in 𝐹! are determined mainly by those in TEDIV, and therefore exhibit similar features. We find 541 

consistent negative trends over the Gulf Stream, implying increased surface-to-atmosphere heat 542 

flux. Increases surface-to-atmosphere heat flux are also observed over large portions of the eastern 543 

Pacific Ocean off the coasts of North and South America. While trend patterns in net surface 544 

radiation are similar between CERES and ERA5 Forecasts, large differences are evident over the 545 

west tropical Pacific Ocean, where ERA5 Forecasts show large positive trends not observed by 546 

CERES. Regional trends in surface turbulent heat flux from an inferred method that uses an energy 547 

budget constraint involving CERES and ERA5 analysis data show a similar pattern over ocean to 548 

that obtained from the direct sum of sensible and latent heat from ERA5 Forecasts. In contrast, 549 

trends from SeaFlux V3 and OAFlux V3 show poor agreement likely because of an excessive trend 550 

in OISST input data. 551 

Comparisons of monthly ocean heating rates amongst ORAS5, ORAP6.1 and ORAP6-ctrl 552 

illustrate some of the challenges associated with ocean reanalysis. The ORAP6-ctrl is a control 553 

version of ORAP6.1 that uses the same model setup and atmospheric forcing as ORAP6.1, but 554 

only uses SST and SSS nudging at the surface. The difference between ORAP6.1 and ORAP6-ctrl 555 
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thus indicates the impact of data assimilation on ocean heating rates. While anomalies for ORAS5 556 

and ORAP6.1 are similar, variability for ORAP6-ctrl is 38% weaker than ORAP6.1. This implies 557 

that assimilating more data significantly increases higher-frequency variability. ORAP6.1 also 558 

shows a sudden decrease around 2005 that is not apparent in ORAS5 or ORAP6.1-ctrl, which 559 

causes a spurious trend in ORAP6.1. This dip is likely associated with a warm bias in the model 560 

that gets corrected after the introduction of Argo data in 2005 by the data assimilation increment, 561 

leading to a steep decline in ocean heating rate. Balancing the temporal consistency between the 562 

model simulation and introduction of new data in a time series remains a challenge in both ocean 563 

and atmosphere reanalysis systems. The impact on trends can be especially large, depending on 564 

the magnitude of the model bias and the location within the time series new data are 565 

introduced/removed.  566 

Global annual variations in CERES net TOA flux and ocean heating rate for the three ocean 567 

reanalyses, Argo-only, and combined Argo and satellite altimetry data (Argo+SA) are also 568 

compared. Of the three reanalyses, ORAP6-ctrl provides the best agreement with CERES up to 569 

2013, while ORAS5 and ORAP6.1 are in better agreement with CERES after 2013. From this we 570 

conclude that surface forcing and SST information may be sufficient to estimate ocean heating rate 571 

variability for some periods, but other periods may also require subsurface information.  572 

All of the ocean datasets except ORAP6.1 show larger hemispheric mean ocean heating 573 

rates for the SH than the NH. ORAS6-ctrl shows the best overall agreement with Argo and 574 

Argo+SA. For ORAP6.1, the SH heating rate is a factor of 2.5 smaller than the NH value, and a 575 

factor of 3 smaller compared to the SH values from the other datasets. All of the ocean datasets 576 

show larger trends in ocean heating rate in the NH than the SH after 2005, but there is poor 577 
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agreement on the magnitude of the trends. Consequently, determination of trends in ocean heat 578 

transport derived as a residual between net surface flux and ocean heating rate is highly uncertain.  579 
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6. Figure Captions 589 
 590 
Figure 1. Trends in TOA Net Radiation for 2000/03-2020/02. (a) CERES-EBAF, (b) ERA5 591 
forecasts and (c) IFS AMIP. 592 
 593 
Figure 2. CERES net TOA flux trends against record length for CERES SSF1deg Terra (top) 594 
and Terra – Aqua (bottom) for (a, d) SH, (b, e) NH, (c, f) Global. Start date is 03/2000 for Terra 595 
and 07/2002 for Terra – Aqua. Gray shading corresponds to 95% confidence interval. 596 
 597 
Figure 3. Trends in TEDIV for 2000/03-2020/02. (a) ERA5 Analysis (directly from wind, T, q 598 
etc), (b) ERA5 forecasts (net TOA – FS)  and (c) IFS AMIP (net TOA – FS). 599 
 600 
Figure 4. Trends in surface flux (positive downward) for 2000/03-2020/02. (a) Inferred (CERES 601 
TOA Net − ERA5 TEDIV), (b) ERA5 forecasts and (c) IFS AMIP. 602 
 603 
Figure 5. Trend for 200208-202002 in net total radiative flux at the surface (positive down) from 604 
(a) CERES and (b) ERA5 forecasts. 605 
 606 
Figure 6. Trends in surface turbulent heat flux (positive downward) for 2002/08-2020/02. (a) 607 
Inferred (CERES TOA Net − ERA5 TEDIV − CERES Surface Net) and (b) ERA5 forecasts. 608 
 609 
Figure 7. Monthly global anomalies in ocean heating rate for (a) ORAS5, (b) ORAP6.1, (c) 610 
ORAP6-ctrl. 611 
 612 
Figure 8. Global annual mean variation in CERES net TOA flux and ocean heating rate for 0-613 
700 m and full-depth or 0-2000 m for: (a) ORAS5;  (b) ORAP6.1; (c) ORAP6-ctrl; (d) Argo; (e) 614 
Argo+SLA. 615 
  616 
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Tables 898 
 899 

Table 1 CERES and ERA5 Southern Hemisphere (SH), Northern Hemisphere (NH) and Global ASR, −OLR and 900 
NET TOA flux average, monthly anomaly standard deviation (Stdev) and trend for 03/2000-02/2020. Numbers 901 
in parentheses correspond to uncertainty at 95% significance level. Bold indicates trend above 95% 902 
significance. 903 

 CERES 
 ASR −OLR Net 
 SH NH Global SH NH Global SH NH Global 

Mean 
(Wm-2) 241.0 240.9 241.0 -239.6 -240.9 -240.2 1.39 0.076 0.73 

Stdev 
(Wm-2) 0.98 0.94 0.67 0.74 0.83 0.51 0.89 0.88 0.69 

Trend 
(Wm-2 dec-1) 

0.65 
(0.29) 

0.72 
(0.28) 

0.68 
(0.24) 

−0.27 
(0.33) 

−0.26 
(0.26) 

−0.26 
(0.24) 

0.38 
(0.32) 

0.46 
(0.27) 

0.42 
(0.23) 

 
 ERA5 Forecasts 
 ASR -OLR Net 
 SH NH Global SH NH Global SH NH Global 

Mean 
(Wm-2) 242.2 243.4 242.8 −241.6 −242.7 −242.1 0.66 0.71 0.68 

Stdev 
(Wm-2) 0.89 0.76 0.52 0.69 0.72 0.41 0.82 0.79 0.61 

Trend 
(Wm-2 dec-1) 

0.10 
(0.29) 

0.19 
(0.24) 

0.15 
(0.24) 

−0.11 
(0.28) 

−0.13 
(0.22) 

−0.12 
(0.21) 

−0.01 
(0.29) 

0.06 
(0.26) 

0.026 
(0.25) 

 
 IFS AMIP 
 ASR -OLR Net 
 SH NH Global SH NH Global SH NH Global 

Mean 
(Wm-2) 239.6 242.0 240.1 -241.0 -241.7 -241.2 -1.4 0.34 -1.1 

Stdev 
(Wm-2) 0.62 0.64 0.39 0.49 0.56 0.25 0.60 0.68 0.49 

Trend 
(Wm-2 dec-1) 

0.24 
(0.25) 

0.28 
(0.26) 

0.26 
(0.19) 

-0.019 
(0.27) 

-0.046 
(0.24) 

-0.034 
(0.17) 

0.22 
(0.24) 

0.24 
(0.29) 

0.23 
(0.23) 
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Table 2 Average, standard deviation and trend for 03/2000-02/2020 in TEDIV and 𝐹% for the SH, NH and global. 906 
Numbers in parentheses correspond to uncertainty at 95% significance level. Bold indicates trend above 95% 907 
significance. 908 

 909 
 TEDIV 
 ERA5 Analysis ERA5 Forecasts IFS AMIP 
 SH NH Global SH NH Global SH NH Global 

Mean 
(Wm-2) -1.6 1.6 0.0 -5.8 -1.1 -3.4 -3.9 -0.13 -2.1 

Stdev 
(Wm-2) 0.69 0.69 0.0 1.5 1.2 0.93 0.79 0.75 0.47 

Trend 
(Wm-2 dec-1) 

0.092 
(0.15) 

-0.092 
(0.15) 0.0 0.32 

(1.7) 
-0.87 
(0.70) 

-0.27 
(1.4) 

0.003 
(0.26) 

0.039 
(0.17) 

0.022 
(0.11) 

 
 𝑭𝑺 
 Inferred ERA5 Forecasts IFS AMIP 
 SH NH Global SH NH Global SH NH Global 

Mean 
(Wm-2) 3.0 -1.5 0.71 6.4 1.8 4.1 2.5 0.47 1.0 

Stdev 
(Wm-2) 1.6 1.5 1.2 1.7 1.4 1.2 0.84 1.0 0.64 

Trend 
(Wm-2 dec-1) 

0.24 
(0.35) 

0.55 
(0.31) 

0.40 
(0.25) 

-0.38 
(1.5) 

0.92 
(0.69) 

0.27 
(1.1) 

0.22 
(0.26) 

0.20 
(0.36) 

0.21 
(0.21) 
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Table 3 Mean, anomaly standard deviation and trend in monthly ocean heating rate during 03/2000-02/2020 for the 911 
SH, NH and global (total area). Numbers in parentheses correspond to uncertainty at 95% significance level. 912 
Bold indicates trend above 95% significance. 913 

 ORAS5 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.65 0.50 0.57 1.2 0.87 1.0 

Stdev 
(Wm-2) 2.4 2.5 1.0 2.6 2.8 1.1 

Trend 
(Wm-2 dec-1) 

-0.11 
(1.0) 

-0.062 
(0.98) 

-0.086 
(0.31) 

-0.24 
(1.1) 

-0.13 
(1.1) 

-0.19 
(0.47) 

  
 ORAS6.1 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.43 0.39 0.41 0.38 0.64 0.51 

Stdev 
(Wm-2) 2.6 2.5 1.2 2.9 2.8 1.3 

Trend 
(Wm-2 dec-1) 

-0.11 
(1.0) 

0.13 
(0.98) 

0.009 
(0.36) 

0.013 
(1.2) 

0.31 
(1.1) 

0.16 
(0.60) 

  
 ORAS6-ctrl 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.48 0.29 0.38 0.77 0.30 0.54 

Stdev 
(Wm-2) 2.2 2.0 0.82 2.5 2.2 0.81 

Trend 
(Wm-2 dec-1) 

-0.10 
(1.0) 

0.022 
(0.87) 

-0.038 
(0.38) 

0.037 
(1.1) 

-0.026 
(0.95) 

0.006 
(0.38) 
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Table 4 Mean, standard deviation and trend in annual ocean heating rate during 07/2005-12/2019 for the SH, NH 916 
and global (total area). Numbers in parentheses correspond to uncertainty at 95% significance level. Bold 917 
indicates trend above 95% significance. 918 

 919 
 ORAS5 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.54 0.38 0.46 1.1 0.65 0.88 

Stdev 
(Wm-2) 1.3 1.3 0.40 1.4 1.4 0.45 

Trend 
(Wm-2 dec-1) 

0.15 
(1.2) 

0.56 
(1.2) 

0.36 
(0.55) 

-0.37 
(1.3) 

0.84 
(1.3) 

0.24 
(0.70) 

  
 ORAS6.1 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.30 0.34 0.32 0.26 0.67 0.46 

Stdev 
(Wm-2) 1.2 1.3 0.45 1.4 1.4 0.59 

Trend 
(Wm-2 dec-1) 

0.42 
(1.2) 

0.85 
(1.2) 

0.63 
(0.53) 

0.87 
(1.4) 

1.1 
(1.3) 

0.98 
(0.67) 

  
 ORAS6-ctrl 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.43 0.33 0.38 0.78 0.33 0.55 

Stdev 
(Wm-2) 1.3 1.1 0.45 1.4 1.2 0.44 

Trend 
(Wm-2 dec-1) 

0.31 
(1.3) 

0.35 
(1.1) 

0.33 
(0.64) 

0.23 
(1.4) 

0.34 
(1.2) 

0.28 
(0.67) 

  
 Argo 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) 0.45 0.23 0.34 0.77 0.40 0.60 

Stdev 
(Wm-2) 2.2 2.1 0.76 3.0 2.3 1.2 

Trend 
(Wm-2 dec-1) 

-0.049 
(2.1) 

1.2 
(2.0) 

0.49 
(0.72) 

-0.22 
(3.0) 

1.4 
(2.2) 

0.46 
(1.2) 

  
 Argo+SA 
 0-700 m Full Depth 
 SH NH Global SH NH Global 

Mean 
(Wm-2) - - - 0.76 0.41 0.59 

Stdev 
(Wm-2) - - - 1.0 1.0 0.37 

Trend 
(Wm-2 dec-1) - - - 0.11 

(1.6) 
0.74 
(1.6) 

0.42 
(0.44) 
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(c) IFS AMIP(a) CERES-EBAF (b) ERA5 forecasts

Figure 1 Trends in TOA Net Radiation for 2000/03-2020/02. (a) CERES-EBAF, (b) ERA5 forecasts and (c) IFS AMIP.

Wm-2/decade Wm-2/decade Wm-2/decade



Figure 2 CERES net TOA flux trends against record length for CERES SSF1deg Terra (top) and Terra – Aqua (bottom) for (a, d) SH, (b, e) NH, (c, f) 
Global. Start date is 03/2000 for Terra and 07/2002 for Terra – Aqua. Gray shading corresponds to 95% confidence interval.



(c) IFS AMIP (net TOA – FS)(a) ERA5 Analysis (b) ERA5 forecasts (net TOA – FS)

Figure 3 Trends in vertically integrated divergence of total atmospheric energy transport (TEDIV) for 2000/03-2020/02. (a) ERA5 
Analysis (directly from wind, T, q etc), (b) ERA5 forecasts (net TOA – FS) and (c) IFS AMIP (net TOA – FS).

.
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(c) IFS AMIP(b) ERA5 forecasts(a) Inferred

Figure 4 Trends in surface flux (positive downward) for 2000/03-2020/02. (a) Inferred (CERES TOA Net − ERA5 TEDIV), (b) 
ERA5 forecasts and (c) IFS AMIP.
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Figure 5 Trend for 200208-202002 in net total radiative flux at the surface (positive down) from (a) CERES and (b) ERA5 
forecasts.



(a) Inferred (b) ERA5

Figure 6 Trends in surface turbulent heat flux (positive downward) for 2002/08-2020/02. (a) Inferred (CERES TOA Net − 
ERA5 TEDIV − CERES Surface Net) and (b) ERA5 forecasts.



Figure 7 Monthly anomalies in ocean heating rate for (a) ORAS5, (b) ORAP6.1, (c) ORAP6-ctrl. 



Figure 8 Global annual mean variation in CERES net TOA flux and ocean heating rate for 0-700 m and full-depth or 0-2000 
m for: (a) ORAS5;  (b) ORAP6.1; (c) ORAP6-ctrl; (d) Argo; (e) Argo+SLA.
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