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Abstract 10 

As phytoplankton form the base of the marine food web, understanding the controls on 11 

their abundance is fundamental to understanding marine ecology and its sensitivity to global 12 

climate change. While many Earth System Models (ESMs) predict phytoplankton biomass, it is 13 

unclear whether they properly capture the mechanistic relationships that control this quantity in 14 

the real ocean. We used Random Forest analysis to analyze the output of 13 ESMs as well as two 15 

observational datasets. The target variable was phytoplankton carbon and the predictors included 16 

environmental parameters known to influence phytoplankton, including nutrients, light, mixed 17 

layer depth, salinity, temperature, and upwelling. We examined: (1) What fractions of variability 18 

in ESMs and observations can be linked to the large-scale environmental variables simulated by 19 

ESMs? (2) What are the dominant predictors and relationships affecting phytoplankton biomass? 20 

(3) How well do ESMs simulate phytoplankton carbon and do they simulate the relationships we 21 

see in observations? About 88% to 96% of the variability in observational datasets and greater than 22 

98% in the ESMs was accounted for by environmental variables known to influence phytoplankton 23 

biomass. The dominant predictors in the observational datasets were shortwave radiation and 24 

dissolved iron, with temperature and ammonia also relatively important. All the ESMs show that 25 

shortwave radiation is the most important variable and most of them predict the right sign of 26 

sensitivity to most variables. However, the models tend to plateau at unrealistically low levels of 27 

iron and unrealistically high levels of light.  28 
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Plain language summary 29 

 30 

The freely drifting marine organisms known as phytoplankton are the dominant source of energy 31 

for marine ecosystems. Earth System Models used to predict the interactions between climate 32 

change and ocean biological cycling need to simulate such organisms - but it is unclear whether 33 

those simulations produce the right answers for the right reasons. In particular, such models 34 

implicitly assume that the details of ecological interactions amongst thousands of species of 35 

organisms play a secondary role in shaping of the ecosystem relative to environmental predictors 36 

such as light, mixing, and nutrients. In this paper we show that this assumption is reasonably well 37 

justified. Phytoplankton biomass in two observational datasets can be reasonably well predicted 38 

using a machine learning method that uses subsets of environmental predictors and data to 39 

construct a “forest” of regression trees. This is even more true for model outputs. Although 40 

relationships between the environmental predictors and biomass are qualitatively similar in most 41 

models and the observations there are some systematic differences. In particular, modelled 42 

biomass requires overly high levels of light and overly low levels of iron to reach a plateau. 43 

 44 

Key points:  45 

1. Observed phytoplankton biomass is highly predictable on monthly time scales from 46 

environmental parameters.  47 

2. Earth System Models qualitatively reproduce observed trends between environmental 48 

predictors and biomass. 49 

3. Modelled biomass reaches saturation at overly high levels of light and overly low levels of 50 

iron. 51 

  52 
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1. Introduction 53 

Phytoplankton form the base of the marine food web and play a fundamental role in the 54 

biological carbon pump (Basu and Mackey, 2018). Bottom-up control by phytoplankton 55 

productivity has been shown to limit the size of fisheries (Chassot et al., 2010), a concerning 56 

prospect given the increasing demand for fish (Delgado et al., 2003). Phytoplankton also affect the 57 

optical properties of the upper ocean where they are present  (Gnanadesikan and Anderson, 2009; 58 

Barrón et al., 2014), which can in turn affect the physical and biogeochemical properties of their 59 

environment (Anderson et al., 2009; Kim et al., 2015). To understand the potential impact on 60 

marine food webs and the potential for carbon sequestration, it is important to understand the 61 

spatial distribution of particle export as well as the drivers of phytoplankton dynamics. 62 

 63 

A major goal of Earth System Models (ESMs) is to understand how feedbacks between 64 

changes in ocean circulation affect biological cycling and the uptake/sequestration of carbon in the 65 

ocean interior. For ESMs to model this behavior requires accurate predictions of phytoplankton 66 

biomass. If this is to be possible, biomass itself must be reasonably predictable from environmental 67 

conditions. A quick comparison of mean phytoplankton biomass modelled by 13 ESMs that are 68 

part of the CMIP6 project (Fig. 1 a-m) and estimated from two satellite remote-sensed products 69 

(Fig. 1 n, o) shows clear disagreement in the magnitude and spatial patterns of biomass. These 70 

differences could be due to various factors. One source of differences is that ESMs contain 71 

simplified representations of ocean biology, with each ESM making different assumptions. For 72 

example, different ESMs could use different values for the coefficients controlling phytoplankton 73 

physiology, such as half-saturation growth constants, or one ESM may include ammonia as a 74 

nutrient affecting phytoplankton growth, while another does not. It is also uncertain whether 75 

particular ESMs could be missing fundamental ecological processes affecting phytoplankton 76 

biomass. For example, viral lysis is a process that is not included in many ESMs (Mateus, 2017), 77 

even though viruses can strongly influence marine ecosystems (Fuhrman, 1999; Brum and 78 

Sullivan, 2015). However, even if ESMs had a “perfect” representation of biogeochemical cycling, 79 

systematic biases in shortwave radiation, winds and circulation would likely also lead them to 80 

produce incorrect distributions of biomass. How can we distinguish between errors due to incorrect 81 

simulation of environmental predictors and those due to the incorrect response of phytoplankton 82 

to those predictors? 83 
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 84 

In this study, we used a machine learning (ML) method known as random forests (RFs, 85 

Breiman, 2001) to investigate the connections between environmental variables commonly 86 

simulated by ESMs and phytoplankton biomass in both observations and the models. RFs are 87 

capable of modelling complex non-linear behaviors between predictor and target variables without 88 

having to know any prior information about a dataset. Using RFs, along with metrics for measuring 89 

the importance of predictor variables and sensitivity analyses, allows us to visualize the 90 

contributions of each predictor variable and their relationships to phytoplankton which can allow 91 

us to identify why ESMs agree/disagree with the patterns in observations. We sought to address 92 

three main questions: 93 

1. What fraction of variability in ESMs and observations can be linked to large-scale 94 

environmental variables that might be plausibly simulated by ESMs? 95 

2. What are the dominant predictors and relationships between these variables and 96 

observed phytoplankton carbon? 97 

3. How well do ESMs simulate phytoplankton carbon and do they reproduce the 98 

relationships we see in observations?  99 

 100 

2 Methods 101 

2.1 Earth System Models 102 

The data for each ESM was downloaded from the Earth System Grid Federation (ESGF) 103 

portal through the Department of Energy Lawrence Livermore National Laboratory node. All 104 

ESMs were part of the CMIP6 era. For the selection of the ESMs, we searched the ESGF portal 105 

using “esm-piControl” and “piControl” for the Experiment ID, “r1i1p1f1” for the Variable Label, 106 

“mon” (i.e. monthly) for the Frequency field, “ocean,” “ocnBgChem,” and ocnBgchem” for the 107 

Realm, and “phyc” for phytoplankton carbon as the Variable. We chose to use the PI Control 108 

experiments since this allowed us to establish the baseline behavior and natural variability of the 109 

phytoplankton without anthropogenic forcings. Such an approach limits the extent to which the 110 

drivers of phytoplankton biomass exhibit correlated trends. We limited our search to models that 111 

provided a phytoplankton carbon field as this is somewhat better constrained than primary 112 
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productivity, which shows large differences across algorithms, models, and measurements (Lee et 113 

al., 2015). Additionally, while chlorophyll can show large variability over the course of a day even 114 

in relatively static parts of the ocean (Dusenberry et al., 1999), particulate carbon is relatively 115 

constant which leads to smaller potential biases in comparing remotely sensed products observed 116 

at a particular time of day to monthly-averaged model output. Of the ESMs that matched the search 117 

criteria, we did not use CanESM5, GISS-E2-1-G-CC, and NorESM1-F. CanESM5 did not have 118 

enough available predictors to make it worthwhile to include in the analysis, GISS-E2-1-G-CC 119 

contained errors in the magnitudes of the concentrations for dissolved iron and silicate, and 120 

NorESM1-F reported its vertical coordinate in density making it difficult to isolate the surface 121 

layer. A brief summary of the ESMs used in this study can be found in Table 1, including 122 

information about the nutrients, phytoplankton groups, and zooplankton groups within each ESM. 123 

 124 

 We chose to use predictors for our analysis that were known to either directly influence 125 

phytoplankton growth rates or that were known to be associated with concentration/dilution of 126 

phytoplankton. The ten predictors we identified were dissolved iron, mixed layer depth, ammonia, 127 

nitrate, phosphate, silicate, shortwave radiation, salinity, sea surface temperature, and vertical 128 

velocity at 50 m depth. Mixed layer depth was included as shallower mixed layers are associated 129 

with reducing light limitation and increasing the frequency of zooplankton-phytoplankton 130 

interactions (Behrenfeld, 2010). Vertical velocity at 50 m was included as a predictor since this 131 

can identify regions of upwelling nutrient-rich waters, but also regions where surface divergence 132 

could remove phytoplankton from a region or where surface convergence might concentrate it. 133 

When an ESM did not specifically include a vertical velocity measurement at 50 m, the next closest 134 

depth was used. In cases where 45 and 55 m (but not 50 m) were both available, 55 m was used. 135 

 136 

 We restricted our analysis to a monthly climatology constructed using the output of the last 137 

100 years of each ESM run. This allowed sufficient time for the models to reach a steady state 138 

which allows for easier identification of the apparent relationships. Using a climatology also 139 

allows us to train computationally intensive methods, such as RFs, using a smaller dataset. 140 

 141 

 The regridded versions of variables were used when they were available. These were files 142 

denoted with “gr” in their file description, as opposed to those with “gn” which stood for the native 143 
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grid of an ESM. The regridded versions were at lower resolution than the native grid files. The 144 

regridded versions were favored with the reasoning that variables that needed to be regridded to 145 

match the others should do so from higher to lower resolution. Additionally, any negative values 146 

for variables that should not have negatives (which were likely artifacts of the regridding process) 147 

were replaced with zeros. 148 

  149 

2.2 Observational Data 150 

We chose to use two target observational datasets. The first dataset was from Kostadinov 151 

et al. (2016b, a), and contains estimates for phytoplankton size classes as carbon derived from 152 

remote sensing measurements. This product uses the spectral shape and magnitude of particulate 153 

backscattering at blue-green wavelengths to predict the particle size distribution and concentration 154 

of suspended particles of a reference diameter, with the assumption that the particles are spherical. 155 

These measurements are then integrated across three specified ranges of diameters (0.5-2 μm for 156 

picoplankton, 2-20 μm for nanoplankton, and 20-50 μm for microplankton) to acquire particle size 157 

classes and then multiplied by 1/3 to acquire the phytoplankton carbon biomass of living 158 

phytoplankton. Although separated into size classes, the sum of the phytoplankton carbon size 159 

classes provided an estimate of the total phytoplankton carbon. Future work will examine the 160 

different environmental dependences of all size classes. 161 

 162 

The second target dataset we used was the MODIS-Aqua particulate organic carbon (POC) 163 

product (Stramski et al., 2008). This dataset used remote sensing reflectances at 443 and 555 nm 164 

as inputs to a power-law to predict particulate organic carbon. We took the additional step of using 165 

a phytoplankton carbon to POC ratio of 1:3 to acquire estimates of living phytoplankton carbon. 166 

The 1:3 ratio was chosen in order to match the ratio used in the previously listed Kostadinov 167 

publications (2016b, a), where they describe this as the middle estimate of the published range for 168 

this ratio (Eppley et al., 1992; DuRand et al., 2001; Gundersen et al., 2001; Oubelkheir et al., 169 

2005).  170 

 171 

Observational climatologies for temperature, salinity, mixed layer depth, silicate, 172 

phosphate, and nitrate were downloaded from the World Ocean Atlas (WOA) 2018 (Garcia et al., 173 
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2019; Locarnini et al., 2019; Zweng et al., 2019). The objectively analyzed mean fields at a 1-174 

degree resolution were monthly averages for the previous variables, except for the mixed layer 175 

depth. The mixed layer depth was available in two timeframes, 1981-2010 and 2005-2017. The 176 

later was selected for our analysis since it overlaps the timeframe of the Kostadinov phytoplankton 177 

carbon dataset. For shortwave radiation, we used the International Satellite Cloud Climatology 178 

Project (ISCCP) estimates as provided by the Objectively Analyzed Air-Sea Fluxes (OAFlux) 179 

Project (Yu et al., 2006). The monthly vertical velocity was acquired from the Estimating the 180 

Circulation and Climate of the Ocean (ECCO) reanalysis data on the EarthData portal (Version 4 181 

Release 4) (Forget et al., 2015; ECCO Consortium et al., 2021a, b). To remain consistent with the 182 

vertical velocity values of the ESMs, we used the vertical velocity at 55 m since the 50 m vertical 183 

velocity was unavailable. We used the ensemble average of the ESMs to produce “observational” 184 

dissolved iron and ammonia products, since no globally interpolated observational datasets exist 185 

for these sparsely sampled variables.  186 

 187 

Since both observational datasets were based on passive satellite products, regions of low 188 

light, such as high latitude regions in winter, did not have any phytoplankton carbon concentrations 189 

associated with them. This meant the analysis would not have been able to account for these areas, 190 

even though phytoplankton persist in such regions (albeit often in diapause) and models can 191 

maintain low levels of biomass. To include these low light areas in the analysis, for each 192 

observational dataset we filled these missing values with the 5th percentile value of observed 193 

phytoplankton carbon from the respective dataset.  194 

 195 

2.3 Random Forests 196 

 197 

RFs are a type of ML method that use a large ensemble of decision trees to make 198 

predictions (Breiman, 2001). This ensemble approach provides the benefit of turning single “weak 199 

learning” trees into a collective “strong learning” ensemble of trees. For a more thorough 200 

description of how RFs used in this analysis were constructed, please refer to Holder and 201 

Gnanadesikan (2021) section 2.4.1 titled “Random forests.” 202 

 203 
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RFs are a useful ML method because of their robust predictions, their tendency to not 204 

overfit data, and their ability provide variable importance metrics. The importance of variables 205 

within a dataset can be determined in a number of ways, but we chose to use the permutation 206 

method for this analysis. Briefly, the permutation method determines the relative importance of 207 

variables by first calculating the model error of the trained RF and using that as a “baseline.” One 208 

variable is then randomly shuffled, and this altered dataset is provided to the trained RF to acquire 209 

predictions. The error of these new predictions is calculated and compared to the original error. 210 

This process is repeated for each predictor variable. A large increase in RMSE is associated with 211 

predictors that are more important, while variables with smaller relative increases in error are 212 

considered less important.  213 

 214 

To minimize the biases in the variable importance metrics, we constructed the decision 215 

trees without sample replacement. Strobl et al. (2007) demonstrated that RF variable importance 216 

metrics can be inaccurate if the predictors vary greatly in their range or in their number of unique 217 

values. The suggested solution was to construct decision trees without sample replacement, which 218 

is not the usual practice for RFs. Since our predictor variables can vary greatly in their ranges and 219 

values, such as phosphate at 10-7 M concentrations vs shortwave radiation at levels around 102 W 220 

m-2, we adopt this suggestion in our analysis. Additionally, the usual percentage of a dataset used 221 

in the construction of a RF decision tree with sample replacement is about 63.2%. To keep the 222 

relative number of samples consistent with sample-replacement tree construction, we selected 223 

63.2% of the samples to be used for the construction of each decision tree. We also allowed the 224 

RF to consider 2nd order interactions between predictor variables along with the individual 225 

predictors, when considering how to divide the dataset at each branch. This allowed the RFs to 226 

find and account for important interactions between variables. Lastly, we constructed 50 trees for 227 

each RF, except for the RF trained on the MODIS observations which required 250 trees. A meta-228 

analysis was conducted to determine the number of trees for each dataset where we measured the 229 

out-of-bag (OOB) error compared to the number of trees. Based on where the OOB error no longer 230 

significantly decreased, we selected that number of trees, doubled it to ensure generalization, and 231 

used that final number as the number of trees for each dataset.  232 

 233 
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RFs by construction tend not to overfit datasets because of sample replacement, the random 234 

selection of variables at node splits, and the averaging of many decision trees. Although our 235 

construction of RFs still maintains the latter two, we took the additional step of randomly 236 

separating the datasets for each ESM and observation set into training and testing subsets to further 237 

minimize the chances of overfitting. The training subsets each consisted of 80% of the values of 238 

their respective dataset and the testing subsets consisted of the other 20%. Thus, the testing subsets 239 

contained values that the RFs had not seen during their training. To assess the performance of each 240 

RF, we calculated the coefficient of determination (R2) and the root mean squared error (RMSE) 241 

between the RF predictions and the actual values. This performance evaluation was conducted on 242 

both the training and testing subsets for each RF. 243 

 244 

To visualize the relationships within each RF, we used sensitivity analyses. For the 245 

sensitivity analysis of each predictor variable, we determined the min-max range of that variable 246 

from the observational datasets. We set the remaining predictors at the median value of the 247 

respective predictors from the observational dataset. We then gave each trained RF the same 248 

conditions, rather than giving them the median conditions of their respective dataset. This allowed 249 

us to ask whether the models would get the right relationships for the right reasons, since it 250 

evaluates whether they can predict the correct relationships between biomass and a single predictor 251 

when presented with the correct values of other variables. This artificial set of observations was 252 

provided to each trained RF to obtain predictions with the results plotted on a sensitivity analysis 253 

plot. For example, the values of the sensitivity analysis for the shortwave radiation variable were 254 

set at the min-max range of shortwave radiation in the observational dataset, the remaining 255 

variables were set at the median value of the other variables in the observational dataset, and this 256 

artificial dataset was provided to each trained RF. Each RF was provided with the same conditions 257 

so a direct comparison of the relationships from each dataset (ESMs and observations) could be 258 

made. 259 

 260 

We also perform analyses where we replace the value of one predictor with its median 261 

observed values, but allow the other values to vary and provide the RF with this dataset. The 262 

difference between the prediction made with the median value of one predictor and the full 263 
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variation of that predictor gives us the contribution of spatiotemporal variation to the RF 264 

reconstruction of the variability. 265 

 266 

 We trained RFs on two versions of each dataset: one where all variables were left non-267 

transformed and one where only the phytoplankton carbon (target) variable was Log10 transformed. 268 

Log10 transforming the target variable allows for greater predictability of the outcome, because the 269 

solution is less dominated by the need to fit the largest values. However, the non-transformed 270 

datasets are also informative. For example, comparison between the variable importance metrics 271 

of the non-transformed versus log10 transformed datasets (see supplemental material) allows us to 272 

examine the effect of outliers on the variable importances.  273 

3. Results 274 

Comparing the models and observations (Fig. 1-3) reveals large, systematic differences 275 

between observations and ESMs, and smaller, though still systematic, differences between the 276 

observational datasets themselves. Moreover, although there are similarities in phytoplankton 277 

carbon between the versions of ESMs (as seen by the clustering of lines of different colors in Fig. 278 

2,3), significant variation exists between the different ESMs. The MPI ESM models show high 279 

concentrations of phytoplankton carbon, especially in the equatorial and southern latitudes (Fig. 1 280 

i-k; Fig. 2 a). The GFDL models exhibit the opposite pattern with high concentrations in the 281 

northern latitudes and with GFDL-CM4 showing the largest asymmetry (Fig. 1 e-f; Fig. 2 a). The 282 

CESM2 models exhibit low concentrations in the gyre regions and in the extreme 283 

northern/southern latitudes, while showing high concentrations in the northern mid-latitudes and 284 

around coastal areas of the southern latitudes (Fig. 1 a-d). The IPSL models show lower variability 285 

compared to the other datasets but mirror the general pattern of low concentrations in the gyre 286 

regions (Fig. 1 g-h). The NorESM2 models show their highest phytoplankton carbon 287 

concentrations occurring in the equatorial regions and decreasing toward the higher latitudes and 288 

gyre centers (Fig. 1 l-m). The observational datasets based on MODIS and Kostadinov exhibit 289 

some similarity in their general patterns (Fig. 1 n-o; 2 a) with the gyre regions being low in 290 

phytoplankton carbon and high in the coastal regions of the northern latitudes. However, the 291 

Kostadinov observations have greater extremes than MODIS (Fig. 1 n-o). Kostadinov shows lower 292 
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concentrations in the gyre regions and in much of the Southern Ocean, while exhibiting higher 293 

concentrations near sea ice edges compared to MODIS (Fig. 1 n-o; Fig. 2 a). 294 

 Probability distributions of phytoplankton carbon (Fig. 3) show a similar divergence. In 295 

linear space, the observations tend towards an exponential distribution, with a few very large, very 296 

rare high values. When log10 transformed (Fig. 3) the distribution is closer to normal, though still 297 

right-skewed. The models disagree significantly in terms of the phytoplankton carbon 298 

concentration at the peak of the distribution, with CESM showing the lowest values and the GFDL 299 

models the highest. All the models tend to show a long tail, which is turns out to be primarily 300 

associated with low-light environments. The  assumption that we have made that we can fill points 301 

with no observations with the 5th percentile of the distribution to capture low-biomass conditions 302 

under low light is broadly consistent with the CESM and GFDL-ESM4 models but is not consistent 303 

with many of the other models. The distributions suggest that regression models, which minimize 304 

the mean squared error, should use log10 transformed data. 305 

 306 

The agreement between the ESMs and observations with respect to individual predictor 307 

variables also varies depending on the variable and model (Fig. 2). The models underestimated 308 

zonal mean mixed layer depth, phosphate, and salinity relative to observations (Fig. 2 c, f, i). Since 309 

the “observations” for dissolved iron and ammonium were the ensemble averages of the ESMs 310 

(Fig. 2 b, d), they were constrained to lie within the intermodel range. Some variables (shortwave 311 

radiation, nitrate, silicate) show good agreement in some latitude bands but not others (Fig. 2 e, g, 312 

h). Shortwave radiation (Fig. 2 g) is generally well-simulated but is too high in the Southern Ocean, 313 

a well-known problem in climate models (Hyder et al., 2018). There is also agreement in the mid-314 

latitude regions for nitrate (Fig. 2 e) and between about 30°S to 30°N for silicate (Fig. 2 h), but the 315 

models and observations begin to deviate outside these regions. Finally, there is consensus between 316 

the observations and models for zonally-averaged temperature and vertical velocity (50 m) (Fig. 2 317 

j, k).  318 

 319 

Using environmental predictors, phytoplankton carbon concentrations in both the ESMs 320 

and observations were predictable with high levels of accuracy in both the non-transformed and 321 

log10 transformed datasets (Table 2). When compared to the mean null model RMSE, the RFs 322 

trained on the non-transformed observational and ESM datasets showed decreases in the RMSE 323 
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of 33-71% and 79-97%, respectively. Additionally, the R2 values between the true values and the 324 

RF predictions were 0.559 to 0.921 for the observations and 0.959-0.995 for the ESMs. This 325 

suggests the absolute abundance of phytoplankton in the real ocean on monthly timescales is 326 

significantly controlled by large-scale environmental predictors, while in models it is almost 327 

completely controlled by such predictors. 328 

 329 

As would be expected from Fig. 2, performance metrics were generally better when the 330 

phytoplankton carbon target variable was log10 transformed (giving us a measure of the relative, 331 

rather than the absolute abundance). When compared with the mean model RMSE, the RFs 332 

decreased the RMSE by 87-96% for the ESMs and 65-80% for the observational datasets (Table 333 

2). This was also associated with R2 values between the true values and the RF predictions of 334 

0.983-0.998 for the ESMs and 0.881-0.961 for the observations. This increase in performance 335 

metrics for the log10 transformed dataset was likely due to the reduced effect of high outliers. 336 

Compared to the non-transformed dataset, where outliers can have a greater influence on the 337 

predictability, the log10 transformed dataset reduces this effect, suggesting that the relative 338 

abundance of monthly-averaged phytoplankton carbon is largely controlled by large-scale 339 

environmental variables.  340 

 341 

Consistent patterns of variable importance (defined as the error when one variable is 342 

permuted for the testing data normalized by the standard deviation of target data) were seen when 343 

the phytoplankton carbon target variable was log10 transformed (Fig. 4). All of the datasets show 344 

downward surface radiation as the most important variable, such that permuting this variable alone 345 

results in errors comparable to or in some cases larger than the baseline standard deviation. For 346 

the observational datasets iron has a comparable impact on errors with temperature and ammonium 347 

next in order. By contrast, in the observational datasets permuting nitrate, phosphate, silicate, 348 

salinity, or vertical velocity results in a relatively small increase in normalized RMSE (<10% of 349 

the baseline standard deviation). The CESM2 models agreed that light, temperature and 350 

ammonium are important but place all three, along with mixed layer depth, as more important than 351 

iron (Fig. 4 a-d). The MPI-ESM-2-HAM model (Fig. 4 j) shows a similar pattern of permuted error 352 

increase as CESM, but with ammonium (which is not simulated in this model) replaced with 353 

nitrate. Similarly, in GFDL-CM4 (Fig. 4 e) in which only one macronutrient (nominally 354 
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phosphate) is simulated, it ends up being somewhat more important than iron. Additionally 355 

because GFDL CM4 allows for very low biomass (this accounts for the the peak in the solid dark 356 

blue line in Fig. 3 on the far left of the plot which is far larger here than in most other models) it 357 

also has a very strong dependence on light. The IPSL models agree with each other and with the 358 

observations in terms of the importance of light (Fig. 4 g, h) but have ammonia as the second-most 359 

important variable. Iron is the third-most important variable in IPSL-CM5A-INCA  (driving an 360 

increase in the RME from 0.10 to 0.38) but is only the 5th most important in IPSL-CM5A2-LR 361 

(though permuting it still drives an increase in RMSE from 0.074 to 0.31) ranking behind 362 

ammonia, temperature, mixed layer depth and nitrate. The MPI models collectively agreed on a 363 

dominant role for shortwave radiation (Fig. 4 i-k), with temperature as the second-most important 364 

variable. There are subtle differences amongst the different versions of the MPI model, with mixed 365 

layer depth, nitrate and silicate claiming third place in different versions. Iron lags all of these 366 

variables in most versions of the MPI. Light and temperature are also important in the NorESM 367 

models with mixed layer depth and iron rounding out the top four. In general, the pattern of 368 

permuted importance is more consistent across models and observations when log10-transformed 369 

data is used (Fig. S1) as would be expected from Fig. 3. 370 

 371 

 Given that the RF method gives a better fit to the log10-transformed data, we also focus on 372 

using the trees generated using the log10-transformed data to evaluate sensitivity to environmental 373 

parameters. Qualitative similarities exist between the observations and ESMs in the sensitivity 374 

analyses (Fig. 5), with general agreement on the sign of trends. Almost all of the models and both 375 

observational datasets show a general trend of increases in phytoplankton carbon with increasing 376 

iron, light, nitrate, phosphate, and silicate before eventually plateauing (Fig. 5 a, d, e, f, g). Vertical 377 

velocity shows a jump in biomass from negative to positive values across all the datasets (Fig. 5 378 

j). Conversely, greater mixed layer depths and higher temperatures were associated with decreases 379 

in phytoplankton carbon (Fig. 5 b, i) across almost all models and observations.  380 

 381 

 Although the picture that emerges from Fig. 5 is that most models get the sign of the 382 

sensitivity analysis correct, there are notable quantitative disagreements for a number of predictor 383 

variables between the observations and almost all of the models. For dissolved iron, the 384 

observations and GFDL-CM4 plateau at a much higher level of iron than almost all the models 385 
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(Fig. 5 a), suggesting that most of the current generation of ESMs lose their sensitivity to iron at 386 

too low a concentration. Conversely with respect to shortwave radiation, the observations and 387 

GFDL-CM4 plateau at a much lower level (close to 50 W m-2, Fig. 5 f), than do the rest of the 388 

ESMs, which show sensitivity to increases in shortwave radiation out to 200 W m-2. As previously 389 

noted, the minimum values found in GFDL-CM4 are much lower than in other simulations, 390 

helping to explain the strong dependence on shortwave radiation in Fig. 4. Similarly, the positive 391 

relationship between biomass and phosphate and silicate is much more pronounced in most of the 392 

ESMs (with the exception of the CESM2 models) than in the observational datasets (Fig. 5 e, g). 393 

Finally, although Michaelis-Menten-like curves were seen in the ESMs for nitrate, both of the 394 

observational datasets show at least hints of two rapid increases in phytoplankton carbon before 395 

eventually plateauing, one around 1 x 10-3 mol NO3 m
-3 and the other around 15 x 10-3 mol NO3 396 

m-3 (Fig. 5 d). Finally, while the mean level of biomass with respect to temperature is not well 397 

predicted, most models show relative ranges close to the observed twofold range. An exception is 398 

the CESM2 models (red lines, Fig. 5 i), which show an order-of-magnitude change in biomass 399 

when light is varied and other variables are held at their median values. While consistent with 400 

permuting this variable increasing RMSE to near 0.5 in Fig. 4a-d. note that GFDL-CM4 (which 401 

also shows a strong temperature dependence) does not show as strong a dependence on 402 

temperature when other variables are held at their median, thus illustrating that the permuted 403 

importance and median sensitivity show different things.  404 

 405 

For a few variables, a subset of the models show qualitative disagreement with 406 

observations. The CESM and  MPI models indicated higher phytoplankton carbon concentrations 407 

when salinity levels were high, while the other ESMs and observations suggested the opposite 408 

trend (Fig. 5 h). With respect to ammonium, IPSL-CM5A2-INCA showed a weak maximum in 409 

phytoplankton concentrations at around 0.1 M, while the other ESMs (where ammonium was 410 

present as a predictor) and observations exhibited continual increases in phytoplankton carbon 411 

(Fig. 5 c).  MPI-ESM1=2-HR also shows a different pattern for temperature than the other models, 412 

with minimum biomass at low temperatures. It is worth noting that qualitative disagreements are 413 

more frequent when using the non-transformed data and tend to appear at the edges of the range 414 

of observations (Fig. S2). This suggests such disagreements may be disproportionately driven by 415 

outliers. 416 
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 417 

 Given that our reconstructed iron distribution is so important in explaining the 418 

observations, it is worth examining how it does so. We can examine the impact of the modelled 419 

iron on phytoplankton by examining the difference between the RF-based prediction using all 420 

modelled variables, and an RF-based prediction in which the iron is replaced with the observed 421 

median value (0.32 nM). Given the similarity of relationships between different physical 422 

implementations  of the same biogeochemical code, we focus on one example from each institution 423 

and compare with MODIS observations, as the pattern seen for Kostadinov is similar. The 424 

observed zonally-averaged cycle of phytoplankton biomass shows a clear hemispheric asymmetry 425 

in terms of the impact of iron. In the Southern Hemisphere MODIS observations (Fig. 6 a), the 426 

lower levels of iron seen in observations suppress the summertime bloom with the peak impact in 427 

February at around 60°S reaching 0.3 log units (roughly a factor of 2). In the Northern Hemisphere 428 

MODIS observations spatiotemporal variability of iron results in a stronger bloom, with the peak 429 

enhancement in May and June in subpolar latitudes also roughly a factor of two. 430 

 431 

 The observed annual mean impact of iron (Fig.7 a) mirrors these results, with the largest 432 

annual-mean suppression of biomass (0.6 log units or a factor of 4) found in the Southeast Pacific, 433 

a region known to be both low in iron and biomass,  as well as at the equator. Interestingly, iron 434 

appears to be important in explaining higher biomass along the boundary of the 435 

subtropical/subpolar gyre in the North Pacific and North Atlantic and the Arabian Sea. The latter 436 

regions are locations where iron is already high - potentially reflecting the sensitivity of biomass 437 

to iron at higher concentrations (as seen in Fig. 5) than previously realized.  438 

 439 

 The CESM and IPSL models come closest to replicating these patterns in space and time, 440 

with both models seeing the suppression of the seasonal bloom in the Southern Ocean and of 441 

biomass in the southeast and equatorial Pacific. However, both models fall short in capturing the 442 

Northern Hemisphere response, with CESM2 underestimating the magnitude and duration of the 443 

enhancement of productivity (Fig. 6b,7b) and ISPL-CM5A2-INCA showing strong iron limitation 444 

in the North Pacific (Fig. 7d). GFDL-ESM4 shows an enhancement of seasonal productivity in the 445 

Northern Hemisphere that has the right duration, but is too weak overall. Using the modelled iron 446 

in MPI-ESM1-2-HAM and NorESM2-LM both actually enhances biomass in both hemispheres- 447 
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particularly during the fall bloom. This overprediction of the impact of iron is consistent with the 448 

sensitivity analysis  of biomass on iron (Fig. 5a), in which both of these models show low (or even 449 

reversed) sensitivity of biomass to iron when it is particularly low. None of the models captures 450 

the size of the increase in biomass seen at the edges of the North Atlantic subtropical gyre, or in 451 

the Arabian Sea, again reflecting a lack of sensitivity to iron at high concentrations (Fig. 7). 452 

4. Discussion 453 

 454 

The first result of our study is that a large portion of the spatiotemporal variability of 455 

phytoplankton biomass in the observational datasets and ESMs can be explained by a relatively 456 

small set of environmental predictors (Table 2). The RFs trained on the non-transformed 457 

observations explained about 55% to 92% of the variability in phytoplankton carbon and the RFs 458 

trained on the ESMs explained even more. This increased further to 88-96% of the variability for 459 

the RFs trained on the log10 transformed data. These results imply that a good portion of the 460 

variance observed in monthly-averaged phytoplankton dynamics on global scales can be explained 461 

by variables known to influence phytoplankton that are directly simulated in ESMs. It is possible 462 

that this could differ for specific regions and/or specific times of year. For example, it is well 463 

known that grazing increases with phytoplankton blooms, such as the spring bloom in the North 464 

Atlantic. Zooplankton grazing could control phytoplankton growth on shorter timescales, such as 465 

daily (Calbet and Landry, 2004) to weekly. Additionally, the lower estimate of the variability 466 

explained for the observations likely could have been higher if some of the outlier values in the 467 

MODIS dataset were excluded from the analysis. The RF trained on MODIS underpredicted these 468 

high values, which likely decreased its performance metrics (data not shown). 469 

 470 

 The second main result of our study was our finding that several predictors (light, iron, 471 

temperature and ammonium) were most important in the observations and many ESMs (Fig. 4). 472 

The influence of outliers was generally reduced in the log10 transformed data (with the exception 473 

of low-light values of biomass in GFDL-CM4) leading to greater similarities between the 474 

observational datasets and between different versions of the same ESMs. The importance of any 475 

single variable was not necessarily associated with any particular pattern in the sensitivity 476 

analyses, such as magnitude or the difference between the lowest to highest biomass. For example, 477 
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the datasets that showed dissolved iron as most important demonstrated typical Michaelis-Menten 478 

patterns, but the difference between the lowest and highest concentration of the relationship with 479 

other variables fixed at the median value did not necessarily indicate absolute importance when 480 

the median values were used for the other variables (Fig. 3, 4, and 5 a).  481 

 482 

The reason for this apparent mismatch between sensitivity and importance of given 483 

variables is not simply due to their individual effects on phytoplankton carbon. Rather, as 484 

discussed in Holder and Gnanadesikan (2020) the interaction effects of any one variable with the 485 

other variables likely explain a large component of their importance. This does suggest that when 486 

any of the ESMs showed agreement with one of the observational datasets with respect to their 487 

variable importances, they are capturing both the importance of that variable and the importance 488 

of its interaction effects with other variables. Because our sensitivity plots set the drivers at the 489 

median values of the observations, they cannot show such interactions.  490 

 491 

The third result was that RFs captured the general trends for most of the relationships. 492 

However, the magnitude of trends often disagreed, suggesting that the models can get similar 493 

answers for different reasons. A particularly interesting example of this is the tradeoff between 494 

light and iron. As discussed in Galbraith et al. (2010), iron can have multiple impacts on 495 

phytoplankton physiology. Insofar as it increases nutrient-limited growth rates adding iron will 496 

tend to increase light limitation, as it takes more light to match the nutrient-limited growth. 497 

However, increasing iron also increases the rate of chlorophyll synthesis and efficiency of low-498 

light photosynthesis, which in turn allows phytoplankton to use available light more efficiently. 499 

However, not all models include both of these effects-which together result in the net effect of 500 

increasing iron being to decrease the degree of light limitation. The fact that the only one of the 501 

ESMs that does not underestimate iron limitation and overestimate light limitation (GFDL CM4) 502 

includes this effect suggests that it could be important in the real world. 503 

 504 

It is worth noting that we were not expecting the ESMs to match the sensitivity analysis 505 

curves of the observational datasets perfectly, partly due to the biases in the models. The purpose 506 

of the sensitivity analyses was to examine whether the models would have the right 507 

qualitative/quantitative dependence on environmental variables if they simulated those variables 508 
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well. The conditions of the sensitivity analysis were based on the values of the observational 509 

datasets (which each had the same predictor values). The reason for this was to ensure that each 510 

RF was provided with the same conditions, since metrics like the min-max range and the median 511 

were different for each dataset. It then makes sense that we would not expect the sensitivity curves 512 

to match perfectly since each RF was trained on a dataset with different ranges for each variable 513 

and, as seen in Fig. 2, many models exhibit systematic biases with respect to these variables. 514 

 515 

It is interesting that two of the most important variables (iron and ammonium) are both 516 

known to be important for phytoplankton growth but also exhibit large temporal and spatial 517 

variability that is undersampled by observations. That our “reconstructed” ammonium and iron 518 

datasets are useful for predicting observed biomass validates approaches such as that taken by 519 

Keller et al. (2012), who used iron output from a model to force the UVic Ecosystem Model. It 520 

also highlights the importance of increasing our sampling of these key nutrients. 521 

 522 

One limitation of this study is that we chose to use RF analysis. It is known that at more 523 

extreme values, RFs can underestimate the response in sensitivity analyses caused by a lack of 524 

training observations within that area of the dataspace (Holder and Gnanadesikan, 2021). It has 525 

been noted in other studies that neural network ensembles (NNEs) are able to approximate the 526 

actual behavior more closely within those data-poor regions of the dataspace, but this is also 527 

accompanied by higher uncertainty (Holder and Gnanadesikan, 2021). We chose not to use NNEs 528 

for this study because there was a large degree of uncertainty with some of the models (data not 529 

shown). This was due to the fact that not all the models simulated the full range of environmental 530 

variables or the set of conditions that each sensitivity analysis asked the trained NNEs to predict. 531 

For example, the set of conditions for the dissolved iron sensitivity analysis asked each trained 532 

NNE to make predictions on conditions that were based on the observations (ie. the min-max range 533 

for dissolved iron and the median values for the other variables relative to the observations). If this 534 

set of conditions was closer to the edges of the dataspace for any of the ESMs, the extrapolated 535 

predictions the NNEs provided contained higher levels of uncertainty. As a result, trying to 536 

visualize all the varying responses on a single sensitivity analysis plot was difficult because of the 537 

of the high level of uncertainties between each trained NNE. Moreover, when we compared NNE 538 

and RF sensitivity plots using the median values taken from the individual models, the sensitivity 539 
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plots were very similar. For these reasons, we chose to use RFs, despite their known shortcomings 540 

to help constrain the uncertainty and the range of predictions so they could be visualized on a 541 

single sensitivity analysis plot. We also chose RFs because we were mainly trying to identify 542 

patterns in the sensitivity analyses, rather than absolute predictions in certain conditions. 543 

 544 

A second limitation of this study stems from the observational datasets. As mentioned 545 

previously, we used the average of the ESMs for the dissolved iron and ammonium variables in 546 

the observational dataset. The values for phytoplankton carbon were based on satellite remote 547 

sensed products that have their own uncertainties associated with them and it is worth noting that 548 

both datasets were largely based on similar measurements. The remaining variables were 549 

combinations of data averaged over decades and interpolated variables that can perform poorly in 550 

regions with low numbers of samples or in regions with large degrees of variability. Additionally, 551 

we did not include estimates of grazing by zooplankton or other potential predators, which could 552 

induce variations due to spatiotemporal variability in top-down control on phytoplankton. Given 553 

the limitations mentioned, this type of study should be revisited every few years to include new 554 

and updated predictor variables, along with any improvements in ML algorithms and visualization 555 

techniques. 556 

 557 

It should be noted that the sensitivities we show here represent emergent properties of the 558 

ecosystem (what in Holder and Gnanadesikan (2021) termed apparent relationships) and may not 559 

reflect individual phytoplankton physiology. An example of this is the Southeast Pacific, where 560 

Bonnet et al. (2008) found that the individual phytoplankton growing in this low-iron region were 561 

not themselves limited by iron - being selected for low-iron conditions. However, the low biomass 562 

in this region suggests that this adaptation comes at the cost of being unable to use other resources 563 

as efficiently or to resist predation effectively. 564 

5. Conclusions 565 

In our study, we sought to answer three questions: 566 

 567 

1. What fraction of variability in ESMs and observations can be linked to variables known 568 

to influence phytoplankton biomass? 569 
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2. What are the dominant predictors and relationships between these variables and 570 

phytoplankton biomass? 571 

3. How well do ESMs simulate phytoplankton carbon and do they simulate the 572 

relationships we see in observations?  573 

 574 

First, we demonstrated that a large portion of the variability in ESMs and observations can 575 

be explained by variables known to influence phytoplankton biomass that are directly simulated 576 

in ESMs. When the target variable was log10 transformed, between 88% and 96% of the variability 577 

in phytoplankton carbon was explained in the observational datasets and greater than 98% of the 578 

variability was explained in the ESMs. The fact that the observations are in fact so tightly linked 579 

to these observed fields supports the idea that relatively simple ESMs can capture much of the 580 

underlying dynamics. 581 

 582 

Second, we showed that the dominant predictors in the observations were dissolved iron, 583 

shortwave radiation, ammonium and temperature. Dissolved iron and shortwave radiation were 584 

most important for the observational datasets. Shortwave radiation was also the most important 585 

predictor in all of the ESMs..  586 

 587 

Third, we noted that most of the ESMs captured the general trend in the relationships 588 

compared to the observational datasets. Additionally, phytoplankton biomass was sensitive to iron 589 

over a much larger range in the observations than in the models (Fig. 5a) and was sensitive to light 590 

over over a smaller range (Fig.5f) , which could have profound implications for biogeochemistry 591 

and how we model it. 592 

 593 

Our study provides many avenues for future work. With a large number of satellite products 594 

coming online in the next few years (Werdell et al., 2019), it will be possible to identify individual 595 

phytoplankton functional groups from observations and allow us to conduct the same type of 596 

analyses we performed in this manuscript on individual functional groups. Additionally, we plan 597 

to examine the relationships from individual ESMs and from the observational datasets. We also 598 

plan to use the RF models to evaluate whether (as found in Holder and Gnanadesikan 2021), 599 

models trained on historical data can predict future conditions across ESMs. Insofar as they can, 600 
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they can also be used to identify the drivers of change. Finally, as mentioned previously, it would 601 

be exciting to take a closer look at the interactions between variables and the effect they have on 602 

phytoplankton. 603 

 604 

  605 
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Tables 812 

Table 1: Information about the nutrients, number/type of phytoplankton groups and zooplankton 813 

groups, and the respective references for the various ESMs. 814 

  
    Nutrients   

Phytoplankton 

Groups 
  

Zooplankton 

Groups 
  References 

                    

Earth 

System 

Model 

CESM2   

N, P, Si, 

and Fe 

  Three 

(diatoms, 

diazotrophs, 

and pico/nano) 

  

One 

  
 (Gettelman et al., 

2019; Danabasoglu et 

al., 2020) 

CESM2-FV2         

CESM2-WACCM         

CESM2-WACCM-FV2         

                  

GFDL-CM4   P and Fe   
Two (small 

and large) 
  

Two 

parameterized 

(Micro and 

meso, 

respectively) 

  
(Galbraith et al., 2010; 

Held et al., 2019)  

                  

GFDL-ESM4   
N, P, Si, 

and Fe 
  

Four (small, 

large diatoms, 

large non-

diatoms, 

diazotrophs) 

  Three   

(Stock et al., 2014, 

2020; Dunne et al., 

2020) 

                  

IPSL-CM5A2-INCA   
N, P, Si, 

and Fe 

  
Two (diatoms 

and nano) 

  Two (Micro 

and meso, 

respectively) 

  (Aumont et al., 2015; 

Boucher et al., 2020; 

Sepulchre et al., 2020) 
IPSL-CM6A-LR         

                  

MPI-ESM1.2-HAM   
N, P, Si, 

and Fe 

  Two 

(bulk/calcifiers 

and 

diazotrophs) 

  

One* 

  (Ilyina et al., 2013; 

Paulsen et al., 2017; 

Müller et al., 2018; 

Mauritsen et al., 2019) 

MPI-ESM1.2-HR         

MPI-ESM1.2-LR         

                  

NorESM2-LM   N, P, Si, 

and Fe 

  Two (diatoms 

and calcifiers) 

  
One 

  (Seland et al., 2020; 

Tjiputra et al., 2020)  NorESM2-MM         

 815 

*There was no grazing term for zooplankton on the diazotrophs in the MPI models. 816 

  817 
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Table 2: Performance metrics for the training and testing subsets of the RFs trained on each ESM 818 

and observational dataset. The non-transformed metrics are above the Log10 transformed metrics. 819 

The coefficient of determination (R-squared) and root mean squared error (RMSE) were calculated 820 

by comparing the phytoplankton carbon predictions of each RF against the actual phytoplankton 821 

carbon values of their respective subset. 822 

 823 

  824 

Mean Model 

RMSE
RMSE

Percent 

Decrease in 

RMSE

R-squared
Mean Model 

RMSE
RMSE

Percent 

Decrease in 

RMSE

R-squared

CESM2 2.13 x 10⁻³ 2.07 x 10⁻⁴ 90.3% 0.991 2.13 x 10⁻³ 3.06 x 10⁻⁴ 85.6% 0.981

CESM2-FV2 2.06 x 10⁻³ 2.01 x 10⁻⁴ 90.2% 0.991 2.09 x 10⁻³ 2.85 x 10⁻⁴ 86.3% 0.982

CESM2-WACCM 2.18 x 10⁻³ 2.13 x 10⁻⁴ 90.2% 0.991 2.16 x 10⁻³ 3.19 x 10⁻⁴ 85.2% 0.980

CESM2-WACCM-FV2 2.03 x 10⁻³ 1.94 x 10⁻⁴ 90.5% 0.992 2.01 x 10⁻³ 3.16 x 10⁻⁴ 84.3% 0.979

GFDL-CM4 3.80 x 10⁻³ 4.37 x 10⁻⁴ 88.5% 0.987 3.85 x 10⁻³ 6.16 x 10⁻⁴ 84.0% 0.976

GFDL-ESM4 2.40 x 10⁻³ 3.76 x 10⁻⁴ 84.3% 0.976 2.43 x 10⁻³ 4.95 x 10⁻⁴ 79.6% 0.959

IPSL-CM5A2-INCA 1.36 x 10⁻³ 1.60 x 10⁻⁴ 88.3% 0.987 1.37 x 10⁻³ 2.45 x 10⁻⁴ 82.2% 0.969

IPSL-CM6A-LR 1.45 x 10⁻³ 1.21 x 10⁻⁴ 91.6% 0.993 1.44 x 10⁻³ 1.71 x 10⁻⁴ 88.2% 0.986

MPI-ESM1-2-HAM 7.27 x 10⁻³ 8.68 x 10⁻⁴ 88.1% 0.987 7.30 x 10⁻³ 1.25 x 10⁻³ 82.9% 0.972

MPI-ESM1-2-HR 9.42 x 10⁻³ 6.80 x 10⁻⁴ 92.8% 0.995 9.46 x 10⁻³ 9.22 x 10⁻⁴ 90.3% 0.991

MPI-ESM1-2-LR 6.64 x 10⁻³ 2.10 x 10⁻⁴ 96.8% 0.986 6.76 x 10⁻³ 1.20 x 10⁻³ 82.3% 0.970

NorESM2-LM 1.64 x 10⁻³ 1.94 x 10⁻⁴ 88.2% 0.987 1.65 x 10⁻³ 2.75 x 10⁻⁴ 83.4% 0.973

NorESM2-MM 1.60 x 10⁻³ 8.69 x 10⁻⁵ 94.6% 0.987 1.61 x 10⁻³ 2.63 x 10⁻⁴ 83.6% 0.974

MODIS 1.65 x 10⁻³ 8.45 x 10⁻⁴ 48.6% 0.754 1.73 x 10⁻³ 1.16 x 10⁻³ 33.1% 0.559

Kostadinov 1.26 x 10⁻³ 3.64 x 10⁻⁴ 71.1% 0.921 1.26 x 10⁻³ 5.24 x 10⁻⁴ 58.5% 0.830

CESM2 6.06 x 10⁻¹ 2.70 x 10⁻² 95.5% 0.998 6.06 x 10⁻¹ 3.70 x 10⁻² 93.9% 0.996

CESM2-FV2 5.92 x 10⁻¹ 2.71 x 10⁻² 95.4% 0.998 5.92 x 10⁻¹ 3.75 x 10⁻² 93.7% 0.996

CESM2-WACCM 6.07 x 10⁻¹ 2.73 x 10⁻² 95.5% 0.998 6.05 x 10⁻¹ 3.77 x 10⁻² 93.8% 0.996

CESM2-WACCM-FV2 5.91 x 10⁻¹ 2.66 x 10⁻² 95.5% 0.998 5.90 x 10⁻¹ 3.58 x 10⁻² 93.9% 0.996

GFDL-CM4 1.62 x 10⁰ 1.55 x 10⁻¹ 90.4% 0.991 1.61 x 10⁰ 2.12 x 10⁻¹ 86.9% 0.983

GFDL-ESM4 6.38 x 10⁻¹ 3.63 x 10⁻² 94.3% 0.997 6.35 x 10⁻¹ 4.74 x 10⁻² 92.5% 0.995

IPSL-CM5A2-INCA 3.73 x 10⁻¹ 2.65 x 10⁻² 92.9% 0.995 3.71 x 10⁻¹ 3.90 x 10⁻² 89.5% 0.989

IPSL-CM6A-LR 3.78 x 10⁻¹ 2.08 x 10⁻² 94.5% 0.997 3.79 x 10⁻¹ 2.81 x 10⁻² 92.6% 0.995

MPI-ESM1-2-HAM 1.04 x 10⁰ 6.70 x 10⁻² 93.6% 0.996 1.04 x 10⁰ 9.38 x 10⁻² 90.9% 0.992

MPI-ESM1-2-HR 7.22 x 10⁻¹ 4.43 x 10⁻² 93.9% 0.996 7.22 x 10⁻¹ 5.36 x 10⁻² 92.6% 0.995

MPI-ESM1-2-LR 1.02 x 10⁰ 6.99 x 10⁻² 93.2% 0.995 1.02 x 10⁰ 9.46 x 10⁻² 90.7% 0.992

NorESM2-LM 9.00 x 10⁻¹ 5.58 x 10⁻² 93.8% 0.996 8.98 x 10⁻¹ 7.41 x 10⁻² 91.8% 0.993

NorESM2-MM 9.24 x 10⁻¹ 5.94 x 10⁻² 93.6% 0.996 9.23 x 10⁻¹ 8.05 x 10⁻² 91.3% 0.992

MODIS 2.53 x 10⁻¹ 5.10 x 10⁻² 79.9% 0.961 2.54 x 10⁻¹ 7.35 x 10⁻² 71.0% 0.917

Kostadinov 3.26 x 10⁻¹ 7.87 x 10⁻² 75.9% 0.944 3.26 x 10⁻¹ 1.13 x 10⁻¹ 65.4% 0.881

Log10 

Transformed

Earth System 

Model

Observational

Training Data Testing Data

Non-

Transformed

Earth System 

Model

Observational
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Figures 825 

 826 

Figure 1: Contour plots showing the Log10 concentration of phytoplankton carbon for the ESMs 827 

(a-m) and the observations (n-o). Blue colors represent lower concentrations of phytoplankton 828 

carbon and moving up the spectrum to yellow represents higher concentrations of phytoplankton 829 

carbon. The values of the contour plots for the ESMs were calculated using the values from the 830 

last 100 years of each model and the values of the observations were determined using all available 831 

data. 832 
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 834 

Figure 2: Zonal mean plots for the ESMs (various colors and line styles) and observations 835 

(MODIS – solid black line; Kostadinov Biomass – dashed black line). The zonal means for the 836 

ESMs were determined using the last 100 years of data for each model. The zonal means of the 837 

observations were calculated using all available data for each variable. The solid black lines of all 838 

the plots (except phytoplankton carbon) show the zonal mean of the observations, which were the 839 

same in both the MODIS and Kostadinov Biomass datasets. The solid black lines for dissolved 840 

iron and ammonium were the ensemble average of the ESMs, for those ESMs that had values for 841 

those variables. 842 

(a) (b)
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 843 

 844 

Figure 3: Probability density functions of phytoplankton biomass in our 15 modeled and 845 

observational datasets.  846 

 847 

  848 
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 849 

Figure 4: Variable importance plots for the ESMs (a-m) and the observations (n-o) of the log10 850 

transformed target datasets. The x-axis shows the variables that were used in each RF with the 851 

predictor variables color-coded. The y-axis shows the relative importance of each variable 852 

computed by permuting each variable in the testing dataset with the others held at their observed 853 

values, computing the RMSE associated with the permuted inputs and normalizing this by the 854 

standard deviation of phytoplankton carbon from each dataset. The baseline prediction of the RF 855 

is shown by the dashed lines. 856 
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 858 

Figure 5: Sensitivity analyses for the RFs trained on the ESMs (various colors and line styles) and 859 

observations (MODIS POC – solid black line; Kostadinov Biomass – dashed black line) for the 860 

log10 transformed target datasets. For each variable, the min-max range was based on the values 861 

in the observational datasets and the variables that were not varying were set at the median value 862 

of the other observational variables (ex. For subplot a, dissolved iron was varied across the min-863 

max range of the dissolved iron variable in the observational dataset and the values of the other 864 

variables relative to the observational dataset were set at their median value.) The same conditions 865 

were presented to each trained RF. 866 

867 
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 868 

Figure 6: Zonally averaged seasonal impact of observed (a) or modelled (b-f) variability of iron 869 

on phytoplankton biomass. Computed by replacing the observed/modelled value at each point in 870 

time and space by the median value from observations (0.32 nM), running the RF for each 871 

dataset and computing the difference between the RF using the observed/modelled value and that 872 

using the observed median. Scale is log10, so that a value of +0.1 means that the difference 873 

between the value of iron seen at that month, latitude, latitude and the median value of iron 874 

increases biomass by log10(0.1) or 26 when averaged across all months.  875 

  876 
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 877 

Figure 7: Annual mean impact of observed (a) or modelled (b-f) variability of iron on 878 

phytoplankton biomass. Computed by replacing the observed/modelled value at each point in 879 

time and space by the median value from observations (0.32 nM), running the RF for each 880 

dataset and computing the difference between the RF using the observed/modelled value and that 881 

using the observed median. Scale is log10, so that a value of +0.1 means that the differences 882 

between the value of iron seen at that latitude and longitude and the median value of iron 883 

increases biomass by log10(0.1) or 26% when averaged across all months.  884 


