Florine Enengl

and 6 more

We investigate the role of auroral particle precipitation in small-scale (below hundreds of meters) plasma structuring in the auroral ionosphere over the Arctic. To the scope, we together analyse data recorded by an Ionospheric Scintillation Monitor Receiver (ISMR) of Global Navigation Satellite System (GNSS) signals and by an All-Sky Camera located in Longyearbyen, Svalbard (Norway). We leverage on the raw GNSS samples provided at 50 Hz by the ISMR to evaluate amplitude and phase scintillation indices at 1 s time resolution and the Ionosphere-Free Linear Combination at 20 ms time resolution. The simultaneous use of the 1 s GNSS-based scintillation indices allows identifying the scale size of the irregularities involved in plasma structuring in the range of small (up to few hundreds of meters) and medium-scale size ranges (up to few kilometers) for GNSS frequencies and observational geometry. Additionally, they allow identifying the diffractive and refractive nature of the found fluctuations on the recorded GNSS signals. Six strong auroral events and their effects on plasma structuring are studied. Plasma structuring down to scales of hundreds of meters are seen when strong gradients in auroral emissions at 557.7 nm cross the line of sight between the GNSS satellite and receiver. Local magnetic field measurements confirm small-scale structuring processes coinciding with intensification of ionospheric currents. Since 557.7 nm emissions primarily originate from the ionospheric E-region, plasma instabilities from particle precipitation at E-region altitudes are considered to be responsible for the signatures of small-scale plasma structuring highlighted in the GNSS scintillation data.

Florine Enengl

and 4 more

We show the first achievement of inferring the electron temperature in ionospheric conditions from synthetic data using fixed-bias Langmuir probes operating in the electron saturation region. This was done by using machine learning and altering the probe geometry. The electron temperature is inferred at the same rate as the currents are sampled by the probes. For inferring the electron temperature along with the electron density and the floating potential, a minimum number of three probes is required. Furthermore does one probe geometry need to be distinct from the other two, since otherwise the probe setup may be insensitive to temperature. This can be achieved by having either one shorter probe or a probe of a different geometry, e.g. two longer and a shorter cylindrical probe or two cylindrical probes and a spherical probe. We use synthetic plasma parameter data and calculate the synthetic collected probe currents to train a neural network and verify the results with a test set. We additionally verify the validity of the inferred temperature in altitudes ranging from about 100 km-500 km, using data from the International Reference Ionosphere model. Even minor changes in the probe sizing enable the temperature inference and result in root mean square relative errors between inferred and ground truth data of under 3%. When limiting the temperature inference to 120-450 km altitude an RMSRE of under 0.7% is achieved for all probe setups. In future, the multi-needle Langmuir Probe instrument dimensions can be adapted for higher temperature inference accuracy.

Florine Enengl

and 4 more

Auroral particle precipitation potentially plays a main role in ionospheric plasma structuring. The impact of auroral particle precipitation on plasma structuring is investigated using multi-point measurements from scintillation receivers and all sky cameras from Longyearbyen, Ny-Ålesund and Hornsund on Svalbard. This provides us with the unique possibility of studying the spatial and temporal dynamics of the aurora. Here we consider three case studies to investigate how plasma structuring is related to different auroral forms. We demonstrate that plasma structuring impacting the GNSS signals is largest at the edges of auroral forms. Here we studied two stable arcs, two dynamic auroral bands and a spiral. Specifically for arcs we find elevated phase scintillation indices at the pole-ward edge of the aurora. This is observed for auroral oxygen emissions (557.7 nm) at 150~km in the ionospheric E-region. This altitude is also used as the ionospheric piercing point for the GNSS signals as the observations remain the same regardless of different satellite elevations and azimuths. Further, there may be a time delay between the temporal evolution of aurora (f.e. commencement and fading of auroral activity) and observations of elevated phase scintillation indices. The time delay could be explained by the intense influx of particles, which increases the plasma density and causes recombination to carry on longer, which may lead to a persistence of structures - a ‘memory effect’. High values of phase scintillation indices can be observed even shortly after strong visible aurora and can then remain significant at low intensities of the aurora.