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Abstract 15 

To cope with the uncertainty of green infrastructure planning at city scale, many cities take an 16 

adaptive approach and use learning-by-doing to improve understanding of the urban systems.  17 

However, whether that learning is worth it has been a challenge to adaptive management practi-18 

tioners.  In this paper, we propose an evaluation and planning framework for green infrastructure 19 

(GI) to address this issue and demonstrate its use by an application to the Wingohocking water-20 

shed, Philadelphia, PA, USA. The framework allows users to specify possible knowledge gains 21 

from near-term actions and assess the impacts of this learning on subsequent decisions, which 22 

enables evaluation of the net benefits of alternative investment plans.  In the case study, we con-23 

sider two types of learning: learning to reduce uncertainty and learning to improve performance.  24 

This learning can happen through investments or knowledge transfer from experience at other 25 

locations. Estimates of cost, performance, and deterioration over time of GI and the prediction of 26 

possible knowledge gains are based on the literature and expert opinions. The results propose 27 

optimal investment strategies over a 25-year planning horizon and describe tradeoffs between the 28 

risk of poor performance and reductions in expected annual stormwater runoff.  Finally, by cal-29 

culating differences in expected total costs between non-adaptive, passive adaptive, and active 30 

adaptive decision-making, we quantify the economic value of learning and adaptability.  31 

Plain Language Summary 32 

How much can stormwater plans be improved by investing in learning? Is that investment 33 

worthwhile? This paper presents an adaptive green infrastructure (GI) investment planning and 34 

evaluation framework to address these questions, and an application to the Wingohocking sew-35 

ershed in Philadelphia, PA, USA. The proposed framework includes two components:  the eval-36 

uation of GI’s capability to reduce stormwater, and the optimization of a portfolio of near-term 37 

and subsequent investments. The evaluation quantifies stormwater reduction capacity for GI 38 

types at different locations and the uncertainty associated with them, whereas the optimization 39 
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also considers deterioration in the performance of installed GI and improved GI cost-efficiency 40 

of future installations due to improved designs, materials, and installation.  Results of modeling 41 

experiments show the optimal timing and type of GI investments, the expected stormwater re-42 

duction, and the associated risk levels. The results highlight that assumptions concerning deterio-43 

ration and learning can change which near-term GI investments are optimal. Furthermore, we 44 

calculate the value of adaptability as the difference between the cost of non-adaptive (no learning) 45 

and passive adaptive (trial-and-error) management, and the value of learning as the difference 46 

between passive and active adaptive (active experimentation) management solutions.  47 

1. Introduction 48 

Green infrastructure (GI) or Low Impact Development (LID) utilizes engineering design with 49 

soil and vegetation to mimic natural hydrological processes to remove pollutant, detain runoff 50 

and harvest rainwater for non-potable uses, which has been considered as a more sustainable 51 

solution to urban stormwater pollution comparing to “gray infrastructure” (i.e. conventional 52 

engineering solutions, such as underground storage tunnels) (Askarizadeh et al., 2015; Copeland, 53 

2014; Dhakal & Chevalier, 2017).  GI consists of one or more independent distributed systems, 54 

called stormwater management practices (SMPs), which are designed to treat stormwater on-site 55 

and could be adjusted for the site conditions.  SMPs have evolved into a broad spectrum of de-56 

signs according to the typology of the urban impervious surface (Askarizadeh et al., 2015; Lee et 57 

al., 2012).  For example, rain gardens and infiltration trenches are often installed to treat runoff 58 

from roads and other paved areas; green roofs and rain barrels are for treating rooftop runoff; and 59 

permeable pavers can replace impermeable surfaces such as sidewalks, parking lots, and play-60 

grounds. 61 

The effectiveness of SMPs can vary with the designs, the spatial alignment, the climate and the 62 

underlying watershed characteristics (Avellaneda et al., 2017; Dietz, 2007; Jackisch & Weiler, 63 

2017; Jarden et al., 2016; Rossman & Huber, 2016).  Studies have pointed out that the flexibility 64 

and diversity of SMPs can complicate GI investment planning for their cost and performance un-65 

certainty, and this has become a barrier for GI adoption (Copeland, 2014; Dhakal & Chevalier, 66 

2017).  For example, in the analysis of Wright et al., (2016), runoff reductions vary from 10% to 67 

70%  depending on SMPs, while cost per cubic meter of reduction ranges from $3 to almost 68 

$600 depending on SMPs types and land use. 69 

Another layer of complexity comes from the maintenance of GI (Asleson et al., 2009; 70 

Avellaneda et al., 2017; Eckart et al., 2017; Freni et al., 2010).  Cities sometimes share the 71 

maintenance responsibility of GI with the communities and residents by retrofit and community 72 

engagement programs (Eckart et al., 2017; Jarden et al., 2016).  These programs are desirable for 73 

cost savings, but they could also increase the difficulty for assuring maintenance quality and the 74 

uncertainty of SMPs’ long-term efficacy. Depending on the quality of the maintenance, SMPs 75 

may fail during storms or become less effective over time.  The deterioration in SMP 76 

performance could result in increasing of disturbance of water uses and violations of regulatory 77 

requirements. In contrast, traditional centralized engineering solutions, such as underground 78 

storage tunnels, can provide massive storage to reduce peak flow, which are usually operated and 79 

maintained by professionals and are less likely to fail during storms or suffer the deterioration in 80 

performance over time. As a result, many cities implements GI only at small scale or by pilot 81 

projects (US EPA, 2010), even though GI has been proven to be a viable alternative to conven-82 
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tional engineering approaches as well as providing ancillary benefits that enhance residents’ 83 

quality of life (Copeland, 2014; Dietz, 2007; Wise et al., 2010).  84 

Adaptive management (AM) is a framework for resolving key uncertainties that has been applied 85 

mostly in natural resource and water management (Holling, 1978; Medema et al., 2008; Rist et 86 

al., 2013; Williams & Brown, 2014).  However, the literature of AM has pointed out that most 87 

AM projects failed to evaluate costs and benefits of the monitoring and research plans, which 88 

may improve the scientific understanding but not necessarily contribute to decision making 89 

(Failing et al., 2004; Williams, 2011; Williams & Johnson, 2015).  More recently, researchers 90 

have recognized the need to evaluate the value of learning to justify the costs and resources re-91 

quired for monitoring and research actions, and they have applied the concept of value of perfect 92 

information (VPI) (also called Expected Value of Perfect Information) to assess the expected 93 

improvement resulting from AM (Johnson et al., 2017; Probert et al., 2011; Runge et al., 2011; 94 

Williams & Johnson, 2015). Although traditional VPI approach can provide information about 95 

the best case learning scenario, the real-world data seldom provides perfect information and the 96 

state of nature could also be non-stationary, further complicating the analysis (Runge et al., 97 

2011; Williams & Brown, 2014).  98 

The model of this paper extends the simple framework we have previously proposed (Hung & 99 

Hobbs, 2019) for adaptive GI investment planning.  Unlike the studies mentioned earlier that as-100 

sume perfect information and only look at expected value, the framework can quantify tradeoffs 101 

between expected benefit and the risk of undesirable outcomes, test assumptions about what and 102 

how we can learn, and assess the value of learning resulting from near-term investments. Alt-103 

hough the framework has these features that stormwater managers desired, its potential is not 104 

fully explored in our previous paper other than the expected value-risk tradeoff. This paper 105 

shows an application of the framework with the emphasis on how learning works (modeling) and 106 

how it can improve the outcome (optimal objective value).   107 

Specifically, this paper interviews experts about their thoughts on learning and SMPs’ cost un-108 

certainty, evaluates SMP efficacy by hydrological simulation, and assesses the value of learning 109 

imperfect information, accounting for non-stationarity of the future states. We compare the opti-110 

mal solution with learning with traditional planning approaches (one-time master planning), with 111 

passive adaptive management (plan without considering in learning and the subsequent ability to 112 

adapt later, if there is a surprise), and also with active adaptive management (consideration of 113 

investments in learning, and how the resulting information can be used to optimally adapt plans).  114 

The research questions we have are the following.  115 

 Where, when, and how much should be invested in what types of SMP? 116 

 How does the inclusion of GI performance deterioration and learning processes change near-117 

term and subsequent optimal investments? 118 

 Is it worthwhile to invest in learning?  119 

Learning is defined as the updating of prior distributions by Bayes’ law based on the knowledge 120 

gains from implementing the investments. Investments can yield different levels and types of 121 

“learning.”  More specifically, in the case study where we have three subcatchments to account 122 

for spatial heterogeneity, we model learning by updating distribution parameters when invest-123 

ments in one location exceed predetermined thresholds or by sharing experience learned at other 124 

locations. Theoretically, learning can lead to perfect information with a high investment thresh-125 
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old, but it is often not cost-effective if not infeasible for financial and technical issues. Therefore, 126 

it is more important to explore learning imperfect information and the tradeoffs between invest in 127 

learning and invest in immediate stormwater benefits.  128 

Figure 1 shows the conceptual diagram of the proposed framework, which consists of a hydro-129 

logic simulation and an adaptive GI planning model. The adaptive GI investment planning con-130 

siders multiple subcatchments and decisions about siting GIs, budget of the GI program.  131 

The remainder of this paper is organized as follows. Section 2 introduces the case study area as 132 

well as the hydrologic model used to evaluate SMP performance in reducing stormwater runoff 133 

and the associated uncertainty. In Section 3, we summarize assumptions about the dynamics of 134 

performance and cost (performance deterioration due to aging, improved characterization of per-135 

formance and cost due to learning, and technological improvements resulting from cumulative 136 

investment) and modification of the model formulation in Hung and Hobbs’ (2019). Section 4 137 

discusses the results of the optimization of adaptive investment strategies and the economic val-138 

ue of learning and adaptability. Finally, Section 5 presents our summary and conclusions .  139 

2. Evaluation of SMP Cost-effectiveness 140 

In this section, we focus on integrating various sources of uncertainty in SMP cost-effectiveness.  141 

The purpose of this section is not to develop a calibrated model to evaluate the uncertainty of 142 

SMP performance in the study area as the data for calibration and validation are not available, 143 

but to demonstrate the use of modeling tools to evaluate the uncertainty using our best 144 

knowledge.  The improvement in modeling techniques is viewed as a kind of learning in the 145 

adaptive planning scheme.  146 

2.1. Evaluation of SMP Performance in Reducing Stormwater 147 

Among existing rainfall-runoff simulation products, USEPA’s Storm Water Management Model 148 

(SWMM) is one of a few models with functions for modeling GI (called LID in SWMM) 149 

(www.epa.gov/water-research/storm-water-management-model-swmm). SWMM is widely ap-150 

plied to urban stormwater management studies around the world (Avellaneda et al., 2017; Dong 151 

et al., 2017; McGarity, 2013; Palla & Gnecco, 2015; Petrucci & Tassin, 2015; Sebti et al., 2016).  152 

Although it is a highly parameterized hydrologic model, its GI module makes it a convenient tool 153 

for preparing SMP performance and uncertainty estimates for the adaptive optimization frame-154 

work of Section 3. For simplicity, we only focus on runoff generation processes and SMP re-155 

sponse to precipitation events.   156 

For most input parameters for the SWMM simulations, values needed for the simulations cannot 157 

be obtained by direct measurement but are instead inferred from observed hydrographs or based 158 

on numbers reported in the literature  (Bates & Campbell, 2001; Stow et al., 2007).  Unfortunate-159 

ly, for our study area, we have neither direct measurements nor runoff hydrographs to calibrate 160 

the model, which limits our ability to make precise predictions regarding the dynamic 161 

interactions between GI, the urban sewershed, and the climate.  However, it is more important to 162 

have a consistent assessment of possible SMPs using the best information available, given that 163 

the main value of the investment planning models is to screen candidate investments, to identify 164 

the most attractive near-term installation, and to understand how assumptions concerning 165 

learning, adaptation, and performance changes could impact those recommendations. Therefore, 166 

the evaluation is based on the most relevant parameter values we could find in the literature, the 167 

GI/LID design guides (Hinman & Wulkan, 2012; Philadelphia Water Department, 2015; 168 

http://www.epa.gov/water-research/storm-water-management-model-swmm
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Schueler & Claytor, 2009), and consultation with a local expert (a GI design and installation con-169 

tractor with extensive experience in Philadelphia) (S. Szalay, personal communication, 2018),.  170 

There are methods to improve parameterization in the literature (Dong et al., 2017; Muleta et al., 171 

2013; Sadegh & Vrugt, 2014) if monitoring data are available, but their use is beyond the scope 172 

of this study. 173 

2.1.1. Study Area 174 

 The study area is located at North Philadelphia where the original Wingohocking Creek water-175 

shed was before it was integrated into the sewer system.  Figure 2 shows the location and cover-176 

age of the Wingohocking sewershed, which has a total area of 2,076 ha and a length of approxi-177 

mately 10 km, and the location of the sewer overflow outlet to Frankford Creek.   178 

 179 

Figure 2. Boundaries of Philadelphia and the Wingohocking watershed, the main sewer pipes, 180 

and three subcatchments 181 

Commonly used modeling approaches tend to involve significant geographical aggregation of 182 

the study area because including all processes in a fine scale would result in complex models 183 

with high data needs and computing requirements (Jefferson et al., 2017).  Due to the limited da-184 

ta available, we simplified the processes by dividing the Wingohocking sewershed into three 185 

subcatchments, called Upper, Middle, and Lower, based on the distance to the overflow outlet 186 

and the layout of the main sewer pipes (Figure 2).  For the same reason, the hydrologic model 187 

simplifies the sewer system to only one conveyance channel which collects only stormwater run-188 

off (i.e., wastewater generation and treatment are not included), under the assumption that runoff 189 

dominates flows in the system in the events of greatest concern to planners.  These simplifica-190 

tions expedite computation and allow us to estimate output uncertainty by simulating a large 191 

number of scenarios based on random samples of model inputs and parameters from assumed 192 

distributions.  193 

2.1.2. Watershed Characteristics  194 

The Wingohocking watershed is a highly developed area (100% developed). Land uses in the 195 

Upper subcatchment are mostly residential, while the Middle and Lower subcatchments are pri-196 
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marily residential mixed with commercial and industrial uses (Table 1). The Lower and Middle 197 

also have higher vacant properties (6% and 7%, respectively) than the Upper (3%). The impervi-198 

ousness is about 55% and is fairly uniformly distributed across Wingohocking sewershed.  The 199 

average slope is about 6% and is slightly lower in the Lower sewershed (4.7%), where the origi-200 

nal Wingohocking Creek transitioned from the Piedmont Region to the Atlantic Coastal Plain.  201 

The average catchment widths of the subcatchments are estimated on the digital map by the 202 

ArcGIS measure tool.  The characteristics of the three subcatchments calculated are summarized 203 

in Table 1, and data for the calculation are from publicly available geospatial data, of which the 204 

sources are listed in the Appendix.   205 

Table 1.  206 

Subcatchment Characteristics and Land Use 207 

  

Slope 

(%) 

Imper- 

viousness 

(%) 

Area 

(ha) 

Width 

(m) 

Land use (%) 

Residential Commercial Industrial Others 

Upper  6.2 53.9 850 3,800 50% 11% 5% 34% 

Middle 6.5 56 733 3,800 37% 17% 7% 39% 

Lower 4.7 55.6 493 3,000 23% 10% 19% 53% 

The soil in Wingohocking sewershed is mostly (>95%) categorized as urban land in USDA’s soil 208 

survey, meaning that the soil is largely covered by impervious materials and its permeability is 209 

unknown.  However, the soil on Atlantic Coastal Plain (the physiographic region where most of 210 

Philadelphia is located) generally is highly permeable (Markewich et al., 1990).  Infiltration of 211 

permeable surfaces is modeled by the Green-Ampt method (Chow et al., 1988) in our SWMM 212 

simulation, where the saturated infiltration rate is chosen based on loam (25 mm/hr).  The de-213 

pression storage for the pervious and impervious areas are 4 mm and 1.3 mm, respectively. 214 

The conveyance channel collecting stormwater is modeled as a 9 m-wide by 3 m-high rectangu-215 

lar channel with a length of 7.8 km and a Manning roughness coefficient of 0.013.  For other pa-216 

rameters for SWMM modeling not discussed here, we use default values from the  SWMM user 217 

manuals (Rossman, 2015; Rossman & Huber, 2016). 218 

2.1.3. SMP design parameters  219 

The five distinct types of SMPs evaluated in this paper include the following.  Rain gardens 220 

(RGs) are vegetated SMPs that detain stormwater to infiltrate and recharge groundwater.  Infil-221 

tration trenches (ITs) and permeable pavement (PP) are both non-vegetated infiltration SMPs.  222 

ITs are often installed for retaining stormwater from transportation right-of-ways, while PP holds 223 

stormwater directly on its surface and increases permeability to the underlying soil, relative to 224 

the impermeable pavement.  RG, IT, and PP are characterized as infiltration SMPs because they 225 

divert a portion of surface runoff to soil moisture and groundwater. Green roofs (GRs) and rain 226 

barrels (RBs) can retain or reduce stormwater from rooftops and, therefore, are characterized as 227 

roof SMPs.  However, a GR utilizes the evapotranspiration to deplete water after storms, while 228 

an RB is generally designed to delay but not reduce discharges, unless it drains primarily onto 229 

permeable surfaces.   230 

We assume that all SMP installations are in parallel so that the stormwater reductions are addi-231 

tive if multiple installations are made.  In actual GI plans, some SMPs may be installed down-232 

stream of others (e.g., rain gardens downslope from permeable pavement); we assume that such 233 
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installations in series are the exception rather than the rule. By the assumption of additivity, the 234 

SMP installations can be combined into single synthetic SMP to represent the overall perfor-235 

mance. Then we can apply the hydrologic model to assess the performance of the SMPs, in 236 

which the parameter values are assumed uncertain due to the variability of the designs, and the 237 

quality of the installations. The design parameters of SMPs and the assumptions regarding their 238 

uncertainty are presented in Supporting Information (Text S1).  239 

2.1.4. Evaluation of SMP Efficacy and Its Uncertainty 240 

We apply Monte Carlo method coupled with SWMM to estimate distributions of the stormwater 241 

reduction for each SMP type.  Recent studies have applied the same method to evaluate 242 

SWMM’s prediction uncertainty by comparing monitoring data with the modeling results  243 

(Avellaneda et al., 2017) and SMP efficacy uncertainty under future climate and land use change 244 

uncertainty (Dong et al., 2017).  Our work is distinguished from these analyses in that our esti-245 

mation focuses on the overall performance uncertainty of individual SMP type at watershed scale 246 

concerning the design variability and installation quality among the installations., whereas their 247 

analyses emphasis on the uncertainty from model selection and calibration contributed to SMP 248 

performance.  Although our analysis does not include the model and calibration uncertainty due 249 

to lack of data, the results can still provide a basis for comparison to inform investment decision 250 

making.  Model uncertainty can be incorporated in our framework when sufficient data become 251 

available, but it is beyond the scope of this paper.   252 

We chose reduced stormwater volume as the performance metric for simplicity and because we 253 

lack sufficient information to model the CSO generation process (e.g., data of sewer network and 254 

characteristics, capacities of wastewater treatment plants and their operation rules).  In addition, 255 

we use the same parameter distributions for SMP efficacy in all three subcatchments due to our 256 

limited knowledge of site conditions in the subcatchments.  These assumptions are not a limita-257 

tion of our framework for the following reasons: lack of data is common in stormwater manage-258 

ment for the high costs of monitoring and the missing sewer system information.  Moreover, our 259 

framework can accommodate different metrics and differentiated assumptions for each 260 

subcatchment, which could, for example, be implemented after the initial (first stage) invest-261 

ments are made.  262 

The Monte Carlo simulation is described as follows. In order to quantify the mean and standard 263 

deviation (SD) of stormwater reductions for each SMP, we draw one sample from each of the 264 

parameter distributions, simulate the resulting annual stormwater reduction with one-year precip-265 

itation data (from Jan. 1 to Dec 31), and repeat this process 30 times for each year from 1980 to 266 

2013 using SWMM. The precipitation data applied in this analysis are presented in Supporting 267 

Information (Text S2).  268 

The simulation assumes that a 200 ha impervious area is treated by the SMP and that the random 269 

parameters are statistically independent.  The simulation results are summarized in Table 2, 270 

where the unit is in m/yr (m
3 
stormwater reduction per m

2
 SMP per year). The coefficient of var-271 

iation (CV) is a measure of dispersion (risk) relative to the mean.  272 

Table 2 273 

Statistical Summary of SMP Annual Stormwater Reductions   274 

 

 SMP 

Upper Middle Lower 

Mean SD CV ( 
𝜇

𝜎
) Mean SD Mean SD 
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(m/yr) (m/yr) (m/yr) (m/yr) (m/yr) (m/yr) 

Rain Garden (RG) 14.71  2.27   0.15  14.75  2.22  14.57  2.20 

Infil. Trench (IT) 19.15  3.21   0.17  19.01  3.09  19.08  3.07 

Permeable Pavement (PP) 2.03  0.49   0.24    2.04  0.48  2.06  0.49 

Rain Barrel (RB) 33.36  3.08   0.09  33.27  2.95  33.41  3.09 

Green Roof (GR) 0.66  0.08   0.12    0.67  0.08  0.62  0.07 

From Table 2, we can see that the SMPs’ performances are only slightly different in the three 275 

subcatchments, which is the result of watershed geometry and rainfall pattern.  Generally 276 

speaking, SMPs performs at locations of which the treated area collects water faster, if no 277 

overflows (SMPs’s storage are not full during the storms) and at locations of which the treated 278 

area collects water slower, if SMPs overflow.  The former is the case of RG and IT in the Middle 279 

subcatchment and the latter is the case of PP and RB in the Lower subcatchment.  Since the 280 

effects only happen at site scale, the difference of the means and standard deviaions of the SMPs’ 281 

performance in the three catchments should not be viewed as real differences in distribution but 282 

rather the errors from our modeling assumption. Therefore, we assume that the SMP efficacy 283 

distributions in the Middle and Lower subcatchments are the same as the results in the Upper 284 

Subcatchment.  285 

Moreover, we can see that IT can provide the highest expected annual stormwater reduction per 286 

m
2
-installation, but it is also relatively risky, as its CV being the second-highest among the SMPs.  287 

PP is the riskiest (the highest CV) and the second lowest in stormwater reduction per m
2
-288 

installation.  For the roof SMPs, RB is better than GR for the higher stormwater reduction per 289 

m
2
-installation and lower uncertainty (lower CV). 290 

2.2. Evaluation of Cost Uncertainty 291 

The previous section described uncertainty in SMP performance in terms of annual water storage 292 

per unit area (m/yr).  This section describes the derivation of uncertainty in SMP cost ($/yr/m
2
).  293 

The ratio of performance to cost (in m
3
/$) and its uncertainty can then be derived.   294 

Our cost analysis is based on the cost information summarized in the Center for Neighborhood 295 

Technology’s “Green Values – National Stormwater Management Calculator” 296 

(greenvalues.cnt.org/national/cost_detail.php, accessed June 2018), including capital and 297 

maintenance costs, installation lifespans, and cost uncertainty ranges of the SMPs.  Because this 298 

cost information came from various sources, the values are adjusted to accommodate the local 299 

conditions based on the discussion with our Philadelphia expert (S. Szalay, personal communica-300 

tion, 2018).   301 

The cost uncertainty needed for basin planning is the uncertainty in the average cost of many in-302 

stallations rather than the cost variability of one installation.  So instead of using the cost range 303 

summary from the calculator, we adjust those ranges in order to obtain plausible ranges of aver-304 

age cost based on two criteria: 305 

1. the construction complexity of the SMP; and  306 

2. the portion of the installation cost that serves the purpose of stormwater control.  There are 307 

other costs that are sometimes incurred (such as the cost of landscaping) to enhance GI’s so-308 

cial benefits; these are highly variable and are not directly related to the purpose of the instal-309 

lation, and so for a basin-level analysis are not included. 310 

http://greenvalues.cnt.org/national/cost_detail.php
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Table 3 shows our estimates of the five SMPs’ capital costs, including their lifespans and the 311 

ranges of the annualized capital costs, and the annual maintenance costs.  The values of the aver-312 

age capital and maintenance costs are chosen based on the ranges in CNT’s cost summary and 313 

expert judgment (S. Szalay, personal communication, 2018). The annualized costs are calculated 314 

by assuming a 5% interest rate and their lifespans.  We can see that RB has the highest annual-315 

ized capital cost per m
2
-installation because the surface area of RB provides a 91cm (3 ft) storage 316 

depth and the cost estimation is based on the aggregation of rain barrels, each with 227 liters 317 

storage (60 gallons).  With economies of scale, the cost could be lower, which is not directly 318 

modeled as a function of investment size; however, such effects are at least partially captured by 319 

our modeling of learning as a function of total investment since learning can reduce SMP costs.  320 

Table 3 321 

 SMP Capital and Maintenance Costs and Uncertainty Ranges 322 

SMP 
Avg. Capital 

Cost ($/m2) 

Life 

Span 

(yr) 

Assumed Annualized Capital Cost 

Range 

Assumed Annual Maintenance 

Cost Range 

Lower 

Bound 

($/m2/yr) 

Mean 

($/m2/yr) 

Upper 

Bound 

($/m2/yr) 

Lower 

Bound 

($/m2/yr) 

Mean 

($/m2/yr) 

Upper 

Bound 

($/m2/yr) 

RG 100 30 15.1 21.6 28.1 3.5 5 6.5 

IT 150 20 13.9 19.9 25.9 5.6 8 10.4 

PP 80 15 6.7 8.3 10 3.2 4 4.8 

RB 200 20 25.2 26.5 27.9 1 1 1.1 

GR 80 30 13.8 17.3 20.7 3.2 4 4.8 

 323 

The SMPs’ annual maintenance cost ranges (Table 3) are assigned based on the frequency and 324 

complexity of maintenance.  For example, the infiltration SMPs (RG, IT, and PP) require fre-325 

quent inspection to avoiding clogging (Avellaneda et al., 2017; Fletcher et al., 2013), while RB 326 

can be inspected less often and only rarely needs replacement (US EPA, 2013).  However, 327 

maintenance of the RB often requires manual emptying of storage after storms (other designs 328 

may come with a drain hose at the bottom and discharge slowly).  We assume that the attention 329 

paid to RB maintenance and emptying would affect rain barrels’ capacity to store stormwater, 330 

which adds to the uncertainty in performance.   331 

The annualized costs per installation area in Table 4 combine the annualized capital costs and 332 

maintenance costs under the assumption that the two costs are perfectly correlated (unexpectedly 333 

high capital costs are likely to be accompanied by higher maintenance costs as well). Table 4 al-334 

so shows the annualized cost per treated area (the annualized costs per installation area divided 335 

by the average drainage area ratio), which are the costs for treating the impervious surface. It ap-336 

pears that the annualized cost per treated area is mostly determined by the SMP’s treated area to 337 

surface area ratio (drainage area ratio).  RG and PP are expensive because of their low treatment 338 

ratios, whereas RB becomes the cheapest SMP because of its high treatment ratio even though 339 

they are the most expensive SMP per m
2
-installation.   340 

Table 4 341 

SMP Annualized Costs per m
2
-installation and per m

2
-treated   342 

SMP Annualized Cost per Installation Area Avg. 

Drainage 

Annualized Cost per Treated Area 

Lower Mean Upper Lower Mean Upper Bound 
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Bound 

($/m2/yr) 

($/m2/yr) Bound 

($/m2/yr) 

area ratio Bound 

($/m2/yr) 

($/m2/yr) ($/m2/yr) 

RG  18.6   26.6   34.6  24  0.78   1.11   1.44  

IT  19.5   27.9   36.3  30  0.65   0.93   1.21  

PP  9.9   12.3   14.8  1.5  6.57   8.21   9.85  

RB  26.2   27.5   28.9  108  0.24   0.25   0.27  

GR  17.0   21.3   25.5  1  17.03   21.29   25.55  

 343 

We calculate the distribution of each SMP’s cost-effectiveness using Monte Carlo simulation by 344 

drawing samples from the annualized cost (per treated area) distributions (assumed to be uniform 345 

between the lower and upper bounds of Table 4) and from the results of SWMM performance 346 

simulations (Table 2). Costs and stormwater reductions are assumed to be independent.  In 347 

addition, we assumed that the costs in the Middle and Lower subcatchments are 5% and 10% 348 

less than the values shown in Table 4 because of the lower property values in those areas, which 349 

provides an incentive to invest in the Lower and Middle over the Upper subcatchments.  Table 5 350 

shows the statistical summary of the SMP’s cost-effectiveness in m
3
/$ of the subcatchments, 351 

where IT is the most cost-effective SMP while GR is the least.  The values of CV indicate that 352 

PP is the most uncertain SMP and RB is the least risky one.  The CV values of the SMPs are the 353 

same for the subcatchments because the cost adjustment would cancel out.   354 

Table 5  355 

SMP Cost-effectiveness and Uncertainty per Unit Installation Areas by Subcatchment (based on 356 

Tables 2 and 4) 357 

SMP 

Upper 
Middle Lower 

Stormwater Reduction 

(m3/ha) 

Mean 

(m3/$) 

SD  

(m3/$/yr) 
CV 

Mean 

(m3/$) 

SD  

(m3/$/yr) 

Mean 

(m3/$) 

SD  

(m3/$/yr) 

Per ha of 

Drainage 

Area 

Per ha of Instal-

lation 

RG 0.437 0.106 0.243 0.460 0.112 0.486 0.118 4,851      147,090  

IT 0.537 0.127 0.236 0.565 0.134 0.597 0.141 4,994      191,523  

PP 0.127 0.036 0.283 0.134 0.038 0.141 0.040 10,427        20,258  

RB 0.927 0.087 0.094 0.976 0.092 1.030 0.097 2,318      333,581  

GR 0.024 0.004 0.167 0.025 0.004 0.027 0.004 5,110          6,620  

 358 

From the values of the SMP cost-effectiveness per ha installation (next to the last column in Ta-359 

ble 5), we can see that a low-cost investment strategy would be to install IT for impervious 360 

ground surfaces and RB for impervious roofs.  However, the relatively low amount of storm-361 

water reduction per ha of drainage area for IT and RB means that if a large amount of reduction 362 

is desired, these measures will not be as effective as other approaches (namely PP and GR, re-363 

spectively).  For instance, for a given roof drainage area, GRs will reduce more stormwater than 364 

RBs (as indicated by the last column of Table 5), even though RBs are more cost-effective (in 365 

m
3
/$).   366 
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3. Modeling GI Investment Planning and Learning  367 

Our GI investment planning model is an extension of the basic method proposed by Hung and 368 

Hobbs (2019). The basic approach accounts for the following characteristics of the GI decision 369 

framework: 370 

 optimization of stormwater reduction over multiple years subject to monetary budget limita-371 

tions and the acceptable risk level specified by users;  372 

 uncertainty in SMP performance and cost that changes from one investment decision stage to 373 

the next as a result of learning and investment; and  374 

 adaptive investment planning framework, including multiple investment decision stages (e.g., 375 

years 0 and 5) and consideration of the value of learning for improving decisions in later 376 

stages. 377 

The method is structured as a two-stage stochastic program with recourse, in which uncertainties 378 

are characterized by discrete scenarios with probabilities.  The uncertain coefficients are the 379 

SMP cost-effectiveness, which follow some distributions representing the current understanding 380 

of the SMPs cost-effectiveness. Based on the learning assumptions, the distribution parameters 381 

would be updated if the first-stage investments exceed the learning thresholds. For example, the 382 

multi-stage learning model with technology improvement assumes that, if learning criteria are 383 

met, the mean values of the cost-effectiveness distributions will increase by 𝛾%, and the standard 384 

deviation would be reduced by 𝛽%. Our GI investment planning model is developed based on 385 

this variant.  386 

The differences of our method compared to the original method presented in Hung and Hobbs 387 

(2019) are as follows. The highly simplified hypothetical example presented in that reference 388 

considers a single subcatchment, disregards the possibility of deterioration over time of perfor-389 

mance of existing installations, and does not consider that learning about SMPs at one location is 390 

transferable to SMPs at other locations.  In this paper, we incorporate these considerations into 391 

our model by introducing new random variables for deterioration and constraints for modeling 392 

knowledge transfer.  We also test the system based on SWMM hydrological simulations and cost 393 

estimates for an actual case study, the Wingohocking watershed, rather than a simple hypothet-394 

ical illustration. 395 

3.1. Assumptions and Problem Settings 396 

Following the Philadelphia’s Green City Clean Waters (GCCW) program, the total planning 397 

horizon is set to 25 years where the first stage starts at year 0 and the second stage starts at year 5.  398 

Although the planning and review cycle of the GCCW program is every 5 years, which means 5 399 

planning stages in total, we only model the first stage decisions (the near-term decisions) and 400 

combine the rest into the second decision stage (the long-term decisions).   401 

Therefore, the objective of the planning model is to maximize the expected stormwater reduction 402 

over a 25-year time horizon by making investments in the SMPs in the subcatchments while 403 

considering constraints representing the total budget (which limits investment amounts), 404 

impervious roof and ground area of each subcatchment (which limit installation opportunities), 405 

risks of realizing a low stormwater reduction (in the form of a conditional value of risk,CVAR), 406 

and learning (which use Bayes Law to update distributions of the SMP cost-effectiveness).  This 407 

is essentially a multi-objective optimization where the objectives are (1) maximizing expectation 408 
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of the stormwater reduction over the horizon, (2) maximizing CVAR (defined as the conditional 409 

expectation of the stormwater reduction for the poorest 10% of realizations), or (3) minimizing 410 

cost. We use the epsilon constraint method of multi-objective optimization,  in which the prob-411 

lem is solved repeatedly as single-objective optimization while treating the other objectives as 412 

constraints with various user-specified upper bounds (for maximization objectives) or lower 413 

bounds (for minimization objectives) (Deb, 2014), to search for the Pareto-optimal solutions. By 414 

applying the epsilon constraint method, we can describe tradeoffs among these three objectives.  415 

Uncertainty is characterized using the magnitude of the standard deviation of a distribution, and 416 

we assume that learning would cause a decrease in the standard deviation.  In addition, if learn-417 

ing contributes to technological progress, it could also lead to an increase in the expected value 418 

in the SMPs’ cost-effectiveness.  More details of the learning assumptions are presented below.  419 

3.1.1. Basic Learning (BL) and Advanced Learning (AL)  420 

In this case study, we assume that the learning for an SMP has two levels, which are triggered if 421 

cumulative investment in that SMP in the first (year 0) decision stage exceeds predefined learn-422 

ing thresholds. The lower level of learning, basic learning (BL), has a lower investment threshold 423 

and can result in the second stage (here, year 5) realizing both (1) a reduction in uncertainty con-424 

cerning the SMP’s cost-effectiveness (standard deviation) and (2) technological progress, re-425 

flected in an increase in an expected SMP’s cost-effectiveness over what it would have been oth-426 

erwise. Meanwhile, the higher level of learning, advanced learning (AL), has a higher investment 427 

threshold and can provide a greater boost in the cost-effectiveness of second stage SMP invest-428 

ment and a larger uncertainty reduction. On the other hand, if the first stage investment in an 429 

SMP does not reach the BL thresholds, the cost-effectiveness distribution would remain un-430 

changed in the second stage, called no learning (NL).  431 

Based on consultations with our local expert (S. Szalay, personal communication, 2018), the as-432 

sumptions concerning learning thresholds for each of the SMPs and the corresponding changes 433 

in the SMPs’ cost-effectiveness distributions in the second stage are summarized in Table 6.  Re-434 

finement of the learning thresholds and changes in distributions could be a subject for future 435 

study based on consultation with multiple experts or statistical analysis of actual experience. 436 

Table 6  437 

Assumptions about Changes in Mean and Standard Deviation (SD) of SMP Cost-effectiveness 438 

Realized in the Second Stage (year 5) as a Result of Learning, and the Investment Thresholds for 439 

Learning 440 

SMP Basic Learning Advanced Learning 

Mean ad-

justment 

(γ𝐵𝐿) 

SD ad-

justment 

(β𝐵𝐿) 

Threshold 

($K) 

Mean adjust-

ment (γ𝐴𝐿) 

SD adjust-

ment (β𝐴𝐿) 

Threshold 

($K) 

RG +10 % -30 % 2,200 +30 % -50 % 10,000 

IT +10 % -30 % 1,000 +20 % -50 % 4,000 

PP +10 % -30 % 160 +20 % -50 % 350 

RB +5 % -30 % 30 +10 % -50 % 60 

GR +10 % -30 % 350 +30 % -50 % 700 
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3.1.2. Partially Transferable Learning 441 

When learning happens, the knowledge gains from one SMP in a subcatchment may be partially 442 

applicable to the other subcatchments. For example, if we learned about the rain gardens in the 443 

Lower subcatchment, we may expect the rain gardens in the Middle and Upper subcatchment to 444 

perform similarly. However, we may not know the costs of the SMPs in the Middle and Upper 445 

subcatchment if we did not invest there. Therefore, we assume the learning is only partially 446 

transferrable across locations. That is, if the investment in one SMP triggers AL in one sub-447 

catchment, the same SMP in the other subcatchment would have BL even though the invest-448 

ments there are below the BL investment thresholds.  449 

Similarly, the knowledge transfer could happen between different types of SMPs in a subcatch-450 

ment.  For example, RG and IT are both infiltration practices treating stormwater runoff from the 451 

ground impervious area, so learning about one of them may also teach us about the other.  It is 452 

not difficult to model both types of learning, but in this case study, we only model the former 453 

(learning transfers between subcatchments) for simplicity. 454 

3.1.3. Performance deterioration 455 

Studies have shown that the performance of installations of infiltration SMPs (RG, IT, and PP) 456 

would deteriorate over time due to clogging, with the rate depending on the inflow water quality, 457 

pretreatment, and maintenance (Bergman et al., 2011; Drake & Bradford, 2013).  Deterioration 458 

may also happen to roof practices (RB and GR). Unfortunately, data to support estimates of dete-459 

rioration rates is unavailable.  Nonetheless, we believe that it is important to consider the deterio-460 

ration process in a long-term planning problem, in part because practitioners believe that differ-461 

ent SMPs are likely to experience different rates of deterioration.  To model deterioration, we 462 

assume that the stormwater reduction (and thus cost-effectiveness) of an SMP installed in the 463 

first stage would, on average, decrease by a fraction,  𝐷𝐼, on average over the 5 years (denoted 464 

𝑇𝐼) between the first and second decision stages, and by 𝐷𝐼𝐼 over the 20 years (denoted 𝑇𝐼𝐼)  fol-465 

lowing the second stage.  For second stage installations, we assume that the deterioration rate is 466 

also 𝐷𝐼𝐼. This simplification could result in a slight disadvantage for second stage installations, 467 

but sensitivity tests showed that the exact value used for those installations did not appreciably 468 

affect the solutions. 469 

 The local GI expert gave quantitative judgments of the distributions of the values of 𝐷𝐼  and 𝐷𝐼𝐼 470 

shown in Table 7; we assume that uniform distributions with the means and ranges shown in Ta-471 

ble 7.  These distributions represent parameter uncertainty concerning the mean over many in-472 

stallations over the time horizon, and not the variability among individual facilities, which would 473 

be expected to be much greater.  474 

Table 7  475 

Assumptions Concerning Performance Deterioration of Stage I and Stage II Installations 476 

 

SMP 

Stage I Stage II 

Lower 

Bound 

Mean 

 

Upper 

Bound 

Lower 

Bound 

Mean 

 

Upper 

Bound 

RG 0.9 0.95 1 0.7 0.8 0.9 

IT 0.9 0.95 1 0.6 0.75 0.9 

PP 0.7 0.85 1 0.5 0.6 0.7 

RB 0.9 0.95 1 0.7 0.8 0.9 
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GR 0.95 0.975 1 0.9 0.93 0.95 

3.1.4. Prior and Posterior Distributions of SMP Cost-effectiveness 477 

The first stage cost-effectiveness values (denoted as vector 𝐶𝐼 in m
3
/$) have a prior probability 478 

distribution that represents our current understanding of the SMPs’ cost-effectiveness; if no 479 

learning occurs, then that same distribution applies to the second stage cost-effectiveness, inde-480 

pendent of what 𝐶𝐼 occurred (realized).  But if learning occurs, then the prior distribution would 481 

be updated to a posterior distribution of 𝐶𝐼𝐼. For the mathematical formulation, we generate sce-482 

narios to represent the uncertainty, as explained in Section 3.1.5. The updated distribution in sce-483 

nario s is the posterior distribution, conditioned on the scenario s, which is denoted 𝐶𝐼𝐼𝑁𝑠, 𝐶𝐼𝐼𝐵𝑠, 484 

or 𝐶𝐼𝐼𝐴𝑠, if no learning, BL, or AL happens, respectively.  Depending on which s occurs, the pos-485 

terior mean cost-effectiveness may be high or low; when this deviates from the prior expected 486 

value, this indicates that learning has occurred that indicates that the performance is either better 487 

or worse than what was originally expected. 488 

For ease of computation, when learning occurs, the distribution of the posterior expected values, 489 

across s, is assumed to be adequately approximated by a normal distribution.  (If no learning oc-490 

curs, then the posterior expected value is just the prior expected value.)  For the cases of BL and 491 

AL, this distribution may deviate from the prior if it is also assumed that there is a technological 492 

improvement as a result of learning, in which case, the mean cost-effectiveness is increased. Ta-493 

ble 6 shows that the mean adjustments are 10% (𝛾𝐵𝐿) for BL and 30% (𝛾𝐴𝐿) for AL for most 494 

technologies, except for the simpler technologies of rain barrels and infiltration trenches, where 495 

less improvement is expected.  496 

Each posterior has a reduced standard deviation equal to ((1 + 𝛽)σ, where 𝛽 is the uncertainty 497 

adjustment (negative values; either 𝛽𝐵𝐿 or 𝛽𝐴𝐿 in Table 6, depending on the amount of invest-498 

ment), and σ is the standard deviation of the prior distribution.  The standard deviation of the ex-499 

pected posterior value is √(1 − (1 + 𝛽)2)𝜎, which can be derived from the Law of Total Vari-500 

ance (Hung and Hobbs, 2019) 501 

To represent the prior distributions, we simply use the sets of Monte Carlo samples (“sampling 502 

distribution”) generated for the cost-effectiveness assessment of the SMPs in Section 2, based on 503 

the assumed prior means and standard deviations (Table 5).  The samples are saved and reused in 504 

the scenario generation process.  By recycling the samples, we need to make neither assumptions 505 

about the distributions of the SMPs’ cost-effectiveness nor to perform distribution fitting.  The 506 

posterior distributions are also sampling distributions where the means and standard deviations 507 

are adjusted based on the learning assumptions, which are explained next. 508 

3.1.5. Scenario Generation Procedure 509 

Our mathematical formulation below (Section 3.2.) requires 𝑚𝐼  scenarios of SMP cost-510 

effectiveness in the first stage and, for each first stage scenario, 𝑚𝐼𝐼 scenarios of second stage 511 

cost-effectiveness for each of the learning cases (NL, BL, and AL), where 𝑚𝐼 and 𝑚𝐼𝐼 are user-512 

specified. Figure 3 provides a decision tree to illustrate the structure of the model and the scenar-513 

ios, where the squares are the decision nodes, the circles are the chance nodes, the lines emitting 514 

from chance nodes are the scenarios, and the end of each branch is an outcome (𝑓𝑠,𝑟, s∈ 𝑚𝐼 and 515 

r∈ 𝑚𝐼𝐼 are the indices of the first and second stage scenarios, respectively). At this point, let us 516 

simplify the explanation by imagining that the decision tree represents just the investment deci-517 
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sion for one SMP on one subcatchment. First, a decision is made about the amount of Stage I in-518 

vestment (year 0, left-most node). The state of knowledge at that point in time about that SMP’s 519 

effectiveness is represented by the prior distribution. Following the investment, then only one of 520 

the three learning cases can happen for that SMP; if investment in the first stage is high enough, 521 

then either BL or AL can occur, otherwise NL occurs.  The first chance node then represents 522 

possible realizations (𝑚𝐼 distinct scenarios s) of CI for that SMP as well as what is learned (i.e., 523 

whether one learns that the SMP’s effectiveness per $ is likely to be higher or lower than the pri-524 

or expected value).  The decision tree shows that the next thing to happen is that a Stage II deci-525 

sion about investment in that SMP (year 6 in our case study, represented by the second set of de-526 

cision nodes). The state of knowledge at that point in time is the posterior distribution of effec-527 

tiveness; if learning takes place then the variance of possible outcomes is narrowed relative to 528 

the prior, and depending on which scenario s occurred (i.e., what exactly is learned), the ex-529 

pected value changes relative to the prior.  Following that investment, the actual effectiveness 530 

𝑓𝑠,𝑟 of the SMP is realized, depending on which of the 𝑚𝐼𝐼 second stage scenarios r occurs. At 531 

this point, we know what decisions have been made in the two stages and the resulting precise 532 

impact on stormwater.   533 

 534 

Figure 3. Decision tree representation of the prior, posteriors, and scenarios, in the adaptive GI 535 

investment planning model 536 

In contrast to the decision process just described, the optimization model actually considers five 537 

SMPs and three subcatchments. Consequently, the investment decisions at each stage are a vec-538 

tor length 15, one element per SMP and catchment.  Similarly, a scenario of CI or CII for a par-539 

ticular stage also consists of a vector of length 15 (15 values of cost-effectiveness, one for each 540 

combination of SMP technology and subcatchment).  The probabilities of these scenarios s and r 541 

reflect any assumptions about joint distributions across SMPs and subcatchments.  Posterior joint 542 

distributions reflect the learning that occurs for each SMP, based on the first stage investments, 543 

as well as assumptions about how learning about one SMP affects learning about others.  The 544 
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total number of paths in the scenario tree equals 𝑚𝐼 ∗ 𝑚𝐼𝐼 multiplying by the combinations of 545 

learning outcomes (3
15

). The first stage scenario is indexed by 𝑠 ∈ 𝑆𝐼 and the second stage sce-546 

nario is indexed by 𝑟 ∈ 𝑆𝐼𝐼. The mathematical formulation in Section 3.2 is more complicated for 547 

the risk and physical constraints and the consideration of transferable learnings. 548 

The scenario generation procedure is as follows.  For each first-stage scenario s, SMP i, and sub-549 

catchment j:  550 

 Generate one cost-effectiveness realization for each SMP from the prior distributions 551 

(resample from the sampling distributions), denoted by the vector 𝐶𝐼𝑠, of which the elements 552 

are the cost-effectiveness realizations of SMP i and subcatchment j, denoted 𝐶𝐼𝑠(𝑖,𝑗)   553 

 Generate one sample (vector) from the expected value distributions of BL and AL each, de-554 

noted 𝐶𝐼𝐵𝑠 and 𝐶𝐼𝐴𝑠, respectively.  This is assumed independent to the 𝐶𝐼𝑠 realization. This 555 

assumption is based on the idea that learning of the expected value may not necessarily come 556 

from just data. It could be the information extracted from modeling and monitoring data, per-557 

sonal experience or something else. For example, the stormwater manager may learn that the 558 

poor performance in the first-stage installations was the results of some design flaws, which 559 

could be corrected easily to improve the performance, or that the high performance  in the 560 

first stage installations was due to siting on the best sites  and would expect a decline in aver-561 

age performance with more installation in the second stage.   562 

 Generate 𝑚𝐼𝐼 samples from the prior for no learning case, denoted 𝐶𝐼𝐼𝑁𝑠,𝑟 563 

 Generate 𝑚𝐼𝐼 samples from the posterior distribution of the BL case (denoted 𝐶𝐼𝐼𝐵𝑠,𝑟), where 564 

the mean is equal to 𝐶𝐼𝐵𝑠 and the standard deviation is equal to √(1 − (1 + 𝛽𝐵𝐿)
2)𝜎 565 

 Generate 𝑚𝐼𝐼 samples from the posterior distribution of the AL case (denoted 𝐶𝐼𝐼𝐴𝑠,𝑟), where 566 

the mean is equal to 𝐶𝐼𝐴𝑠 and the standard deviation is equal to √(1 − (1 + 𝛽𝐴𝐿)
2)𝜎 567 

 This sampling procedure does not need to make assumptions about the posterior distributions 568 

but simply resample and adjust the mean and variance based on the learnings. This allows the 569 

user to work with empirical distributions and data for the distributions in real-world cases 570 

that are often difficult to characterize.  571 

3.2. Mathematical Formulation 572 

In this section, we present only our modification of the original formulation in the following or-573 

der:  decisions, objectives, learning constraints, risk constraints, and physical constraints.  Please 574 

refer to Hung and Hobbs (2019) for the complete formulation. 575 

3.2.1. The Decisions 576 

The decisions are the annualized investments ($/yr) in the SMPs (denoted by 𝑥𝐼 for the invest-577 

ment decisions in the first stage and 𝑥𝐼𝐼 for the decisions in the second stage).  𝑥𝐼 and 𝑥𝐼𝐼 are de-578 

cision vectors that contain 15 elements representing the investment in the five SMPs at the three 579 

locations. The investment in SMP i at subcatchment j in the first stage is denoted 𝑥𝐼,(𝑖,𝑗) and the 580 

investment in the second stage, scenario s, is denoted 𝑥𝐼𝐼𝑠,(𝑖,𝑗). The sets of SMPs and the sub-581 

catchments are denoted as 𝑆𝑀𝑃 = {𝑅𝐺, 𝐼𝑇, 𝑃𝑃, 𝑅𝐵, 𝐺𝑅} and 𝑆𝑢𝑏 = {𝑈𝑝𝑝𝑒𝑟,𝑀𝑖𝑑𝑑𝑙𝑒, 𝐿𝑜𝑤𝑒𝑟}. 582 
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The second-stage investment decisions (𝑥𝐼𝐼𝑠) in scenario s consist of the decisions under three 583 

learning cases: no learning (𝑥𝐼𝐼𝑁𝑠), basic learning (𝑥𝐼𝐼𝐵𝑠), and advanced learning (𝑥𝐼𝐼𝐴𝑠).  That is, 584 

𝑥𝐼𝐼𝑠 = (𝑥𝐼𝐼𝑁𝑠, 𝑥𝐼𝐼𝐵𝑠, 𝑥𝐼𝐼𝐴𝑠). The investments are assumed non-negative.   585 

𝑥𝐼 , 𝑥𝐼𝐼𝑁𝑠 , 𝑥𝐼𝐼𝐵𝑠, 𝑥𝐼𝐼𝐴𝑠 ≥ 0, ∀𝑠 ∈ 𝑆𝐼                                                                                  (1) 586 

One caveat is that if investments are made in the first stage, some SMPs may reach their service 587 

life before the end of the planning horizon. We assume that the replacement would be installed 588 

immediately at the end of an SMP’s service life and the average cost-effectiveness would remain 589 

unchanged throughout the planning horizon. This allows us to model the investment problems as 590 

a two-stage programming (now and later) to avoid the curse of dimensionality. The replacement 591 

problem can be a future direction, but it is beyond the scope of this paper.  592 

3.2.2. The Objective – Maximizing Expected Annual Stormwater Reduction 593 

The objective (𝑓) is the expected annual stormwater reduction as shown in Eq. 2, where E[𝐶𝐼] is 594 

the vector of the expected values of the SMPs’ annual stormwater reduction per $ investment 595 

based on our current understanding (i.e., the prior); 𝐶𝐼𝐵𝑠 and 𝐶𝐼𝐴𝑠 are the vectors of our predic-596 

tion on the SMPs’ expected performance for basic learning and advanced learning, respectively  597 

(i.e., the posteriors); 𝐷𝐼 and 𝐷𝐼𝐼 are fractions representing the average loss of the SMPs’ capacity 598 

in stormwater reduction in the first stage and the second stage, respectively; and 𝑇𝐼and 𝑇𝐼𝐼 are the 599 

time horizons of the first and second stages, respectively.  600 

𝑀𝑎𝑥 𝑓 =  
𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
E[𝐷𝐼𝐶𝐼]𝑥𝐼 +

𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
(𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼]𝑥𝐼 + 𝐸[𝐷𝐼𝐼(𝐶𝐼𝑥𝐼𝐼𝑁𝑠 + 𝐶𝐼𝐵𝑠𝑥𝐼𝐼𝐵𝑠 + 𝐶𝐼𝐴𝑠𝑥𝐼𝐼𝐴𝑠)]) (2) 601 

Multiplying the objective by the planning horizon (
1

𝑇𝐼+𝑇𝐼𝐼
), we can get the annual average storm-602 

water reduction over that time period.  That is, the objective is essentially to maximize the total 603 

stormwater reduction over the planning horizon.  As a result, deferring investments to the second 604 

stage would mean an opportunity cost is incurred, in the form of giving up of stormwater reduc-605 

tions for the years in the first stage.  Another way to interpret the objective is to view 
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
 as a 606 

discount factor for the worth of future benefits. This formulation allows the user to manipulate 607 

the values of 𝑇𝐼 and 𝑇𝐼𝐼 and assess how the decisions change with the discount factor. 608 

3.2.3. Learning Constraints 609 

Eqs. 3 and 4 are the constraints for modeling the investment – learning relationship, where 610 

𝑇ℎ(𝑖,𝑗)
𝐵𝐿  and 𝑇ℎ(𝑖,𝑗)

𝐴𝐿  are the learning thresholds of SMP i at subcatchment j for basic learning and 611 

advanced learning, respectively; 𝐿𝑁𝐿,(𝑖,𝑗), 𝐿𝐵𝐿,(𝑖,𝑗), and 𝐿𝐴𝐿,(𝑖,𝑗) are binary variables that indicate 612 

whether learning happens or not; and M is an arbitrarily large number (e.g., 10
8
). 613 

{
 
 
 

 
 
 
(𝑎): 𝐿𝑁,(𝑖,𝑗) + 𝐿𝐵,(𝑖,𝑗) + 𝐿𝐴,(𝑖,𝑗) = 1                                           

(𝑏) : − 𝑥𝐼,(𝑖,𝑗) + 𝑇ℎ(𝑖,𝑗)
𝐴𝐿 𝐿𝐴,(𝑖,𝑗) ≤   0                                          

(𝑐): 𝑥𝐼,(𝑖,𝑗) −𝑀𝐿𝐴,(𝑖,𝑗)   ≤ 𝑇ℎ(𝑖,𝑗)
𝐴𝐿                                               

(𝑑): 𝑥𝐼,(𝑖,𝑗) −𝑀(𝐿𝐵,(𝑖,𝑗) + 𝐿𝐴,(𝑖,𝑗)) ≤ 𝑇ℎ(𝑖,𝑗)
𝐵𝐿                            

(𝑒) : − 𝑥𝐼,(𝑖,𝑗) + 𝑇ℎ(𝑖,𝑗)
𝐵𝐿 (𝐿𝐵,(𝑖,𝑗) −∑ 𝐿𝐴,(𝑖,𝑘)𝑘∈𝑆𝑢𝑏,𝑘≠𝑗 ) ≤ 0   

(𝑓): 𝐿𝐴,(𝑖,𝑗) − 𝐿𝐴,(𝑖,𝑘) − 𝐿𝐵,(𝑖,𝑘) ≤ 0 , 𝑘 ∈ 𝑆𝑢𝑏, 𝑘 ≠ 𝑗           

   , ∀𝑖 ∈ 𝑆𝑀𝑃, 𝑗 ∈ 𝑆𝑢𝑏                       614 

(3)
 

615 
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{

𝑥𝐼𝐼𝑁𝑠,(𝑖,𝑗) −𝑀𝐿𝑁𝐿,(𝑖,𝑗) ≤ 0    

𝑥𝐼𝐼𝐵𝑠,(𝑖,𝑗) −𝑀𝐿𝐵𝐿,(𝑖,𝑗) ≤ 0     

𝑥𝐼𝐼𝐴𝑠,(𝑖,𝑗) −𝑀𝐿𝐴𝐿,(𝑖,𝑗) ≤ 0      
 , ∀𝑖 ∈ 𝑆𝑀𝑃, 𝑗 ∈ 𝑆𝑢𝑏 and ∀ 𝑠 ∈ 𝑆𝐼                                               (4) 616 

The constraints of Eq. 3 forcing only one of the situations (NL, BL, and AL) can happen to an 617 

SMP, based on the first-stage investment.  The corresponding binary learning variable would be 618 

set to 1, and the rest would remain 0.  In addition, as discussed in Section 3.1.1, we assume that 619 

for an SMP 𝑖 in the subcatchment 𝑗, if AL happens, it will also update the cost-effectiveness dis-620 

tribution of SMP 𝑖 in other subcatchments with BL. This transferrable learning is modeled as Eq. 621 

3(e) and 3(f). 622 

Once we know which case (NL, BL, or AL) we are in, the corresponding second stage decision 623 

variables would be activated (allows to be non-zero), and the decision variables of other situa-624 

tions would be set to 0 (Eq. 4). 625 

3.2.4. Risk Metric 626 

The risk matric applied in this formulation is the conditional value at risk (CVaR).  The CVaR 627 

value of a random variable, f, is the expected value of the left tail below the value of the α-th 628 

quantile, denoted 𝐶𝑉𝑎𝑅𝛼(𝑓), and the value at the α-th quantile is called the value at risk (VaR), 629 

denoted 𝑉𝑎𝑅𝛼(𝑓) .  For example, a 𝐶𝑉𝑎𝑅0.1(𝑓)  value of 1-million-ton stormwater reduction 630 

means that the average of the lowest 10% outcomes is 1 million tons. Therefore, a higher CVaR 631 

value is more desirable. More discussion of this risk metric and its mathematical properties is 632 

available in Artzner et al. (1999) and Rockafellar & Uryasev (2000).  The mathematical defini-633 

tions of VaR and CVaR are as follows.  634 

VaR: 𝑉𝑎𝑅𝛼(f) = Arg𝑀𝑖𝑛𝑦 { 𝑃𝑟𝑜𝑏(𝑓 ≤ 𝑦) ≥ 𝛼}                                                          635 

CVaR: C𝑉𝑎𝑅𝛼(f) = 
1

𝛼
∫ 𝑉𝑎𝑅𝑡(𝑓)𝑑𝑡
𝛼

0
                                                                                                        636 

We adopted the method proposed by Krokhmal et al. (2001) for our formulation, where the 637 

CVaR can be calculated using linear constraints in an optimization.  The method is based on 638 

discretizing the random distributions by drawing sample sets.  Each sample set represents a sce-639 

nario with probability 1/m, where m is the number of the sample sets.   640 

The mathematical formulation is as follows.  641 

{
𝑧𝑠,𝑟 ≥ 𝜏 − 𝑓𝐼𝐼𝑠,𝑟 , ∀𝑠 ∈ 𝑆𝐼 , 𝑟 ∈ 𝑆𝐼𝐼           

𝜏 −
1

𝛼∗𝑚𝐼𝑚𝐼𝐼
∑ ∑ 𝑧𝑠,𝑟

𝑚𝐼𝐼
𝑟=1 ≥ 𝐶𝑉𝑎𝑅𝛼

𝑚𝐼
𝑠=1 ,

                                                                                         (5) 642 

𝑓𝐼𝐼𝑠 = 𝐷𝐼𝑠𝐶𝐼𝑠𝑥𝐼 + 𝐷𝐼𝐼𝑠(𝐷𝐼𝑠𝐶𝐼𝑠𝑥𝐼 + 𝐶𝐼𝐼𝑁𝑠,𝑟𝑥𝐼𝐼𝑁𝑠 + 𝐶𝐼𝐼𝐵𝑠𝑥𝐼𝐼𝐵𝑠 + 𝐶𝐼𝐼𝐴𝑠,𝑟𝑥𝐼𝐼𝐴𝑠), ∀𝑠 ∈ 𝑆𝐼 , 𝑟 ∈ 𝑆𝐼𝐼          (6) 643 

where 𝑧𝑠,𝑟 is the auxiliary variable for CVaR calculation, 𝜏 is a variable representing VaRα, 𝑓𝐼𝐼𝑠,𝑟 644 

is a linear objective function with the coefficient set equal to the sample set of cost-effectiveness 645 

values in scenario (s,r), and 𝐶𝑉𝑎𝑅𝛼 is the target CVaR value specified by the user (i.e., the least 646 

acceptable outcome having a chance of α).  647 

3.2.5. Total Budget and Impervious Area 648 

We assume a total budget (denoted B) in the study area for the 25-year planning horizon. The 649 

impervious areas of the three subcatchments are divided into the ground (60%) and roof (40%) 650 
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areas, which is approximated by visual inspection and randomly sampling points on the aerial 651 

photographs on Google Map. These numbers could be updated if further information is available 652 

for the sewershed.  Eq. 7 is the total budget constraint; for each scenario, this limits the sum of 653 

annual expenditures x on each SMP within each subcatchment over the time horizon to B.  Eqs. 8 654 

and 9 are the constraints imposed by the amount of impervious surface of the ground and rooftop 655 

area, respectively, upon the amounts of SMP investment of each type that can be made.  The no-656 

tation includes the following:  G = {RG, IT, PP} is the set of the ground SMPs; R ={RB, GR} is 657 

the set of the roof SMPs; 𝑇𝐴,(𝑖,𝑗) is drainage area ratio; 𝐸𝑐,(𝑖,𝑗) is the prior expected cost per m
2
 per 658 

year of SMP i at subcatchment j; and 𝐴𝐺,𝑗  𝐴𝑅,𝑗 are the total impervious surface area and total 659 

impervious roof area, respectively, in subcatchment j.  660 

∑ ∑ {(𝑇𝐼 + 𝑇𝐼𝐼)𝑥𝐼,(𝑖,𝑗) + 𝑇𝐼𝐼(𝑥𝐼𝐼𝑁𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐵𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐴𝑠,(𝑖,𝑗))𝑗∈𝑆𝑢𝑏 }𝑖∈𝑆𝑀𝑃 − 𝐵 ≤ 0, ∀ 𝑠 ∈ 𝑆𝐼                (7) 661 

∑
𝑇𝐴,(𝑖,𝑗)

𝐸𝑐,(𝑖,𝑗)
(𝑥𝐼,(𝑖,𝑗) + 𝑥𝐼𝐼𝑁𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐵𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐴𝑠,(𝑖,𝑗))𝑖∈𝐺 − 𝐴𝐺,𝑗 ≤ 0, ∀𝑗 ∈ 𝑆𝑢𝑏, 𝑠 ∈ 𝑆𝐼                   (8) 662 

∑
𝑇𝐴,(𝑖,𝑗)

𝐸𝑐,(𝑖,𝑗)
(𝑥𝐼,(𝑖,𝑗) + 𝑥𝐼𝐼𝑁𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐵𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐴𝑠,(𝑖,𝑗))𝑖∈𝑅 − 𝐴𝑅,𝑗 ≤ 0, ∀𝑗 ∈ 𝑆𝑢𝑏, 𝑠 ∈ 𝑆𝐼                   (9) 663 

4. Results and Discussion 664 

In this section, we describe tradeoffs between the three objectives–total stormwater reductions, 665 

total cost, and risk–by changing constraints on two of the objectives (budget and CVaR/risk) and 666 

noting their effect on the optimal decisions and resulting stormwater reductions.  Increasing the 667 

budget gives us an estimate of the incremental cost of stormwater reductions using GI, while in-668 

creasing the risk target will show how becoming more averse to the possibility of particularly 669 

bad stormwater performance has a cost in terms of worsening the expected (probability-670 

weighted) performance.  As we will show, changing the risk target favors different SMPs, and 671 

affects the attractiveness of investment in learning and deferring investment until more is known 672 

about the performance of SMPs.  673 

4.1. Effect of the Budget on Stormwater Reductions, Optimal GI Investment Mix, and Learning  674 

In order to focus on cost-expected stormwater reduction tradeoffs, we first did a series of runs 675 

with the CVaR constraint dropped from the model. Section 4.2, which follows, instead explores 676 

how changing our risk tolerance, as measured by the CVaR constraint, affects the results.   677 

We solved the model forty times with a range of budgets for the 25-year planning horizon, vary-678 

ing from $0.08 billion to $3.2 billion. The impacts on decisions and stormwater are organized in 679 

Figure 4.  Part (a) shows how investments allocated among subcatchments, (b) shows the 680 

investments grouped by SMP type (the left y-axis) and how much they reduce expected annual 681 

runoff (the right y-axis), (c) shows how investment commitments are divided between the first 682 

and the second stages, and (d) is an enlargement of (b) providing more detail on how investments 683 

are allocated among SMP types.   684 
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 685 

Figure 4. First stage investments as a function of budget; (a) optimal GI investment allocations 686 

among three subcatchments; (b) the objective (expected annual stormwater runoff reduction; red 687 

dashed line, right y-axis [from 1 million m
3
/yr to 7 million m

3
/yr]) and the optimal GI investment 688 

allocations among SMPs (solid lines, right left y-axis), (c) split of the budget between invest-689 

ments in the first and second stages, and (d) expanded view of the optimal GI investment alloca-690 

tions among the SMPs 691 

Generally, the results show strongly diminishing returns as the budget is increased (Figure 4b). 692 

Of the total possible reduction of 6.9 million m
3
/yr that can be achieved by spending $3.6 billion, 693 

one-quarter of that reduction can be achieved by spending just over $100 million, while one-half 694 

requires only $300 million. This is because the most cost-efficient SMP types (IT and RB) are 695 

installed first until all impervious area is treated. Then, if extra money is available, the optimal 696 

solution is to replace some low-cost SMPs with more expansive and higher reduction SMPs or to 697 

invest for learning. As a result, the expected stormwater reduction gradually flattens as the mar-698 

ginal stormwater reduction per dollar investment diminishes.   Figure 4 also shows that expand-699 

ing the budget changes the decisions in several specific respects: in terms of location, technology 700 

choice, timing, and emphasis on learning to improve technologies.   We discuss each in turn be-701 

low. In addition to numerical results, some general relationships are established as to when par-702 

ticular strategies are best.  703 
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4.1.1. Location: Does It Matter Where the GI Go? 704 

In Figure 4a, we can see that when the total budget is low ($0.08 billion, the leftmost point in 705 

Figure 4a), the optimal first-stage investment portfolio is to invest in Middle and Lower sub-706 

catchments for $10 million/yr each (both are investments in IT from Figure 4b) because of the 707 

low SMP costs in those locations. As more money becomes available, the Upper subcatchment 708 

starts to receive IT investment. When the budget is low (< $0.16 billion, the second point from 709 

the left in Figure 4a), early investment in the most cost-efficient SMP (IT) provides the highest 710 

expected stormwater reductions, since there will not have much money left to make investments 711 

to improve planning even if learning happens (Figure 4c).  For the same reason, we can see that 712 

with the total budget reaches $3.0 billion, first stage investment suddenly increases, first in the 713 

Lower subcatchment and then the Middle and Upper subcatchments. Occasionally, the model 714 

may suggest investments in the Upper subcatchment for learning (AL) for its largest impervious 715 

area and the higher improvement in expected stormwater reduction. By doing so, the knowledge 716 

learned in the Upper subcatchment will be partially transferred to the other subcatchments so that 717 

we can also improve the second stage investments in these areas. This effect is most obvious 718 

when the budget is between $0.7 and $0.8 billion in Figure 4a.  719 

4.1.2. Technology: Which GI? 720 

From Figure 4d, we can see that increasing the total budget shifts the mix of technologies chosen. 721 

For example, under a low budget (≤ $0.16 billion, the first two points from the left in Figure 4d), 722 

IT dominates, but as the budget increases (beyond $0.24 billion to $0.9 billion), IT is then dis-723 

placed by PP.  Similarly, investment in RB is emphasized for treating impervious roof area when 724 

the budget is low but gradually replaced by GR when the total budget climbs beyond $1.1 billion. 725 

As mentioned above, this occurs because the technology with the greatest reduction per dollar is 726 

chosen first, even if its overall effectiveness (per unit surface area) is less.  But when the budget 727 

is large enough such that the watershed’s impervious area is fully treated, then further reductions 728 

are only possible by replacing technology that is the cheapest in terms of $/unit stormwater 729 

reduction with a more costly technology that yields more stormwater reduction per unit area. 730 

Among the SMPs, PP and GR have the highest stormwater reduction per treated area (Table 5, 731 

“Per ha of Drainage Area”) for the ground and roof areas, respectively, as a result of having the 732 

highest ratio of storage to total impervious area draining into the SMP.  Therefore, when budgets 733 

are ample (above $3.2 billion), the optimal solutions consist of PP and GR only.   734 

4.1.3. Timing: Invest All Now, or Invest in Learning and Wait? 735 

From Figure 4b, we can see that the expected stormwater reduction (red dashed line; right y-axis) 736 

increases with the increase in the total budget and reaches its maximum (6.9 million-m
3
/yr) when 737 

the total budget equals $3.2 billion, after which the budget is no longer a limiting factor because 738 

no further investment opportunities remain.  Under that ample budget (Figure 4b), we can see 739 

that the PP investment ($54 million/yr) treats all the impervious ground area in the first stage 740 

(invest all now) whereas the GR investment ($2.1 million/yr) is only for advanced learning in the 741 

three subcatchments (invest in learning and wait).  The PP investment occurs now because that 742 

GI has a relatively high deterioration rate and low potential for learning. Consequently, storm-743 

water reductions that could result from potential improvement in its cost-effectiveness (either via 744 

reduced costs or increased effectiveness) cannot make up for the loss of the potential stormwater 745 
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benefits in the first stage. In contrast, GR is the opposite, and waiting for potential cost-746 

effectiveness improvements is well worthwhile.  747 

We can derive a general relationship for determining whether to invest all or to invest just 748 

enough for learning in the first stage by calculating the difference in objective value (Eq. 2) of 749 

those two strategies.  The objective values (expected stormwater reductions) of the two strategies 750 

are as follows. 751 

 Invest all now: 
𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐶𝐼]𝑋+

𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼]𝑋  752 

 Invest just enough for learning in the first stage (AL, in this derivation) and invest the rest in 753 

the second stage to exploit the cost-effectiveness improvement: 754 
𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐶𝐼](𝑇ℎ

𝐴𝐿)+
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼](𝑇ℎ

𝐴𝐿) +
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
E[(𝐷𝐼𝐼𝑠𝐶𝐼𝐴𝑠](𝑋 − 𝑇ℎ

𝐴𝐿)          755 

where X is a vector of fixed investments (not a decision variable), 𝐶𝐼 is the prior distribution of 756 

SMP cost-effectiveness, 𝑇ℎ𝐴𝐿 is the investment threshold for AL, 𝐷𝐼 and 𝐷𝐼𝐼 are random varia-757 

bles for the performance deterioration in the first and the second stages, respectively, and 𝐷𝐼𝐼𝑠 758 

and 𝐶𝐼𝐴𝑠 are random samples drawn from 𝐷𝐼𝐼 and 𝐶𝐼, respectively. If the difference between the 759 

two objective values below is positive, then investing now is best: 760 

𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐶𝐼](𝑋 − 𝑇ℎ

𝐴𝐿)+
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼](𝑋 − 𝑇ℎ

𝐴𝐿) −
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
E[𝐷𝐼𝐼𝑠𝐶𝐼𝐴𝑠](𝑋 − 𝑇ℎ

𝐴𝐿) > 0       (10) 761 

Because we assume independence, the average of 𝐷𝐼𝐼𝑠𝐶𝐼𝐴𝑠 is the product of the mean of the ran-762 

dom variables, 𝐷II and 𝐶𝐼, and since 𝐸[𝐶𝐼𝐴𝑠] equals (1 + 𝛾)𝐸[𝐶𝐼], we can rewrite Eq. 10 as: 763 

𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐶𝐼](𝑋 − 𝑇ℎ

𝐴𝐿) +
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼](𝑋 − 𝑇ℎ

𝐴𝐿) >
𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
𝐸[𝐷𝐼𝐼](1 + 𝛾)𝐸[𝐶𝐼](𝑋 − 𝑇ℎ

𝐴𝐿)        764 

(11) 765 

By multiplying both sides of Eq. 11  by (
𝑇𝐼+𝑇𝐼𝐼

𝐸[𝐶𝐼](𝑋−𝑇ℎ
𝐴𝐿)

) and reorganizing, we get the following 766 

inequality: 767 

𝐸[𝐷𝐼]

𝐸[𝐷𝐼𝐼]

𝑇𝐼

𝑇𝐼𝐼
+ 𝐸[𝐷𝐼] − 1 > 𝛾                                                                                                                     768 

(12)  769 

If Eq. 12 holds, then making the entire investment in the first stage and none in the second stage 770 

can reduce more runoff in terms of expectation, otherwise to invest for learning would be opti-771 

mal. In our specific case, a $3.2 billion budget results in the inequality test being satisfied for PP 772 

but not for GR, as shown in Table 8, which explains why the best timing for each of those GIs 773 

differs.   774 

Table 8  775 

The Results of the Investment Timing Test of the SMPs (Eq. 12) 776 

 
E[𝑫𝑰] E[𝑫𝑰𝑰] 𝑻𝑰 𝑻𝑰𝑰 

𝑬[𝑫𝑰]

𝑬[𝑫𝑰𝑰]

𝑻𝑰
𝑻𝑰𝑰

+ 𝑬[𝑫𝑰] − 𝟏  𝛄𝐀𝐋 
Major Investment 

Timing 

RG 0.95 0.8 5 20 24.7% < 30% Stage II 

IT 0.95 0.75 5 20 26.7% > 20% Stage I 

PP 0.85 0.6 5 20 20.4% > 20% Stage I 

RB 0.95 0.8 5 20 24.7% > 10% Stage I 

GR 0.975 0.93 5 20 23.7% < 30% Stage II 
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4.1.4. Learning: When is It Worthwhile to Stimulate Technological Improvement? 777 

In this section’s series of model runs, we did not impose the risk constraint, so the jumps in SMP 778 

investments (e.g., GR, Figure 4d) are motivated by the potential benefits of learning for improv-779 

ing SMP cost-effectiveness, not for reducing uncertainty. However, the uncertainty in the cost-780 

effectiveness improvement also provides an incentive for the investor to hedge the strategy. This 781 

is because the outcome of the first stage investments can be to learn which SMPs will perform 782 

better than expected a priori (and thus should are attractive for second-stage investment) and 783 

which SMPs will perform more poorly (and therefore should perhaps be shunned in the second 784 

stage). If there is sufficient potential to learn, then stormwater management investments in the 785 

second stage will benefit from the improved SMPs’ cost-effectiveness and the knowledge gained 786 

about which SMPs will perform better than expected.  That benefit can be higher than the fore-787 

gone stormwater reductions in the first stage resulting from delaying investment.  788 

This effect is illustrated by the increased PP investment in Figure 4d that occurs when the budget 789 

expands from $0.4 to $0.8 billion. In these cases, the PP investment in the first stage enables the 790 

stormwater manager to learn whether PP can reduce more stormwater than IT (both are for 791 

ground impervious surface) in the second stage.  If that turns out to be the case, the manager can 792 

switch to invest in PP at that time, and obtain more stormwater reductions for the dollars spent.   793 

4.2. Effect of Risk Aversion upon Expected Stormwater Reduction Tradeoff and SMP Choices 794 

Based on the above results, the best strategy under a modest budget without a risk constraint is to 795 

invest in IT and RB in the first stage. But because those SMPs have some risk of performing 796 

more poorly than expected, we anticipate that if risk aversion is considered then this strategy will 797 

change to one that has less probability of a poor stormwater performance. This hedging can be 798 

accomplished either by diversifying investment in the first stage, or by investing in learning and 799 

deferring investment until the second stage when more is known. Tightening the CVaR con-800 

straint allows us to calculate how much the strategy shifts as we become more risk averse, and 801 

how the expected reduction as well as the risk of poor performance changes.  In particular, the 802 

model quantifies how much we need to give up in expected stormwater reduction in order to re-803 

duce the possibility of poor performance as measured by CVaR.  804 

Therefore, we constrain the model results such that the average of the 10% worst stormwater 805 

outcomes (i.e., CVaR with α=0.1) meets or exceeds a stated target, and then vary that target. The 806 

total budget is set to $180 million, which is the amount of money needed to treat all the impervi-807 

ous surfaces with the least-cost SMPs (IT and RB) for the 25-year planning horizon.  808 

The results in Figure 5 summarizes how the investment changes as the CVaR target increased 809 

from 2.2 million to 2.74 million m
3
/yr of stormwater reduction, which represent 74% to 92% of 810 

the overall expected reduction of 2.97 million m
3
/yr if there is no CVaR constraint.  If the CVaR 811 

target is below 2.2 million, the constraint no longer binds, and the optimal investment strategy is 812 

the risk neutral strategy – to invest in only IT and RB. The results we show in Figure 5 include:  813 

(a) the expected stormwater reduction over the 25-year planning horizon (the right y-axis in Fig-814 

ure 5a) and the optimal mix of first stage SMP investments, (b) the expected stormwater reduc-815 

tion over all years and the expected annual stormwater reduction in just the second stage (the last 816 

20 years, including reductions during that time yielded by both the first and second stage invest-817 

ments), (c) how investments are allocated among the three subcatchments, and (d) how invest-818 
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ment is distributed between the first and second stages (years 0-4 and 5-24, respectively).  In all 819 

the solutions, the full $180 million budget is completely spent on SMPs. 820 

 821 

Figure 5. The results of simulations with different CVaR targets: (a) the expected stormwater 822 

runoff reduction and the optimal first stage investments; (b) the expected stormwater runoff re-823 

duction and the expected runoff reduction in just the second stage; (c) investment allocations 824 

among subcatchments; and (d) split of the budget between investments in the first and second 825 

stages 826 

We now focus on how investment strategies shift as the manager becomes more risk averse, as 827 

represented by an increased CVaR target.  Two types of strategies are identified to manage risk, 828 

one (which we call the “greedy strategy”) dominating when risk aversion is mild, and the other 829 

(“mixed investment with deferral”) being chosen for higher CVaR targets. These two strategies 830 

are summarized in Sections 4.2.1 and 4.2.2, respectively. 831 

4.2.1. First Risk-averse Strategy: Greedy Investment (CVaR between 2.2 to 2.6 million m3/yr) 832 

From Figure 5a, we can see that by changing the composition of the investment portfolio in the 833 

first stage, the CVaR value can increase from 2.2 million m3/yr to 2.60 million m3/yr (17% in-834 

crease) with a minimal (0.067 million m3/yr, or 2.3%) deterioration in the objective value (ex-835 
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pected stormwater reduction).  We dub this strategy “greedy investment” because the majority of 836 

the investment is made right away in cost-effective measures IT, RG and RB (Figures 5a and d).  837 

Since RG has a slightly lower standard deviation in its cost-effectiveness and less deterioration in 838 

the second stage compared to IT, the investment portfolio shifts to the less risky RG from the 839 

riskier IT as the CVaR target increases within this range. Also, a small portion of the investment 840 

(about 2 to 20%) is deferred to the second stage as another way or lessening risk.   841 

4.2.2. Second Risk-averse Strategy: Mixed Investment with Deferral (CVaR is between 2.6 and 842 

2.74 million m3/yr). 843 

A further increase in the risk target from 2.6 million m3/yr to 2.74 million m3/yr (representing 844 

an increased aversion to poor stormwater reduction outcomes) causes the model to suggest diver-845 

sifying the mix of first stage investments in RG, IT, PP and RB (Figure 5a).  2.74 million m3/yr 846 

is the highest CVAR value that is achievable under the $180 million budget. It also recommends 847 

reducing first stage investment (Figure 5d). This strategy takes advantage of learning in second-848 

stage decisions in order to lower the risk of very poor stormwater reduction outcomes, but at the 849 

expense of lower expected stormwater reductions over the entire time horizon.   850 

From Figure 5b, we can see that as the CVaR target increases, the expected stormwater reduction 851 

in the second stage (“Stage II average”) increases but the objective (“program average”) decreas-852 

es. This means that much less of the stormwater reduction is happening in the first five years. 853 

Moreover, we can see in Figure 5c that the reduction from the first stage investment is most pro-854 

nounced in the Lower subcatchment. This is because the greater original cost-effectiveness in the 855 

Lower catchment means that the learning-based improvement would be worth more in both ex-856 

pected stormwater reduction and CVaR.  857 

Meanwhile, for the most extreme risk aversion (CVaR target = 2.74 million m3/yr), the invest-858 

ment in PP ($0.35 million) is for advanced learning in the Lower subcatchment.  That learning 859 

would also provide a basic level of learning for the other subcatchments, so that the investment 860 

in the second stage in any subcatchment can provide higher stormwater reduction with lower un-861 

certainty.  Under this strategy, there is very little risk, since the CVaR of 2.74 million m3/yr is 862 

very close to the overall expected value of 2.78. Thus, a 6.4% sacrifice in expected value (com-863 

pared the 2.97 million m3/yr  if there is no CVaR constraint) has increased the expected perfor-864 

mance of the 10% worse outcomes by 24.5% (from  2.2 million m3/yr to 2.74 million m3/yr ). 865 

Finally, Figure 6 shows the histograms of the first and last solutions of our simulations (CVaR = 866 

2.2 million m3/yr and 2.74 million m3/yr, respectively) and their CVaR values as examples to 867 

illustrate CVaR calculation. We can see that the spread of the greedy investment distribution is 868 

wider than the mixed investment with deferral distribution and, therefore, is riskier.  869 
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870 
Figure 6. The stormwater reduction distributions of the greedy investment strategy (CVaR = 2.2 871 

million m3/yr) and mixed investment with deferral (2.74 million m3/yr) 872 

4.3. The Value of Learning 873 

To justify use of adaptive planning, we can calculate how decisions change and how much the 874 

objective improves when we consider learning, compared to a solution chosen without consider-875 

ing learning. Although this calculation can be in terms of any of three objectives (stormwater re-876 

duction, cost, and risk), here we use the monetary metric (minimize expected total cost, Eq. 13) 877 

to provide a more intuitive comparison. The original objective of the model (expected annual 878 

stormwater reduction) is then treated as a constraint in this model (Eq. 14).  879 

Objective: Minimize total cost 880 

 ∑ ∑ ∑ {(𝑇𝐼 + 𝑇𝐼𝐼)𝑥𝐼,(𝑖,𝑗) + 𝑇𝐼𝐼(𝑥𝐼𝐼𝑁𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐵𝑠,(𝑖,𝑗) + 𝑥𝐼𝐼𝐴𝑠,(𝑖,𝑗))𝑗∈𝑆𝑢𝑏 }𝑖∈𝑆𝑀𝑃𝑠∈𝑆𝐼 /𝑚𝐼             (13)            881 

Subject to: Expected total stormwater reduction constraint: 882 

 
𝑇𝐼

𝑇𝐼+𝑇𝐼𝐼
E[𝐷𝐼𝐶𝐼]𝑥𝐼 +

𝑇𝐼𝐼

𝑇𝐼+𝑇𝐼𝐼
(𝐸[𝐷𝐼𝐷𝐼𝐼𝐶𝐼]𝑥𝐼 + 𝐸[𝐷𝐼𝐼(𝐶𝐼𝑥𝐼𝐼𝑁𝑠 + 𝐶𝐼𝐵𝑠𝑥𝐼𝐼𝐵𝑠 + 𝐶𝐼𝐴𝑠𝑥𝐼𝐼𝐴𝑠)]) ≥ 𝐸𝑆𝑅             883 

(14) 884 

where ESR is the target for the expected annual reduction over the 25-year life of the program. 885 

As a consequence, learning in this case reduces the expected cost of meeting a given stormwater 886 

target. To characterize the value of learning, we define and compare three types of decision mak-887 

ing: non-adaptive, passive adaptive, and active adaptive:  888 

 Non-adaptive: The decision maker recognizes that recourse actions are possible in the 889 

future but neglects to consider learning by disregarding any information generated from the 890 

first-stage investment when making the subsequent second-stage investment decisions.  891 

That is, the prior probabilities are the basis of decisions in the second stage rather than the 892 

posterior probabilities.  After making a Stage I decision, the cost-effectiveness of just those 893 

investments is randomly selected; then in Stage II, the optimization assumes that the 894 

performance of the later investments is also random, with the same distribution and 895 

independent of what cost-effectiveness occurred in Stage I. 896 
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 Passive adaptive: The decision maker does not consider learning in making the immediate 897 

investment but when learning takes place in stage II, the investment plan is adapted based 898 

on what is learned (i.e., based on the posterior rather than prior probabilities).   899 

 Active adaptive: The decision maker knows that investments can result in learning, and 900 

evaluates first stage investments, fully recognizing the value of what might be learned in 901 

the second stage.  902 

To calculate the total cost of the non-adaptive case, we simply set the learning thresholds to a 903 

large number (e.g., total budget) so that the model cannot take actions in Stage I to learn. For the 904 

passive adaptive case, we restrict the model to take just the optimal Stage I investment from the 905 

non-adaptive case as an additional equality constraint (i.e., 𝑥𝐼 = 𝑥𝐼,𝑛𝑜𝑛−𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒).  As a result, 906 

that model is forced to be ignorant in the first stage but can adapt the investment plan in the sec-907 

ond stage based on what has been learned (posterior rather than prior probabilities). Finally, the 908 

total cost of the active adaptive case is obtained by relaxing the just-mentioned first-stage in-909 

vestment constraint to allow the model to recognize how first-stage investments might affect the 910 

second stage’s learning when making first-stage investment decisions.  911 

We define the difference in the objective between the non-adaptive and the passive adaptive cas-912 

es the value of adaptivity and the difference between the passive and the active adaptive cases 913 

the value of learning. Table 9 shows an example of the calculation of the values with the total 914 

expected stormwater (ESR) set to 80 million m3and the minimum annual stormwater reduction 915 

after the program (CVaR0.1) set to 3 million m3/yr.  The resulting expected total costs are $452 916 

million, $407 million, and $303 million for non-adaptive, passive adaptive and active adaptive 917 

cases, respectively.  918 

Table 9 919 

The Calculation of the Value of Adaptivity and the Value of Learning 920 

Unit: $ Million 

Objective 

(Total Cost) 

Value of Adaptivity Cal-

culation 

Value of Learning Cal-

culation 

Non-adaptive 452 452 - 

Passive Adaptive 407 -407 407 

Active Adaptive 303 - -303 

Sum  - +45 +104 

The value of adaptivity means that if planning is flexible such that second-stage decisions can 921 

adapt to information gained, then second-stage choices will improve, saving $45 million. Where-922 

as the value of learning means that the planning process can save an additional $104 million if 923 

first-stage decisions are made by recognizing how such decisions affect learning and how that 924 

learning will affect second-stage decisions. Although the definitions of the two values resemble 925 

in some respects the well-known concepts of the value of stochastic solutions (VSS) and the 926 

value of perfect information (VPI) (Birge, 1982), there are important differences that we blieve 927 

are more realistic and useful for decision making.  In particular, unlike the calculation of VSS, 928 

the non-adaptive solution is also a stochastic solution with recourse but no learning.  Further, 929 

unlike VPI calculations, the passive and active adaptive solutions only learn imperfect rather 930 

than perfect information.  This example shows that the adaptive approaches can save 9.7% to 931 

33.0 % of the total cost compared to the non-adaptive solution.  932 
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These savings are, of course, case-dependent, varying considerably depending on the prior 933 

knowledge about SMP performance, risk aversion levels, and watershed and climate characteris-934 

tics.  Nonetheless, our framework provides a way of evaluating the use of adaptive approaches 935 

while managing the risk of failing to meet management goals. The intent is to lessen the barriers 936 

that uncertain performance present to adoption of GI.  937 

5. Summary and Conclusion 938 

We propose an adaptive management framework for GI evaluation and investment planning that 939 

consists of technology efficacy assessment, optimization, and risk characterization and manage-940 

ment. The assessment of individual SMP cost-effectiveness involves cost estimation, use of hy-941 

drologic modeling to account for each SMP’s stormwater reduction capacity, and consideration 942 

of performance deterioration as investments age. The methodology’s goal is not to provide high-943 

ly precise results for detailed design, as data for calibration and validation often not available. 944 

Rather, the intent is to provide insights on the magnitude of uncertainties and the value of adap-945 

tation and learning in GI planning.  946 

We rely on EPA SWMM to assess the SMPs’ efficacy in reducing stormwater runoff because of 947 

its GI functionality and its wide use in urban stormwater management. By applying Monte Carlo 948 

methods, the SWMM hydrological simulation can be used to characterize the uncertainty of the 949 

SMPs’ capabilities to control stormwater. Although our SWMM parameter calibration relies on 950 

values from the literature and expert judgment rather than field validation, the results generated 951 

from this method are traceable and are consistent among the SMPs of interest. 952 

Our estimates of uncertainty in capital and maintenance costs and performance deterioration also 953 

rely on expert opinion and the literature. These estimates are combined with the results of 954 

SWMM simulations to calculate the SMPs’ cost-effectiveness (in m3/$/yr). The results are then 955 

used in the adaptive GI investment model, which is structured as a decision tree. The decision 956 

tree includes prior probabilities that feed into first-stage decisions (year 0). Those first-stage 957 

(“here-and-now”) decisions result in learning while second-stage (year 5, “wait and see”) deci-958 

sions take advantage of that learning to adjust the mix of GIs.  The learning consists of updated 959 

probabilities (posterior) based on opportunities to learn from experience (investment) as well as 960 

learning curve-type uncertainty reductions and performance improvement.   961 

The adaptive GI investment model is solved using two-stage stochastic programming. The objec-962 

tive that is maximized is the probability-weighted stormwater reduction. This maximization is 963 

subject to constraints on two other objectives: an upper limit to the amount spent over the time 964 

horizon, and a lower limit on stormwater reduction under the worst possible outcomes of the un-965 

certain variables, quantified as the Conditional Value at Risk (𝐶𝑉𝑎𝑅𝛼).  966 

The study area is the Wingohocking sewershed in Philadelphia, Pennsylvania, which we divide 967 

into three subcatchments to capture the spatial variability of sewershed characteristics. The mod-968 

eling results presented in Section 4 show how the framework can be used to develop investment 969 

strategies and provide the economic justification of the adaptive approach (value of learning).  In 970 

the first modeling experiment (Section 4.1), we show how decisions to invest immediately or 971 

wait until the second stage depend on how much is learned, and whether that learning would af-972 

fect later decisions.  We also see that as the total budget increases, the optimal investment portfo-973 

lio would change in one or more of three ways (Figure 4): diversification of types of GIs at in-974 

termediate budget levels (hedging), switching from the most cost-efficient SMPs to the SMPs 975 
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with a higher stormwater reduction per treated area (technology switch), and, eventually, in-976 

creased first-stage investment in order to learn (learning for stimulating technology improve-977 

ment).  978 

 In the second modeling experiment (Section 4.2), we identified two strategies that are resorted 979 

to as the manager becomes more risk averse. Under a moderately stringent CVaR constraint, a 980 

greedy investment strategy is adopted. It devotes most of its investment to SMPs with the highest 981 

expected stormwater reduction in the first stage, and the remainder is either invested immediately 982 

in other SMPs or deferred until the second stage in order to manage risks. A more risk averse 983 

manager would specify a higher CVaR lower bound, which yields a mixed investment with defer-984 

ral strategy. That strategy improves the CVaR value by deferring major investments to the sec-985 

ond stage, investing mainly for learning in the first stage. The result is a pronounced tradeoff be-986 

tween the expected performance objective and CVaR, in which the CVaR value can be increased 987 

from 2.2 million m3/yr to 2.74 million m3/yr stormwater reduction at a cost of sacrificing 6% 988 

expected stormwater reduction objective. 989 

The final experiments quantify the economic values of adaptivity and learning. These can inform 990 

stormwater manager about how performance can be improved by adaptive management, and the 991 

tradeoffs between costs and benefits of deliberate learning through research and monitoring 992 

(Walters, 1997; Williams, 2011). If the net value of learning is positive (its benefits exceed its 993 

cost), the stormwater manager should consider options for learning when planning, which may 994 

result in investments in diversification, monitoring, or deliberate experimentation. The value of 995 

adaptivity, on the other hand, represents the expected total cost saving by recognizing and taking 996 

advantage of flexibility to modify plans over time in response to changing circumstances. The 997 

decision tree/stochastic programming framework we propose can quantify these values, which 998 

are considerable in our GI case study.  999 

Future research can make our adaptive GI investment model more realistic and more reflective of 1000 

long-term costs by, for instance, considering how the dynamics of maintenance and deterioration 1001 

affect decisions concerning SMP renovation or replacement in later stages. Consideration should 1002 

also be given to additional objectives of GI planning, such as the “ancillary benefits” of energy 1003 

savings, environmental amenities, and heat island mitigation(CNT, 2009).  1004 
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