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Introduction

This file contains supporting text devoted to outline the model setup and additional

figures that expand on the results documented in the main manuscript.

Text S1. We used a Bayesian robust regression to predict the posterior probability P (L)

at which a given location yi in our study areas is classified as part of a landslide source,

transport, or deposition area. We write this as P (L) = P (yi = 1) and denote the inverse

probability of classifying a location without a landslide as P (yi = 0) = 1−P (yi = 1). The

index i refers to the ith location, i.e. raster value, out of n observations in given study
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area. We can write this model with a Bernoulli likelihood conditional on the observed

data in general form as:

P (yi = 1|Xi,w) =
1

1 + e−Xiw
, (1)

where Xi is the ith row in a n×m design matrix with n observations and m columns.

The first column consists of 1’s for the intercept, while the remaining m−1 columns collect

the predictor (and possible interaction) values. The m× 1 column vector w contains the

m model coefficients, i.e. the intercept, the predictor weights, and weights for interaction

terms, if any. The matrix-vector product Xiw constitutes the linear predictor of the

model.

We acknowledge structure in our data by admitting j = {1, ..., 10} different grouping

levels lj to the model. These levels represent ten landform types that we classified from

the Topographic Position Index. We standardised the input values to zero means and unit

standard deviations and designate standardised parameters with an asterisk (∗). In this

hierarchical (or multilevel) model structure, we use as inputs standardised crown openness

χ∗ and standardised wind speed u∗, as well as their interaction χ∗.u∗ and write this for

our specific case:

P (yi = 1|Xi,w) =
(
1 + e−w0[j]+w1χ∗

i+w2u∗i+w3χ∗
i .u

∗
i

)−1
, (2)

where we allow the intercept w0[j] to vary by landform type j as:

w0[j] ∼ N (0, σ2
j ), (3)
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where σ2
j is the variance of group-level intercepts, i.e. whether and by how much the

log-odds ratios for average predictor inputs vary by landform type. Note that these

intercepts represent log-odds ratios of classifying location yi as part of a landslide for zero

(i.e. average) predictor values. Positive log-odds ratios are equivalent to values of P (L) >

0.5, while negative log-odds ratios are equivalent to P (L) < 0.5. The zero mean of the

Gaussian distribution in Equation 3 is the intercept of the model pooled over all data

regardless of landform type.

We specify our prior assumptions using the following distributions:

w0[j] ∼ T (ν = 3, µ = 0, σ = 2.5), (4)

w1 ∼ T (ν = 3, µ = 0, σ = 2.5), (5)

w2 ∼ T (ν = 3, µ = 0, σ = 2.5), (6)

w3 ∼ T (ν = 3, µ = 0, σ = 2.5), (7)

These independent prior distributions are weakly informative and based on the assump-

tion that all model weights are from a Student’s t-distribution with location µ = 0 and

scale σ = 2.5. This choice of prior means that we surmise that regression weights may

be equally likely positive or negative, though symmetrically distributed and within the
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interval [−7.96, 7.96] with 95% probability. Such extreme regression weights are unlikely

for standardised predictors and underline our weakly informative choice.

Our prior distribution of the variance of the group-level intercept is a standard expo-

nential. This reflects our assumption that the spread of log-odds of classifying landslides

is more likely near zero, hence more likely to differ less with landform type:

σj ∼ exp(λ = 1), (8)

This prior specifies that σj lies in the interval [0, 3] with 95% probability, with larger

spread becoming exponentially less likely.

We ran our model with different parameter choices for these priors and observed only

minute changes in the posterior distributions, given the large number of observations in

each study area. Although using the three study areas as another grouping level in the

model would be possible, we preferred using the data from the different regions as testing

data for models trained elsewhere.
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Figure S1. Distributions of standardised wind speed and standardised crown openness per

landform type in temperate rainforests in three study areas of south-central Chile. Boxes encom-

pass the interquartile range, and box centres are medians; whiskers span 1.5 times the interquar-

tile range and points are outliers.
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Figure S2. Posterior distributions of standardised model intercepts by landform type. Black

horizontal lines are 95% highest density intervals (HDIs), and white circles are posterior means.

Vertical grey solid (dashed) lines are pooled means (95% HDIs). Intercepts are the log-odds

ratios of classifying a pixel with average crown openness and wind speed as part of a landslide.
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Figure S3. Performance of Bayesian robust logistic regression for predicting landslide terrain

from crown openness and wind speed. True positive (and negative) rates refer to the fraction of

correctly predicted landslides (and their absence) for a given training and testing dataset. All

rates refer to the pooled model averaged over all landform types. The average true positive rate

is 0.75, whereas the average true negative rate is 0.52.
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Figure S4. Rose diagram of hourly wind speed and direction for south-central Chile (40–43◦S,

72–73◦W) from January 2013 to December 2017; grey circles are the frequency of observations.

The overall mean wind speed was 2.9 m s−1, mostly from a W to WNW direction and with negligi-

ble amount of calm conditions. Data are freely available from the Global Forecast System (GFS)

of the U.S. National Weather Service (NWS) at https://www.ncdc.noaa.gov/data-access/

model-data/model-datasets/globalforcast-system-gfs.
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