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S1. Methodology for simulations of sequences of earthquakes and aseismic slip11

with and without the thermal pressurization of pore fluids12

In order to conduct numerical simulations of sequences of spontaneous earthquakes and13

aseismic slip, we utilize the spectral boundary integral method to solve the elastodynamic14

equations of motion with the friction boundary conditions, including the evolution of pore15

fluid pressure and temperature on the fault coupled with off-fault diffusion (Lapusta et al.,16

2000; Noda & Lapusta, 2010). Our fault models are governed by a form of the laboratory-17

derived Dieterich-Ruina rate-and-state friction law regularized for zero and negative slip18
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rates, with the state evolution governed by the aging law (Rice & Ben-Zion, 1996; Noda19

& Lapusta, 2010). The most commonly used formulation of rate-and-state laws is the20

Dieterich-Ruina formulation (Dieterich, 1979; Ruina, 1983):21

τ = σf(V, θ) = (σ − p)
[
f∗ + a ln

V

V∗
+ b ln

θV∗
L

]
, (S1)

where f∗ is a reference steady-state friction coefficient at reference sliding rate V∗, L is22

the characteristic slip distance, and a and b are the direct effect and evolution effect23

parameters, respectively. During steady-state sliding (θ̇ = 0), the friction coefficient is24

expressed as:25

fss(V ) = f∗ + (a− b) ln
V

V∗
, (S2)

where the combination of frictional properties (a− b) > 0 results in steady-state velocity-26

strengthening (VS) behavior, where stable slip is expected, and properties resulting in27

(a − b) < 0 lead to steady-state velocity-weakening (VW) behavior, where accelerating28

slip and hence stick-slip occur for sufficiently large regions.29

30

The peak shear stress during dynamic rupture propagation can correspond to a much31

higher apparent friction coefficient than the reference friction coefficient f∗ or the similar32

steady-state friction coefficient at seismic slip rates of the order of 1 m/s. Assuming that33

the fault has been locked interseismically with the state variable healing to a value θint34

and the slip rate rapidly accelerates to the peak slip rate Vpeak upon arrival of the rupture35

front with negligible evolution of the state variable θ ≈ θint, the peak friction can be36

approximately given as:37
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τpeak/(σ − pint) = f∗ + a ln
Vpeak
V∗

+ b ln
θint

θss(V∗)
(S3)

=
τss(Vpeak)

(σ − pint)
+ b ln

θint
θss(Vpeak)

=
τss(Vpl)

(σ − pint)
+ (a− b) ln

Vpeak
Vpl

+ b ln
θint

θss(Vpeak)

Note that Vpeak � V∗ � Vpl and θint � θss(V∗) � θss(Vpeak) for typical seismic slip rates38

and interseismic durations of healing. The last two terms on the third line gives the dif-39

ference between the local SSQS shear resistance described in the main text and the peak40

shear resistance, where the last term typically dominates for periods of extending healing41

and higher values of θint. Consequently, for a given dynamic slip rate Vpeak, the better42

healed the interface with higher θini, the higher the peak friction during dynamic rupture43

(Lambert & Lapusta, 2020).44

45

The standard Dieterich-Ruina formulation (equation S1) has been empirically-46

determined from laboratory experiments at sliding rates between 10−9 m/s to around47

10−3 m/s. Under the standard logarithmic formulation, friction becomes negative as the48

slip rate V approaches zero and is undefined for zero or negative slip rates (Figure S5).49

The standard formulation may be regularized near V = 0 such that the shear resistance50

remains positive for all positive values of V (Rice & Ben-Zion, 1996):51

τ(V, θ) = aσsinh−1

[
V

2V∗
exp

(
f∗ + b log(θV∗/L)

a

)]
, (S4)

with the steady-state shear resistance given by:52
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τss(V ) = aσsinh−1

[
V

2V∗
exp

(
f∗ + b log(V∗/V )

a

)]
. (S5)

Theoretical justification for such regularization has been provided by drawing analogy53

between the direct velocity effect and the exponential formulation of thermally-activated54

creep at contact junctions, where the contact shear stress acts as a biasing factor (Rice55

et al., 2001). The standard logarithmic rate-dependent formulation is derived when only56

considering forward activated jumps, which may be dominant under significant shear57

stress and conditions relevant to most laboratory experiments. The regularized formu-58

lation (equation S4) arises when including the presence of backward jumps, which are59

equally probable as forward jumps for τ = 0, as in the full thermally-activated creep the-60

ory. The logarithmic and regularized formulations are equivalent for conditions consistent61

with laboratory experiments, and differ only for very low slip rates (Figure S5).62

63

Earthquakes may nucleate only if the VW region is larger than the nucleation size h∗.64

For 2D problems, two theoretical estimates of the nucleation size in mode III are (Rice &65

Ruina, 1983; Rubin & Ampuero, 2005):66

h∗RR =
π

4

µL

(b− a)(σ − p)
; h∗RA =

2

π

µLb

(b− a)2(σ − p)
, (S6)

where µ is the shear modulus. The simulated fault in our models contains a 24-km region67

with VW frictional properties surrounded by VS regions to create a 72-km frictional re-68

gion. Outside of this frictional regions, the fault moves with a prescribed plate rate Vpl69

to provide tectonic-like loading (Figure 2A of main text).70

71
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The thermal pressurization of pore fluids is governed in our simulations by the follow-72

ing coupled differential equations for temperature and pore pressure evolution (Noda &73

Lapusta, 2010):74

∂T (y, z; t)

∂t
= αth

∂2T (y, z; t)

∂y2
+
τ(z; t)V (z; t)

ρc

exp(−y2/2w2)√
2πw

, (S7)

∂p(y, z; t)

∂t
= αhy

∂2p(y, z; t)

∂y2
+ Λ

∂T (y, z; t)

∂t
, (S8)

where T is the temperature of the pore fluid, αth is the thermal diffusivity, τV is the75

shear heating source distributed over a Gaussian shear layer of half-width w, ρc is the76

specific heat, y is the distance normal to the fault plane, αhy is the hydraulic diffusivity,77

and Λ is the coupling coefficient that gives pore pressure change per unit temperature78

change under undrained conditions. To approximate the effects of off-fault yielding we79

employ a velocity limit of Vmax = 15 m/s, as discussed in detail in Lambert et al. (in80

press). This approximation is motivated by detailed dynamic rupture simulations with81

off-fault yielding (Andrews, 2004), with the value of velocity limited corresponding to a82

representative seismogenic depth of 10 km.83

84

Our simulations include fault models with varying levels of ambient fluid overpressure85

in terms of effective normal stress and as well as degrees of efficiency due to enhanced86

weakening due to thermal pressurization. Parameters for the simulations are given in87

Tables 1-3. Note that the stress changes associated with standard rate-and-state friction88

have a relatively mild logarithmic dependence on slip rate and are directly proportional89

to the effective confining stress. As such, persistently weak rate-and-state fault models90

with low effective normal stress and no enhanced weakening result in generally mild static91
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stress drops ( ≤ 2 MPa) for typical frictional parameters measured in the laboratory (Fig-92

ure 2 of main text). Thus, the inclusion of at least mild enhanced dynamic weakening is93

required for fault models with low effective normal stress, such as due to substantial fluid94

overpressurization, to produce average static stress drops between 1 - 10 MPa, as typically95

inferred for natural earthquakes (Figures 11 of main text and S3; Lambert et al., in press).96

97

In order to examine the prestress at the beginning of dynamic ruptures, we define the98

beginning and end of dynamic rupture, as well as the ruptured area, based on a slip99

velocity threshold (Vthresh = 1 cm/s) for seismic slip. We have found in previous studies100

that varying Vthresh between by 10−3 to 10−1 m/s results in minor variations of the de-101

termined rupture timing and area, within 1% (Perry et al., 2020; Lambert et al., in press).102

103

Our fault models with more efficient enhanced dynamic weakening produce fewer smaller104

events than those with mild to moderate enhanced weakening, as can be observed in105

the frequency-magnitude statistics (Figure 10 of the main text). To create frequency-106

magnitude histograms we compute the seismic moment M0 = µAδ for ruptures, where107

µ is the shear modulus, A is the rupture area and δ is the average slip in the rupture.108

As our simulations are 2-D, we compute the moment by assuming a circular rupture area109

A = π(λrupt/2)2, where λrupt is the rupture length.110

111

S2. Single-degree-of-freedom representation of laboratory experiments112

We compare the evolution of local slip rate and shear stress in our simulated dynamic113

ruptures with single-degree-of-freedom (SDOF) calculations motivated by high-velocity114
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laboratory experiments that impose variable seismic slip rates to infer shear resistance115

evolution and often compare their findings with seismological observations (Sone & Shi-116

mamoto, 2009; Fukuyama & Mizoguchi, 2010). The SDOF calculations are governed by117

the same rate-and-state friction with enhanced dynamic weakening due to thermal pres-118

surization as in our fault model TP4. Our SDOF calculations impose a slip-rate history, as119

typically done in laboratory experiments, and solve for the evolution of shear stress, state120

variable, temperature and pore pressure using equation 3 of the main text and equations121

S4 and S7-8 given the initial state. We assume initial conditions where sliding has been122

maintained until steady-state conditions at the slip rate of V = 0.1 mm/s, comparable to123

the initial conditions of Fukuyama and Mizoguchi (2010). We then impose two different124

slip rate functions characterized by regularized Yoffe functions (Tinti et al., 2005), with125

total slip of 1.95 m (comparable to our simulated slip) and maximum slip rate of 2 m/s.126

Tinti et al. (2005) regularized the stress singularity in the analytical Yoffe function by127

convolving it with a triangular function of half-width ts. The regularized Yoffe functions128

are characterized by two time-scales, the half-width ts and the rise time tr. For the two129

examples shown in Figure 9 of the main text, we choose values of tr = 3s with ts = 0.1tr130

for RYF1 and tr = 1.4s with ts = 0.4tr for RYF2, in order to compare pulses with more131

pronounced and gradual accelerations that produce the same slip and peak slip rate.132
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Rupture length / Theoretical nucleation size
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Figure S1. The measured nucleation sizes of the simulated ruptures are comparable to

the theoretical estimate h∗RA, within a factor of 2.
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Figure S2. The spatially-averaged prestress τAini and energy-averaged prestress τEini are

generally comparable and decrease with increasing rupture size and efficiency of weaken-

ing.
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Rupture length / Theoretical nucleation size
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Figure S3. The (A) spatially-averaged and (B) energy-based average static stress drops

for ruptures represent relatively mild decreases in average shear stress with respect to the

effective normal stress. Persistently weak fault models with low effective normal stress

≤ 20 MPa and relatively mild weakening, such as from standard rate-and-state friction

(RS1 and RS2) produce potentially too small average static stress drops ≤ 2 MPa, whereas

models with mild to moderate enhanced weakening (TP1-4) produce realistic average

static stress drops of 1 - 10 MPa.
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Rupture length / Theoretical nucleation size
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Figure S4. Ruptures on fault models with relatively mild weakening due to standard

rate-and-state friction also exhibit a mild decrease in the spatially-averaged prestress τAini

with increasing rupture size.
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Figure S5. Comparison of the standard logarithmic (black) and regularized (red)

formulations for rate-and-state friction given fixed θ = L/V∗ with V∗ = 1 µm/s, f∗ = 0.6,

and (a − b) = 0.004. The two formulations are equivalent for slip rates relevant to most

laboratory experiments but differ as V approaches 0 m/s.
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