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Introduction

This document has several purposes. First, we will illustrate some differences between clear
ensemble statistics and cloudy ensemble statistics. Differences like these motivate research into
the BGEnKF and similar GMM-EnKFs. The second purpose is to provide a quick reference for
other scientists to understand the BGEnKF, independently re-create our BGEnKF algorithm,
and to support further development of the BGEnKF. To increase the accessibility of this area of
research, we have written this document with graduate students in mind.

1. Text S1: Some differences between clear and cloudy member statistics

To set the stage, we plotted maps of the ensemble averaged Window-BT [Figure S1(b)] and the
fraction of cloudy member columns in the ensemble [Figure S1(b)]. These ensemble quantities
are constructed from the spun-up 50-member WRF ensemble described in the main text. Though
the ensemble captured the general appearance of the organized convective features seen in the
nature run [Figures 2(a) and S1(a)], the ensemble was uncertain about the presence/absence of
clouds over much of the domain [Figure S1(b)]. This uncertainty is particularly noticeable over
regions where the ensemble averaged Window-BT was between 248 K and 280 K.

Several differences between clear and cloudy member columns can be seen from Figure S1.
First, the average Window-BT values of clear member columns are typically warmer than 280
K, whereas the average Window-BT values of cloudy member columns are cooler than 280 K
[Figure S1(c & d)]. This difference is well known. As such, the Window-BT ensemble statistics
of an ensemble of clear and cloudy member columns (henceforth, mixed ensemble) will exhibit
mixed statistics.

The clear and cloudy member columns also differ noticeably in terms of their humidity fields
and the Kalman gain linking Window-BT innovations to humidity increments. For the ease of
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visualization, we examined through a column-integrated measure of humidity that is a linear
function of the WRF model state: the pseudo precipitable water (PPW). The PPW is defined
as

PPW ≡ g

Psfc − Ptop

∫ 1

0

qvdη (1)

where qv refers to water vapor mass mixing ratio (QVAPOR), Psfc and Ptop refer to model
surface pressure and model top pressure, and η refers to the WRF model’s vertical coordinate.
The PPW can be derived from the definition of precipitable water by applying the hydrostatic
approximation, the definition of WRF η levels, and by assuming that Psfc and Ptop are constants
(Psfc ≡ 1000 hPa, Ptop ≡ 20 hPa).

We opted to use the linear PPW over precipitable water (PW) because PW is a nonlinear
function of the model state. Thus, the Kalman gain linking PW to Window-BT within the same
model column is not mathematically equivalent to taking a column-integral of the Kalman gain
linking QVAPOR to Window-BT. In contrast, said mathematical equivalence holds for PPW.
Looking at PPW over PW thus allows us to get an accurate sense of what the EnKF would do
to QVAPOR within a model column.

Figure S1(c & d) indicates that the PPW of cloudy member columns is higher than that of
clear member columns. This is because clouds require nearly saturated humidity to materialize.
As such, when the ensemble is mixed, mixture statistics in the humidity fields are likely.

We also examined the component of the Kalman gains responsible for propagating Window-BT
innovations to QVAPOR: the least squares linear regression coefficient linking Window-BT to
QVAPOR (Anderson, 2003). For the ease of visualization, we looked at the coefficient linking
Window-BT to PPW within the same column. This coefficient (β) is defined as

β ≡ Cov (PPW,BT)

Var (BT)
. (2)

Cov (PPW,BT) denotes the prior ensemble covariance between PPW and Window-BT within
said model column, and Var (BT) denotes the prior ensemble variance of Window-BT within
the same column. In the limit where Var(BT) is much smaller than the observation error, the
Kalman gain turns into β.

As can be seen from Figure S1(e & f), the clear member columns’ statistically significant β
values are generally an order of magnitude larger than those of the cloudy member columns.
This difference suggests that the statistical relationship between Window-BT and humidity can
vary dramatically depending on the absence/presence of clouds.

2. Text S2: Heuristic localized clustering of ensemble members

Since a mixture of clear and cloudy members results in a mixed prior distribution, it seems
appropriate to explore an ensemble DA method that explicitly treat mixture distributions. Since
the EnKF has been remarkably successful at assimilating infrared radiance observations (Otkin,
2012; F. Zhang et al., 2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018;
Otkin & Potthast, 2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones
et al., 2020; Chan & Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021), we will extend
the EnKF to handle clear members and cloudy members separately.

A complication in handling clear members and cloudy members separately lies in the fact every
member usually contains both clear model columns and cloudy model columns. Supposing we
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have Ni ∗Nj model columns in the domain, there can exist up to 2Ni∗Nj possible spatial combi-
nations of clear and cloudy columns in the domain. Sampling these 2Ni∗Nj combinations would
require more than 2Ni∗Nj ensemble members – a likely impractical proposition. Dimensional
reduction is necessary to reduce the required number of ensemble members.

A simple and natural dimensional reduction approach is to limit our clear/cloudy considera-
tions to small regions of the domain. This dimensional reduction approach is effectively a type of
spatial localization – a commonly employed heuristic method used to limit the effects of sampling
errors on EnKFs (Houtekamer & Zhang, 2016). As a first attempt at employing this localization,
suppose we are assimilating observations one-at-a-time (i.e., serial assimilation). When assimi-
lating the m-th observation, we will only consider model columns within 1 horizontal radius of
influence (HROI) surrounding the observed column. If there are Nloc columns within 1 HROI of
the observed column, the number of possible spatial combinations falls from 2Ni∗Nj to 2Nloc . For
commonly used HROI values, 2Nloc ≪ 2Ni∗Nj .

Though localization can dramatically reduce the number of spatial clear/cloudy combinations,
2Nloc is likely greater than the number of ensemble members NE. For instance, in the IR DA
experiments of Chan, Zhang, et al. (2020) and Chan and Chen (2021), the HROI is approximately
11 model grid spacings (100-km HROI, 9-km grid spacing), meaning that there exist ∼ π ∗ 112 ≈
363 model columns within the localization zone. A typical ensemble size of ∼ 50 is much less
than the number of spatial combinations in this example (∼ 2363). Another measure is necessary
to further simplify the problem.

We opted to assume that there are at most two clear/cloudy spatial combinations within the
localized zone. To understand the rationale, consider that localized serial EnKFs assume that
all ensemble members within 1 radius of influence (ROI) of an observation to be drawn from a
Gaussian distribution (Burgers et al., 1998; Whitaker & Hamill, 2002; Anderson, 2003). This
is equivalent to assuming that there exists only one spatial combination within 1 ROI of said
observation. Our two spatial combination assumption, though imperfect, is closer to the actual
number of spatial combinations (2Nloc) than the one spatial combination assumption.

We can now consider that the ensemble members are drawn from a mixture of two distributions
within the localized region. The EnKF can be extended to handle this mixture distribution
by replacing the EnKF’s Gaussian prior assumption. Specifically, we consider that some prior
members are drawn from one Gaussian distribution and the other members are drawn from a
different Gaussian distribution. The prior ensemble is thus assumed to be drawn from a bi-
Gaussian prior distribution. The resulting algorithm will be henceforth termed the bi-Gaussian
EnKF (BGEnKF).

For the BGEnKF to work, it is necessary to separate the ensemble members into two groups
(henceforth termed ”clusters”). The sample statistics of each cluster will correspond to one of two
Gaussian kernels. As a first approach, we will consider members that are clear at the observation
site to be drawn from one Gaussian distribution (henceforth termed the “clear kernel” or “clear
cluster”). The remaining members will be considered to be drawn from a different Gaussian
distribution (henceforth, the “cloudy kernel” or “cloudy cluster”). More advanced clustering
approaches, such as those involving machine learning (e.g., support vector machines), can be
considered at a later date.

3. Text S3: Bayes’ rule for the BGEnKF

We will now formulate a serially assimilating BGEnKF (i.e., the algorithm assimilates one
observation at a time) starting from Bayes’ rule and using a notation akin to that of Ide, Courtier,
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Ghil, and Lorenc (1997). In our earlier study (Chan, Anderson, & Chen, 2020), the BGEnKF
was formulated as a model state space filter [or, in the terminology of Anderson and Collins
(2007), a sequential filter]. However, multi-process implementations of sequential filters require
inter-process communications at every iteration of the serial assimilation loop. The sequential
filter formulation thus does not scale well with parallelization (Anderson & Collins, 2007).

To ensure that the BGEnKF algorithm scales well with parallelization, the BGEnKF is for-
mulated to constrain an extended state vector ψ (Anderson & Collins, 2007). ψ will contain
all of the variables used in the BGEnKF. Aside from containing the model state x, ψ will also
contain the simulated observation values y that correspond to said model state. Furthermore,
since ξ [column-integrated frozen water mass content; see main text’s Eq. (1)] can be used to
discriminate clear column members from cloudy column members (see main text’s section 2.2),
we will include ξ at every observation site into ψ. The vector ξ will be used to denote the ξ
values at every observation site. We can thus define

ψ ≡

xy
ξ

 . (3)

Supposing Nx denotes the number of elements in x and Ny denotes the number of elements in y
(and in ξ), then ψ has Nx + 2Ny elements. For the ease of writing, we will define

Nψ ≡ Nx + 2Ny

With Eq. (3), we can construct an ensemble of forecasted ψ vectors. Supposing that we have

a forecast ensemble of NE model states
{
xf
1 ,x

f
2 , . . . ,x

f
NE

}
, we can define an ensemble of NE

forecasted extended state vectors via

ψf
n ≡

 xf
n

h(xf
n)

ξ
(
xf
n

)
 ∀ n = 1, 2, . . . , NE. (4)

Here, h(xf
n) represents calling the observation operator h on xf

n, and ξ
(
xf
n

)
represents eval-

uating ξ [Eq. (1) of main text] at every observation site using the using the information in
xf
n.

Since the BGEnKF will be formulated as a serial assimilation algorithm, we can outline the
essence of the algorithm by considering what happens when a single observation (yo) is assimilated
into an ensemble of forecasted ψ vectors. Like typical serially assimilating EnKF algorithms [e.g.,
Whitaker, Hamill, Wei, Song, and Toth (2008), Anderson et al. (2009), and Meng and Zhang
(2007)], the serially assimilating BGEnKF algorithm is of the form:



CHAN ET AL.: HANDLING OF CLEAR AND CLOUDY MIXED ENSEMBLES WITH BGENKF X - 5

1. Construct an ensemble of forecasted ψ vectors (i.e.,
{
ψf

1 ,ψ
f
2 , . . . ,ψ

f
NE

}
).

2. Select an unassimilated observation.

3. Divide the ensemble into the clear and cloudy clusters using the procedure described the main

text’s section 2.2.

4. Assimilate the selected observation using the BGEnKF to construct an ensemble of analyzed

ψ vectors (i.e.,
{
ψa

1 ,ψ
a
2 , . . . ,ψ

a
NE

}
)

5. If there are unassimilated observations remaining,

(i) Overwrite the forecast ensemble with the posterior ensemble (i.e., ψf
n ← ψa

n ∀n =

1, 2, . . . , NE).

(ii) Return to step 2..

6. Exit.

We will thus formulate the BGEnKF equations by considering the assimilation of yo into{
ψf

1 ,ψ
f
2 , . . . ,ψ

f
NE

}
. Supposing that the ensemble members have been sorted into the clear and

cloudy clusters based on the ξ value at the observation site, the BGEnKF assumes that the prior
probability density function [pdf; p (ψ)] can be represented by the bi-Gaussian pdf

p (ψ) = wf
clr G

(
ψ; ψf

clr,P
f
clr

)
+ wf

cld G
(
ψ; ψf

cld,P
f
cld

)
. (5)

Throughout this document, we will use the subscript “clr” to denote clear cluster quantities,

and the subscript “cld” to denote cloudy cluster quantities. G
(
ψ; ψf

clr,P
f
clr

)
denotes the

clear cluster’s Gaussian kernel with mean state ψf
clr and covariance matrix P f

clr. Similarly,

G
(
ψ; ψf

cld,P
f
cld

)
denotes the cloudy cluster’s Gaussian kernel with mean state ψf

cld and co-

variance matrix P f
cld. In general, the Gaussian pdf for a K-dimensional state p vector with some

mean µ and covariance matrix C is defined as

G (p; µ,C) ≡ 1√
(2π)Kdet (C)

exp

{
−1

2
(p− µ)⊤C−1 (p− µ)

}
.

The scalar quantities wf
clr and wf

cld are the respective weights of the clear and cloudy Gaussian
kernels. Note that

wf
clr + wf

cld = 1, wf
clr ≥ 0, and, wf

cld ≥ 0.

The various parameters in the prior pdf [Eq. (5)] are estimated from the clustered forecast
ensemble of ψ vectors. Suppose the set Sclr contains the ensemble member indices of clear
cluster members [i.e., the index n in Eq. (4)] and the set Scld contains the ensemble member
indices of cloudy cluster members. We first compute the number of members in the clear cluster
(N f

clr) and the number of members in the clear cluster (N f
cld) via

N f
clr ≡ count (Sclr) , and, N f

cld ≡ count (Scld) (6)
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Supposing g is a placeholder that can be replaced with ”clr” or ”cld”, count (Sg) counts the
number of elements in the set Sg. The parameters of Eq. (5) can then be estimated via

ψf
g ≡

1

N f
g

∑
n∈Sg

ψf
n, P f

g ≡
1

N f
g − 1

∑
n∈Sg

(
ψf

n −ψf
g

)(
ψf

n −ψf
g

)⊤
, and, wf

g ≡
N f
g

N f
clr +N f

cld

.

(7)
Note that the BGEnKF does not require any explicit estimate of the large matrices P f

cld and
P f

clr. Instead, like the typical serially assimilating EnKF, the BGEnKF only requires calculating
a column of these matrices. This will be discussed in Text S4.

To assimilate yo into
{
ψf

1 , . . . ,ψ
f
NE

}
, consider Bayes’ rule:

p (ψ|yo) = p (ψ) p (yo|ψ)
p (yo)

(8)

where the marginal p (yo) normalizes the numerator of Eq. (8) [e.g., Lorenc (1986)]. As we
will show later, this normalization property is central to deriving the posterior weights of the
clear and cloudy posterior kernels. Note that though the normalization property is used in the
derivation, there is no need to explicit compute p (yo) at all in the BGEnKF algorithm.

If we assume Gaussian observation errors, the observation likelihood p (yo|ψ) can be written
as

p (yo|ψ) ≡ G
(
Hψ; yo, σo2

)
(9)

where σo2 is the observation error variance and H is a matrix that extracts the simulated
observation from ψ. Specifically, if yo corresponds to the (Nx +m)-th element in ψ, H is an
1×Nψ matrix of the form

H ≡
[
0 0 . . . 0 1 0 . . . 0 0

]
where the only non-zero element (unity) is the (Nx +m)-th element.

Before proceeding further, note that the observation likelihoods for IR-BTs are not strictly
Gaussian. The associated observation errors are known to be dependent on the presence/absence
of clouds in the observed atmospheric columns (Geer & Bauer, 2011; Harnisch et al., 2016; Mi-
namide & Zhang, 2017; Otkin et al., 2018). Furthermore, IR-BT values are bounded. Nonethe-
less, the successes seen in assimilating IR-BTs with EnKFs suggest that the imperfect Gaussian
observation likelihood assumption is at least somewhat functional (Otkin, 2012; F. Zhang et al.,
2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018; Otkin & Potthast,
2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones et al., 2020; Chan
& Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021). We will thus proceed with the
assumption that the observation likelihood is Gaussian.

For the ease of future reference, we will sketch out the main steps to derive the posterior pdf.
Combining the bi-Gaussian forecast pdf [Eq. (5)] with the Gaussian observation likelihood [Eq.
(9)] through Bayes rule [Eq. (8)] will result in

p (ψ|yo) =wf
clr G

(
ψ; ψf

clr,P
f
clr

)
G
(
Hψ; yo, σo2

)
/p (yo)

+ wf
cld G

(
ψ; ψf

cld,P
f
cld

)
G
(
Hψ; yo, σo2

)
/p (yo) (10)

To proceed further, a well-known property is used: the multiplication of two Gaussian pdfs results
in a scaled Gaussian pdf. This property is foundational to EnKFs (Evensen, 1994; Burgers et al.,
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1998; Houtekamer & Mitchell, 2001; Anderson, 2001; Bishop et al., 2001; Whitaker & Hamill,
2002; Tippett et al., 2003; Hunt et al., 2007). In this situation, for the term associated with
cluster g [e.g., Anderson and Anderson (1999)],

G
(
ψ; ψf

g ,P
f
g

)
G
(
Hψ; yo, σo2

)
= αg G

(
ψ; ψa

g ,P
a
g

)
(11)

where ψa
g represents the analyzed average state of cluster g, P a

g represents the analyzed covari-

ance matrices of said cluster, and αg is a scaling factor. ψa
g and P a

g are related to ψf
g and P f

g

via the Kalman filter (KF) equations [e.g., Lorenc (1986)]

ψa
g = ψf

g +Kg

(
yo −Hψf

g

)
, and, P a

g = (I −KgH)P f
g , (12)

where Kg is the Kalman gain matrix for cluster g. Kg can be computed via

Kg ≡ P f
g H

⊤
(
H P f

g H
⊤ + σo2

)−1

=
Cov

(
ψf

g , Hψ
f
g

)
Var

(
Hψf

g

)
+ σo2

(13)

where

Cov
(
ψf

g , Hψ
f
g

)
≡ 1

N f
g − 1

∑
ng∈Sg

(
Hψf

n −Hψf
g

)(
ψf

n −ψf
g

)
,

Var
(
Hψf

g

)
≡ 1

N f
g − 1

∑
ng∈Sg

(
Hψf

n −Hψf
g

)2
,

and ng is a dummy index that iterates over the member indices contained in Sg. The scaling
factor αg in Eq. (11) can be shown to be [e.g., Anderson and Anderson (1999)]:

αg = G
(
yo; H ψf

g , σo2 +HP f
g H

⊤
)
. (14)

Note that H ψf
n, H ψf

g , and Var
(
Hψf

g

)
are scalars. Furthermore, if yo corresponds to the

(Nx +m)-th element of ψ, then Cov
(
ψf

g , Hψ
f
g

)
is equal to the (Nx +m)-th column of P f

g .

Substituting Eq. (11) into Eq. (10) and results in

p (ψ|yo) =
wf

clr αclr G
(
ψ; ψa

clr,P
a
clr

)
+ wf

cld αcld G
(
ψ; ψa

cld,P
a
cld

)
p (yo)

. (15)

Since p (yo) normalizes Eq. (15), then,

p (yo) =

∫
R
Nψ

{
wf

clr αclr G
(
ψ; ψa

clr,P
a
clr

)
+ wf

cld αcld G
(
ψ; ψa

cld,P
a
cld

)}
dNψψ

= wf
clr αclr + wf

cld αcld (16)

where
∫
R
Nψ {·} dNψψ is an infinite Nψ-dimensional volume integral of {·} over the Nψ-dimensional

space that ψ lives in [i.e., an RNψ space]. Substituting the marginal [Eq. (16)] back into Bayes’
rule [Eq. (15)] gives us the following bi-Gaussian posterior pdf

p (ψ|yo) = wa
clr G

(
ψ; ψa

clr,P
a
clr

)
+ wa

cld G
(
ψ; ψa

cld,P
a
cld

)
(17)
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where

wa
clr =

wf
clr αclr

wf
clr αclr + wf

cld αcld

, and, wa
cld =

wf
cld αcld

wf
clr αclr + wf

cld αcld

. (18)

Like the EnKF, the BGEnKF will update the forecast ensemble to become consistent with the
posterior bi-Gaussian pdf [Eq. (17)].

4. Text S4: Detailed description of the three-stage BGEnKF algorithm

The BGEnKF’s updates to the ensemble is done through a three-stage update process (illus-
trated in the main text’s Figure 1). In order of execution, these stages are: 1) the double EnKF
stage, 2) the shrinking cluster member deletion stage, and 3) the expanding cluster member
resampling stage. An outline of this three-stage BGEnKF update procedure can be found at the
end of this section.

The double EnKF stage

The first stage [Figure 1(a)] is to represent the KF updates to the clusters’ mean states and
covariance matrices. We can thus use the ensemble square root filter of Whitaker and Hamill
(2002) (EnSRF) to update each cluster’s members. The EnSRF update equation (Whitaker &
Hamill, 2002) for members in cluster g is

ψa
ng

= ψf
ng

+Kg

(
yo −Hψg

)
− ϕgKg

(
Hψf

ng
−Hψf

g

)
∀ ng ∈ Sg. (19)

The Kalman gain matrix of cluster g (Kg) can be computed via Eq. (13). ϕg is the EnSRF’s
square-root modification factor (Whitaker & Hamill, 2002), which can be computed via

ϕg ≡

1 +

√√√√ σo2

σo2 +Var
(
Hψf

g

)


−1

. (20)

Note that the EnSRF-based cluster update equations can be replaced with those from the two-
step ensemble adjustment Kalman filter (EAKF) of Anderson (2003). This is because the two
filters have mathematically identical ensemble member update procedures.

The member deletion stage

In the second and third stages of the BGEnKF (Figure 1(b & c)), the number of ensemble
members in each cluster (i.e., cluster sizes) is updated to be consistent with the cluster’s posterior
weight [Eq. (18)]. The post-BGEnKF size of cluster g (Na

g ) can be determined by

Na
g ≡ round (NE ∗Wg) (21)

where round (·) indicates rounding · to the nearest integer.

If the size of a cluster is reduced by the assimilation of yo, we will delete members from said
cluster (Figure 1(b)). The number of members to be deleted Ndel is defined as

Ndel ≡


N f

clr −Na
clr if Na

clr < N f
clr,

N f
cld −Na

cld if Na
cld < N f

cld.

(22)
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For simplicity, we will delete the members with the smallest Ndel forecast-simulated observation
perturbations. Since the deletion will cause the cluster’s mean state to deviate from the the-
oretical mean state [Eq. (12)], we will recenter the remaining members around the theoretical
value. Note that no heuristic adjustments were made to mitigate the changes in the cluster’s
sample covariance matrix due to the deletion process. This is because it is impossible to prevent
such changes in practical situations [for NE < Nψ, the rank of the pre-deletion sample covariance
matrix is guaranteed to be higher than the rank of the post-deletion sample covariance matrix;
Chan, Anderson, and Chen (2020)].

The resampling stage

If the size of one cluster is reduced by the assimilation of yo, the other cluster’s size will increase
to compensate for the reduction. This ensures that the total number of ensemble members is
unchanged. To do so, the expanding cluster’s ensemble members are resampled. The expanding
cluster’s sample mean state and sample covariance matrix should not be altered by resampling.

The computationally efficient resampling strategy proposed in Chan, Anderson, and Chen
(2020) is to resample within the extended state subspace spanned by the expanding cluster’s
ensemble members (henceforth referred to as the subspace resampling strategy). This is the
easiest to formulate in terms of the perturbations of the expanding cluster’s members. Supposing
that the subscript “pre” denotes expanding cluster quantities before resampling, we can compute

the pre-resampling perturbations
{
ψa

′

n |n ∈ Spre

}
via

ψa
′

n ≡ ψa
n −ψa

pre ∀ n ∈ Spre (23)

where ψa
pre is the expanding cluster’s mean state and Spre is the set of member indices in the

expanding cluster before resampling.

The central idea of the subspace resampling strategy is to construct a new set of perturbations
via linear combinations of the pre-resampling perturbations. We will denote all post-resampling
expanding cluster quantities with the subscript “post”. Let Spost denote the set of member indices
in the post-resampling expanding cluster. Spost thus includes the member indices in Spre and the
indices of the members deleted in the deletion stage. If we represent the set of post-resampling
perturbation vectors as

{
ψa∗

n∗|n∗ ∈ Spost

}
, the strategy’s central idea can then be mathematically

expressed as

ψa∗

n∗ ≡
∑
n∈Spre

ψa
′

n Tn,n∗ ∀ n∗ ∈ Spost

where Tn,n∗ is a to-be-determined scalar factor controlling how the n-th pre-resampling pertur-
bation contributes to the n∗-th post-resampling perturbation. This linear combination idea can
be more succinctly expressed as

Ψpost ≡ ΨpreT . (24)

Here, Ψpre is a matrix where each column contains a pre-resampling perturbation, and Ψpost

is a matrix where each column contains a post-resampling perturbation. Supposing the pre-
resampling cluster size is denoted by Npre and the post-resampling cluster size is denoted by
Npost, then Ψpre is an Nψ×Npre matrix and Ψpost is an Nψ×Npost matrix. If we denote the ℓ-th
member index in Spre as npre,ℓ, and likewise for the ℓ-th member index in Spost, we can explicitly
write out Ψpre and Ψpost:

Ψpre ≡
[
ψa

′

npre,1
ψa

′

npre,2
· · · ψa

′

npre,Npre

]
,

Ψpost ≡
[
ψa∗

npost,1
ψa∗

npost,2
· · · ψa∗

npost,Npost

]
.

(25)
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Finally, T is an Npre ×Npost matrix containing all of the Tn,n∗ values [i.e., element (n, n∗) of T
is equal to Tn,n∗ ].

T should be constructed such that the post-resampling perturbations have a mean of zero and
have a covariance matrix equal to that of pre-resampling perturbations. As discussed in Chan,
Anderson, and Chen (2020), there are an infinite number of possible T ’s that satisfy these two
conditions. Following the discussions and heuristic arguments in Chan, Anderson, and Chen
(2020), we chose to use

T ≡

 kINpre−N∗
new

0(Npre−N∗
new)×N∗

new
0(Npre−N∗

new)×Nnew

0N
∗
new×(Npre−N∗

new) IN∗
new

E

 (26)

where

Nnew ≡ Npost −Npre, and, N∗
new ≡


Nnew − 1 ∀ Nnew ≤ Npre

Npre otherwise

. (27)

Furthermore, for arbitrary integers η and µ, Iη is an η × η identity matrix, 0η×µ is an η × µ
matrix of zeros. k is the following scalar inflation factor

k ≡

√
Nnew +Npre − 1

Npre − 1
(note that k ≥ 1). (28)

The matrixE in Eq. (26) is anN∗
new×Nnew matrix that will be defined shortly. SinceN∗

new < Nnew

[see Eq. (27)], E is a rectangular matrix with more columns than rows. Note that whenever
Nnew > Npre, the kINpre−N∗

new
component vanishes from T . Furthermore, whenever Nnew = 1,

the IN∗
new

and E components vanish from T .

Our choice of E is nearly identical to that of Chan, Anderson, and Chen (2020):

E ≡ k − 1

Nnew

1N∗
new×Nnew +LE(LW )−1W . (29)

Here, 1N∗
new×Nnew denotes an N∗

new×Nnew matrix whose elements are all set to unity. Furthermore,
W is an N∗

new ×Nnew matrix of the form

W ≡
[
IN∗

new
0N∗

new×(Nnew−N∗
new)

]
− 1

Nnew

1N∗
new×Nnew . (30)

Supposing that Chol (S) denotes the Cholesky decomposition of an arbitrary symmetric matrix
S, following appendix B of Chan, Anderson, and Chen (2020), we define

LW ≡ Chol
(
WW⊤) , (31)

and

LE ≡ Chol

(
Nnew

Npre − 1
IN∗

new
− (k − 1)2

Nnew

1N∗
new×N∗

new

)
. (32)

The only difference between the current formulation of E and that of Chan, Anderson, and Chen
(2020) lies in the W matrix. In Chan, Anderson, and Chen (2020), W is created from vectors
of random white noise. For the ease of parallelization and to ensure replicability (i.e., reruns of
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the BGEnKF should give the same result), we replaced that stochasticW generation procedure
with a deterministic one [i.e., Eq. (30)].

As discussed in Chan, Anderson, and Chen (2020), the resampled perturbations generated
by the T defined in Eq. (26) has the property of preserving the pre-resampling perturbations
(up to an inflation factor). More specifically, the first Npre − N∗

new resampled perturbations are
inflated versions of the first Npre−N∗

new pre-resampling perturbations. The next N∗
new resampled

perturbations are copies of N∗
new of the pre-resampling perturbations. Finally, the remaining

Nnew resampled perturbations are linear combinations of the copied perturbations.

Outline of three-stage BGEnKF update procedure to assimilate an observation

The outline of the three-stage BGEnKF procedure is as follows. Note that this outline assumes
that the members have already been sorted into the clear and cloudy clusters (see the last
paragraph of Text S2 for how members are sorted into the two clusters).

Stage 1: Double EnKF [illustrated in Figure 1(a)]

1. Do g = clr, cld

(i) For cluster g, compute the Kalman gain [Kg; Eq. (13)] and square-root modification

factor [ϕg; Eq. (20)].

(ii) Evaluate Eq. (19) for every ensemble member in cluster g.

Stage 2: Shrinking cluster member deletion [illustrated in Figure 1(b)]

1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation

2. If Na
clr < N f

clr, the clear cluster will be considered as the shrinking cluster.

3. If Na
cld < N f

cld, the cloudy cluster will be considered as the shrinking cluster.

4. If no shrinking cluster has been identified, terminate the current stage.

5. Compute Ndel using Eq. (22).

6. Compute the current mean state of the shrinking cluster.

7. Delete the members with the smallest Ndel forecast-simulated observation perturbations within

the shrinking cluster.

8. Compute the mean state of the remaining members in the shrinking cluster.

9. Subtract the mean computed in step 8 from the mean computed in step 6.

10. Add the difference computed in step 9 to each of the remaining members in the shrinking

cluster to recenter said members on the pre-deletion shrinking cluster mean state.
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Stage 3: Resample expanding cluster members [illustrated in Figure 1(c)]

1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation

2. If Na
clr > N f

clr, the clear cluster will be considered as the expanding cluster.

3. If Na
cld > N f

cld, the cloudy cluster will be considered as the expanding cluster.

4. If no expanding cluster has been identified, terminate the current stage.

5. Compute Nnew and N∗
new using Eq. (27).

6. Compute the expanding cluster’s mean state vector.

7. Construct the expanding cluster’s perturbation vectors via Eq. (23).

8. Construct matrix W by evaluating Eq. (30).

9. Construct LW and LE by evaluating Eqs. (31) and (32).

10. Construct E by evaluating Eq. (29).

11. Construct T by evaluating Eq. (26).

12. Evaluate Eq. (24) to resample the expanding cluster perturbations.

13. Add the expanding cluster’s mean state (computed in step 6) to the resampled perturbations

to construct the resampled expanding cluster ensemble members.

5. Text S5: Outline of the BGEnKF algorithm serial filtering workflow

We will now outline the workflow of the serially assimilating BGEnKF algorithm (illustrated
in Figure S2). The serially assimilating BGEnKF algorithm executes the following list of steps.

1. Construct an ensemble of forecast ψ vectors from the prior ensemble using Eq. (4).

2. Select the first observation by setting m = 1.

3. Employ the adaptive observation error inflation (AOEI) of Minamide and Zhang (2017) to

mitigate representation errors.

4. Extract an ensemble of ξ values from the ensemble of ψ vectors that corresponds to the m-th

observation site. Members whose extracted ξ values are smaller than 1 g/m2 are considered as

clear members. The remaining members are considered as cloudy members.

5. Run through the heuristic checks in the main text’s sections 2.5.2 and 2.5.3 to determine

whether the BGEnKF or its single-kernel form (essentially an EnKF) should be used.

6. If any of the heuristic checks in step 5 fail, put all ensemble members into the clear cluster.

7. Apply the three-stage algorithm described in Text S4 to update the ensemble of ψ vectors.

8. Localize the ψ vector updates using the main text’s Eq. (7).

9. Increment m (i.e., m← m+ 1).

10. If there are unassimilated observations remaining, go back to step 3.

11. Extract the model states contained in the ensemble of ψ vectors, output said model states,

and terminate the algorithm.
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To implement this algorithm with parallelization on the PSU-EnKF system, we employed the
low-latency computing cluster strategy proposed by Anderson and Collins (2007). Specifically,
every process will receive a sub-domain’s worth of model state variables, an entire domain of
observation and simulated observation values, and an entire domain of ξ values. To assimilate
an observation, each process will then update its sub-domain of model state variables, all of its
simulated observations, and all of its ξ values. As such, no inter-process communications are
needed within the serial assimilation loop.

6. Text S6: On generalizing the BGEnKF algorithm to handle more clusters

The BGEnKF algorithm can be generalized to handle an arbitrary number of ensemble clusters
(e.g., a three-cluster GMM-EnKF). We did not use more than two clusters in this study because
this study is a first approach to testing a cluster GMM-EnKF with a realistic weather model.
Furthermore, using more clusters means that each cluster will contain fewer members. With
smaller cluster sizes, the deleterious impacts of sampling errors on each cluster’s sample statistics
are likely stronger. Considering the small ensemble size that will be used in this first-approach
study (50 members), we opted to use two clusters for now.

To generalize the BGEnKF to handle Nc clusters, only a few modifications are needed: 1) the
ensemble clustering method needs to be adjusted to sort the ensemble into the Nc clusters, and
2) a slightly different method would be needed to infer the posterior cluster sizes [Eq. (22)]. The
latter modification is necessary because using Eq. (22) with more than 2 clusters can cause the
total number of ensemble members to change. This change arises from the use of the rounding
function. For instance, suppose we have 3 clusters with equal posterior weights (0.333333 each)
and the ensemble size is 10. Using Eq. (22) will result in 3 members in each cluster, or 9 members
in total. A different approach to convert the non-integer weights into integer cluster sizes is thus
necessary for Nc > 2.
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Figure S1: Latitude-longitude plots of various ensemble statistics at 1200 UTC on 15 October
2011 to illustrate the differences between clear and cloudy sky members at every model column. These
quantities are generated using the 50-member ensemble described in the main text. The y-axes indicate
latitude (degrees North), and the x-axes indicate longitude (degrees East). The plotted quantities are:
the prior ensemble mean Window-BT (a), the fraction of cloudy member columns in the prior ensemble
at every grid column (b), the mean Window-BTs of clear member columns (c), the mean Window-
BT of cloudy member columns (d), the mean pseudo precipitable water (PPW) for clear member
columns (e), the mean PPW for cloudy member columns (f), the linear regression coefficient between
Window-BT and PPW (β) for clear member columns (g), and the β values for cloudy member columns
(h). The gray shadings in panels c, e & g indicate locations where there are either less than 5 clear
member columns, the clear member columns’ Window-BT sample variance is zero, or the clear member
columns’ PPW sample variance is zero. The gray shadings in panels d, f & h indicate locations where
there are either less than 5 cloudy member columns, the cloudy member columns’ Window-BT sample
variance is zero, or the cloudy member columns’ PPW sample variance is zero. The white shadings
in panels g indicate areas where the clear member columns’ sample correlation between PPW and
Window-BT is statistically insignificant, and likewise for the white shadings in panel h.
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Figure S2: Workflow of the BGEnKF module implemented in the PSU DA system. “Obs” stands for
“observations” and Nobs stands for the total number of observations. See the text for the definitions
of the extended state vector ψ [Eq. (3)], the list of heuristic checks used to select between the EnKF
and BGEnKF (main text section 2.5), and for a description of the BGEnKF update procedure (Text
S4). The three-stage BGEnKF update procedure is illustrated in Figure 1 of the main text.


