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Key Points

Machine learning to predict final fire size
at the time of ignition

* Climate change may require new approaches for
fire management

* Decision trees can be used to classify ignitions as
leading to small, medium, or large fires with 50%
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Objective - Develop and validate a new framework for Results
wildfire prediction, to triage fires using only information
available at the time of ignition

Discussion
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Fire sizes by management zone
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Final decision tree (summary visualization from fitting a single tree to all data)
« Optimal predictive window for weather: 1-5 days after ignition

« Optimal predictive window for vegetation: within 4 km of ignition

« Optimal input variables: vapor pressure deficit (VPD) and fraction of spruce trees
« Classification accuracy (validation): 50.4%

Summary statistics for model applied to managed zones
« Decrease in total accuracy and precision

« Similar recall for large fires: the model can still “catch” the fires that do
become large.

« Disproportionate overprediction of large fires (48% vs. 40%) due to higher

« Decision trees performed similarly to more complex algorithms VPD during human-ignited fires in populated/managed zones
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