Data Availability Statement
The CONUS WRF simulation over the contiguous US (Liu et al., 2017) can be accessed at https://rda.ucar.edu/datasets/ds612.0/TS1. The simulations data in this study, including the single-point, offline, and coupled WRF simulation for the Prairie Pothole Region can be accessed in a FAIR compliant repository at osf.io:
https://osf.io/nckxy/?view_only=3fa18c1a466a46f1a414ecdaa0c24d67.
The Noah-MP model is driven by the NCAR high-resolution land data assimilation system (Chen et al., 2007) and can be downloaded from https://github.com/NCAR/hrldas/. The Noah-MP LSM can be accessed from https://github.com/NCAR/noahmp.
We appreciate Dr. Catherine Prigent for her help and support in this study and providing the GIEMS data for surface water inundation. The GIEMS data can be accessed in https://lerma.obspm.fr/spip.php?article91&lang=fr.
References
Badiou, P., McDougal, R., Pennock, D., & Clark, B. (2011). Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management, 19(3), 237–256. https://doi.org/10.1007/s11273-011-9214-6
Badiou, P., Page, B., & Akinremi, W. (2018). Phosphorus Retention in Intact and Drained Prairie Wetland Basins: Implications for Nutrient Export. Journal of Environmental Quality, 47(4), 902–913. https://doi.org/10.2134/jeq2017.08.0336
Barlage, M., Tewari, M., Chen, F., Miguez-Macho, G., Yang, Z. L., & Niu, G. Y. (2015). The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129(3–4), 485–498. https://doi.org/10.1007/s10584-014-1308-8
Barlage, M., Chen, F., Rasmussen, R., Zhang, Z. & Miguez‐Macho, G. The importance of scale‐dependent groundwater processes in land‐atmosphere interactions over the central United States. Geophys. Res. Lett. (2021) doi:10.1029/2020GL092171.
Bechtold, M., De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P., Bleuten, W., Bourgault, M. A., Brümmer, C., Burdun, I., Desai, A. R., Devito, K., Grünwald, T., Grygoruk, M., Humphreys, E. R., Klatt, J., Kurbatova, J., Lohila, A., Munir, T. M., Nilsson, M. B., … Tiemeyer, B. (2019). PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model. Journal of Advances in Modeling Earth Systems, 11(7), 2130–2162. https://doi.org/10.1029/2018MS001574
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1), 43–69.https://doi.org/10.1080/02626667909491834
Beven, K. (1997). TOPMODEL: A critique. Hydrological Processes, 11(9), 1069–1085. https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O
Beven, K. J., Kirkby, M. J., Freer, J. E. & Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 25, 527–549 (2021).
Bonan, G. B. (1995). Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces. Journal of Climate, 8(11), 2691–2704. https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2
Bowling, L. C., & Lettenmaier, D. P. (2010). Modeling the effects of lakes and wetlands on the water balance of arctic environments. Journal of Hydrometeorology, 11(2), 276–295. https://doi.org/10.1175/2009JHM1084.1
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Dumanski, S., Pomeroy, J. W., & Westbrook, C. J. (2015). Hydrological regime changes in a Canadian Prairie basin. Hydrological Processes, 29(18), 3893–3904. https://doi.org/10.1002/hyp.10567
Fang, X., & Pomeroy, J. (2020). Diagnosis of future changes in hydrology for a Canadian Rocky Mountain headwater basin. Hydrology and Earth System Sciences Discussions, 1–40. https://doi.org/10.5194/hess-2019-640
 Famiglietti, J. S. & Wood, E. F. (1991). Evapotranspiration and Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric General Circulation Models, Surveys in Geophysics, 12, 179-204.
Famiglietti, J. S. & Wood, E. F. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res. 30, 3061–3078 (1994a).
Famiglietti, J. S. & Wood, E. F. Application of multiscale water and energy balance models on a tallgrass prairie. Water Resour. Res. 30, 3079–3093 (1994b).
Gardner, Royal C. and Connolly, Kim Diana, The Ramsar Convention on Wetlands: Assessment of International Designations Within the United States (2007). Enviromental Law Review, 37, 1089, Available at SSRN: https://ssrn.com/abstract=983546
Gedney, N., & Cox, P. M. (2003). The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity. Journal of Hydrometeorology, 4(6), 1265–1275.https://doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
Hatfield, J. L. (2016). Increased Temperatures Have Dramatic Effects on Growth and Grain Yield of Three Maize Hybrids. Agricultural & Environmental Letters, 1(1), 150006. https://doi.org/10.2134/ael2015.10.0006
Hayashi, M., van der Kamp, G., & Rosenberry, D. O. (2016). Hydrology of Prairie Wetlands: Understanding the Integrated Surface-Water and Groundwater Processes. Wetlands, 36, 237–254.https://doi.org/10.1007/s13157-016-0797-9
Hostetler, S. W., Bates, G. T., & Giorgi, F. (1993). Interactive coupling of a lake thermal model with a regional climate model. Journal of Geophysical Research: Atmospheres, 98(D3), 5045–5057.https://doi.org/10.1029/92JD02843
Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U. & Wheater, H. S. Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol. J. 21, 53–66 (2013).
Ireson, A. M. et al. The changing water cycle: the Boreal Plains ecozone of Western Canada. Wiley Interdiscip. Rev. Water 2, 505–521 (2015).
Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. Journal of Geophysical Research: Atmospheres, 105(D20), 24809–24822. https://doi.org/10.1029/2000JD900327
Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22.https://doi.org/10.1016/j.jhydrol.2004.03.028
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415. https://doi.org/10.1029/94JD00483
Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95 (2017).
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., et al. (2013). Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10(2), 753–788.https://doi.org/10.5194/bg-10-753-2013
Miguez-Macho, G., Fan, Y., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res. Atmos. 112, 1–16 (2007).
Mishra, V., Cherkauer, K. A., & Bowling, L. C. (2010). Parameterization of lakes and wetlands for energy and water balance studies in the great lakes region. Journal of Hydrometeorology, 11(5), 1057–1082. https://doi.org/10.1175/2010JHM1207.1
Mitra, S., Wassmann, R., Vlek, P. L. G. (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35
Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, Hoboken
Valuing wetlands. (2021). Nature Geoscience, 14(3), 111–111. https://doi.org/10.1038/s41561-021-00713-4
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., & Gulden, L. E. (2005). A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Journal of Geophysical Research, 110(D21), D21106. https://doi.org/10.1029/2005JD006111
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 116(D12), D12109. https://doi.org/10.1029/2010JD015139
Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., & Qian, T. (2008). Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research: Biogeosciences, 113(G1), n/a-n/a. https://doi.org/10.1029/2007JG000563
Pattison-Williams, J. K., Pomeroy, J. W., Badiou, P., & Gabor, S. (2018). Wetlands, Flood Control and Ecosystem Services in the Smith Creek Drainage Basin: A Case Study in Saskatchewan, Canada. Ecological Economics, 147, 36–47. https://doi.org/10.1016/j.ecolecon.2017.12.026
Perkins, S. E. (2015). A review on the scientific understanding of heatwaves-Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164–165, 242–267. https://doi.org/10.1016/j.atmosres.2015.05.014
Pitman, A. (1991). A simple parameterization of sub-grid scale open water for climate models. Climate Dynamics, 6(2), 99–112. https://doi.org/10.1007/BF00209983
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B. (2001). Remote sensing of global wetland dynamics with multiple satellite data sets, Geo. Res. Lett., 28 , 4631-4634
Prigent, C., Papa, F., Aires, F., Rossow, W. B., & Matthews, E. (2007). Global inundation dynamics inferred from multiple satellite observations, 1993–2000. Journal of Geophysical Research, 112(D12), D12107. https://doi.org/10.1029/2006JD007847
Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., & Matthews, E. (2012). Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophysical Research Letters, 39(8), n/a-n/a. https://doi.org/10.1029/2012GL051276
Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., de Noblet-Ducoudré, N., Prigent, C., Friedlingstein, P., Gouttevin, I., Koven, C., & Ducharne, A. (2012). Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data. Geoscientific Model Development, 5(4), 941–962. https://doi.org/10.5194/gmd-5-941-2012
Sivapalan, M., Beven, K., & Wood, E. F. (1987). On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resources Research, 23(12), 2266–2278. https://doi.org/10.1029/WR023i012p02266
Stieglitz, M., D. Rind, J. Famiglietti & C. Rosenzwieg (1997), An Efficient Approach to Modeling the Topographic Control of Surface Hydrology for Regional and Global Climate Modeling, J. Clim., 10, 118-137.
van der Kamp, G., & Hayashi, M. (2009). Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeology Journal, 17(1), 203–214. https://doi.org/10.1007/s10040-008-0367-1
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., et al. (2013). Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 6(3), 617–641.https://doi.org/10.5194/gmd-6-617-2013
Zhang, Z., Li, Y., Chen, F., Barlage, M. & Li, Z. Evaluation of convection-permitting WRF CONUS simulation on the relationship between soil moisture and heatwaves. Clim. Dyn. (2018) doi:10.1007/s00382-018-4508-5.
Zhang, Z., Li, Y., Barlage, M., Chen, F., Miguez-Macho, G., Ireson, A., & Li, Z. (2020). Modeling groundwater responses to climate change in the Prairie Pothole Region. Hydrology and Earth System Sciences, 24(2), 655–672.https://doi.org/10.5194/hess-24-655-2020