Data Availability Statement
The CONUS WRF simulation over the contiguous US (Liu et al., 2017) can
be accessed at https://rda.ucar.edu/datasets/ds612.0/TS1. The
simulations data in this study, including the single-point, offline, and
coupled WRF simulation for the Prairie Pothole Region can be accessed in
a FAIR compliant repository at osf.io:
https://osf.io/nckxy/?view_only=3fa18c1a466a46f1a414ecdaa0c24d67.
The Noah-MP model is driven by the NCAR high-resolution land data
assimilation system (Chen et al., 2007) and can be downloaded
from https://github.com/NCAR/hrldas/. The Noah-MP LSM can be
accessed from https://github.com/NCAR/noahmp.
We appreciate Dr. Catherine Prigent for her help and support in this
study and providing the GIEMS data for surface water inundation. The
GIEMS data can be accessed in
https://lerma.obspm.fr/spip.php?article91&lang=fr.
References
Badiou, P., McDougal, R., Pennock, D., & Clark, B. (2011). Greenhouse
gas emissions and carbon sequestration potential in restored wetlands of
the Canadian prairie pothole region. Wetlands Ecology and Management,
19(3), 237–256. https://doi.org/10.1007/s11273-011-9214-6
Badiou, P., Page, B., & Akinremi, W. (2018). Phosphorus Retention in
Intact and Drained Prairie Wetland Basins: Implications for Nutrient
Export. Journal of Environmental Quality, 47(4), 902–913.
https://doi.org/10.2134/jeq2017.08.0336
Barlage, M., Tewari, M., Chen, F., Miguez-Macho, G., Yang, Z. L., &
Niu, G. Y. (2015). The effect of groundwater interaction in North
American regional climate simulations with WRF/Noah-MP. Climatic Change,
129(3–4), 485–498. https://doi.org/10.1007/s10584-014-1308-8
Barlage, M., Chen, F., Rasmussen, R., Zhang, Z. & Miguez‐Macho, G. The
importance of scale‐dependent groundwater processes in land‐atmosphere
interactions over the central United States. Geophys. Res. Lett. (2021)
doi:10.1029/2020GL092171.
Bechtold, M., De Lannoy, G. J. M., Koster, R. D., Reichle, R. H.,
Mahanama, S. P., Bleuten, W., Bourgault, M. A., Brümmer, C., Burdun, I.,
Desai, A. R., Devito, K., Grünwald, T., Grygoruk, M., Humphreys, E. R.,
Klatt, J., Kurbatova, J., Lohila, A., Munir, T. M., Nilsson, M. B.,
… Tiemeyer, B. (2019). PEAT-CLSM: A Specific Treatment of
Peatland Hydrology in the NASA Catchment Land Surface Model. Journal of
Advances in Modeling Earth Systems, 11(7), 2130–2162.
https://doi.org/10.1029/2018MS001574
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable
contributing area model of basin hydrology / Un modèle à base physique
de zone d’appel variable de l’hydrologie du bassin versant. Hydrological
Sciences Bulletin, 24(1), 43–69.https://doi.org/10.1080/02626667909491834
Beven, K. (1997). TOPMODEL: A critique. Hydrological Processes, 11(9),
1069–1085.
https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O
Beven, K. J., Kirkby, M. J., Freer, J. E. & Lamb, R. A history of
TOPMODEL. Hydrol. Earth Syst. Sci. 25, 527–549 (2021).
Bonan, G. B. (1995). Sensitivity of a GCM Simulation to Inclusion of
Inland Water Surfaces. Journal of Climate, 8(11), 2691–2704.
https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2
Bowling, L. C., & Lettenmaier, D. P. (2010). Modeling the effects of
lakes and wetlands on the water balance of arctic environments. Journal
of Hydrometeorology, 11(2), 276–295.
https://doi.org/10.1175/2009JHM1084.1
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann,
N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart,
F. (2011). The ERA-Interim reanalysis: configuration and performance of
the data assimilation system. Quarterly Journal of the Royal
Meteorological Society, 137(656), 553–597.
https://doi.org/10.1002/qj.828
Dumanski, S., Pomeroy, J. W., & Westbrook, C. J. (2015). Hydrological
regime changes in a Canadian Prairie basin. Hydrological Processes,
29(18), 3893–3904. https://doi.org/10.1002/hyp.10567
Fang, X., & Pomeroy, J. (2020). Diagnosis of future changes in
hydrology for a Canadian Rocky Mountain headwater basin. Hydrology and
Earth System Sciences Discussions, 1–40.
https://doi.org/10.5194/hess-2019-640
Famiglietti, J. S. & Wood, E. F. (1991). Evapotranspiration and
Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric
General Circulation Models, Surveys in Geophysics, 12, 179-204.
Famiglietti, J. S. & Wood, E. F. Multiscale modeling of spatially
variable water and energy balance processes. Water Resour. Res. 30,
3061–3078 (1994a).
Famiglietti, J. S. & Wood, E. F. Application of multiscale water and
energy balance models on a tallgrass prairie. Water Resour. Res. 30,
3079–3093 (1994b).
Gardner, Royal C. and Connolly, Kim Diana, The Ramsar Convention on
Wetlands: Assessment of International Designations Within the United
States (2007). Enviromental Law Review, 37, 1089, Available at SSRN:
https://ssrn.com/abstract=983546
Gedney, N., & Cox, P. M. (2003). The Sensitivity of Global Climate
Model Simulations to the Representation of Soil Moisture Heterogeneity.
Journal of Hydrometeorology, 4(6), 1265–1275.https://doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
Hatfield, J. L. (2016). Increased Temperatures Have Dramatic Effects on
Growth and Grain Yield of Three Maize Hybrids. Agricultural &
Environmental Letters, 1(1), 150006.
https://doi.org/10.2134/ael2015.10.0006
Hayashi, M., van der Kamp, G., & Rosenberry, D. O. (2016). Hydrology of
Prairie Wetlands: Understanding the Integrated Surface-Water and
Groundwater Processes. Wetlands, 36, 237–254.https://doi.org/10.1007/s13157-016-0797-9
Hostetler, S. W., Bates, G. T., & Giorgi, F. (1993). Interactive
coupling of a lake thermal model with a regional climate model. Journal
of Geophysical Research: Atmospheres, 98(D3), 5045–5057.https://doi.org/10.1029/92JD02843
Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U. & Wheater,
H. S. Hydrogeological processes in seasonally frozen northern latitudes:
understanding, gaps and challenges. Hydrogeol. J. 21, 53–66 (2013).
Ireson, A. M. et al. The changing water cycle: the Boreal Plains
ecozone of Western Canada. Wiley Interdiscip. Rev. Water 2, 505–521
(2015).
Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., & Kumar, P.
(2000). A catchment-based approach to modeling land surface processes in
a general circulation model: 1. Model structure. Journal of Geophysical
Research: Atmospheres, 105(D20), 24809–24822.
https://doi.org/10.1029/2000JD900327
Lehner, B., & Döll, P. (2004). Development and validation of a global
database of lakes, reservoirs and wetlands. Journal of Hydrology,
296(1–4), 1–22.https://doi.org/10.1016/j.jhydrol.2004.03.028
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A
simple hydrologically based model of land surface water and energy
fluxes for general circulation models. Journal of Geophysical Research,
99(D7), 14415. https://doi.org/10.1029/94JD00483
Liu, C. et al. Continental-scale convection-permitting modeling of the
current and future climate of North America. Clim. Dyn. 49, 71–95
(2017).
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B.,
Spahni, R., et al. (2013). Present state of global wetland extent and
wetland methane modelling: conclusions from a model inter-comparison
project (WETCHIMP). Biogeosciences, 10(2), 753–788.https://doi.org/10.5194/bg-10-753-2013
Miguez-Macho, G., Fan, Y., Weaver, C. P., Walko, R. & Robock, A.
Incorporating water table dynamics in climate modeling: 2. Formulation,
validation, and soil moisture simulation. J. Geophys. Res. Atmos. 112,
1–16 (2007).
Mishra, V., Cherkauer, K. A., & Bowling, L. C. (2010).
Parameterization of lakes and wetlands for energy and water balance
studies in the great lakes region. Journal of Hydrometeorology, 11(5),
1057–1082. https://doi.org/10.1175/2010JHM1207.1
Mitra, S., Wassmann, R., Vlek, P. L. G. (2005) An appraisal of global
wetland area and its organic carbon stock. Curr Sci 88:25–35
Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, Hoboken
Valuing wetlands. (2021). Nature Geoscience, 14(3), 111–111.
https://doi.org/10.1038/s41561-021-00713-4
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., & Gulden, L. E. (2005). A
simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global
climate models. Journal of Geophysical Research, 110(D21), D21106.
https://doi.org/10.1029/2005JD006111
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage,
M., et al. (2011). The community Noah land surface model with
multiparameterization options (Noah-MP): 1. Model description and
evaluation with local-scale measurements. Journal of Geophysical
Research, 116(D12), D12109. https://doi.org/10.1029/2010JD015139
Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P.
E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis,
S., Dai, A., & Qian, T. (2008). Improvements to the Community Land
Model and their impact on the hydrological cycle. Journal of Geophysical
Research: Biogeosciences, 113(G1), n/a-n/a.
https://doi.org/10.1029/2007JG000563
Pattison-Williams, J. K., Pomeroy, J. W., Badiou, P., & Gabor, S.
(2018). Wetlands, Flood Control and Ecosystem Services in the Smith
Creek Drainage Basin: A Case Study in Saskatchewan, Canada. Ecological
Economics, 147, 36–47.
https://doi.org/10.1016/j.ecolecon.2017.12.026
Perkins, S. E. (2015). A review on the scientific understanding of
heatwaves-Their measurement, driving mechanisms, and changes at the
global scale. Atmospheric Research, 164–165, 242–267.
https://doi.org/10.1016/j.atmosres.2015.05.014
Pitman, A. (1991). A simple parameterization of sub-grid scale open
water for climate models. Climate Dynamics, 6(2), 99–112.
https://doi.org/10.1007/BF00209983
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B. (2001). Remote
sensing of global wetland dynamics with multiple satellite data sets,
Geo. Res. Lett., 28 , 4631-4634
Prigent, C., Papa, F., Aires, F., Rossow, W. B., & Matthews, E. (2007).
Global inundation dynamics inferred from multiple satellite
observations, 1993–2000. Journal of Geophysical Research, 112(D12),
D12107. https://doi.org/10.1029/2006JD007847
Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., &
Matthews, E. (2012). Changes in land surface water dynamics since the
1990s and relation to population pressure. Geophysical Research Letters,
39(8), n/a-n/a. https://doi.org/10.1029/2012GL051276
Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., de
Noblet-Ducoudré, N., Prigent, C., Friedlingstein, P., Gouttevin, I.,
Koven, C., & Ducharne, A. (2012). Modelling sub-grid wetland in the
ORCHIDEE global land surface model: evaluation against river discharges
and remotely sensed data. Geoscientific Model Development, 5(4),
941–962. https://doi.org/10.5194/gmd-5-941-2012
Sivapalan, M., Beven, K., & Wood, E. F. (1987). On hydrologic
similarity: 2. A scaled model of storm runoff production. Water
Resources Research, 23(12), 2266–2278.
https://doi.org/10.1029/WR023i012p02266
Stieglitz, M., D. Rind, J. Famiglietti & C. Rosenzwieg (1997), An
Efficient Approach to Modeling the Topographic Control of Surface
Hydrology for Regional and Global Climate Modeling, J. Clim., 10,
118-137.
van der Kamp, G., & Hayashi, M. (2009). Groundwater-wetland ecosystem
interaction in the semiarid glaciated plains of North America.
Hydrogeology Journal, 17(1), 203–214.
https://doi.org/10.1007/s10040-008-0367-1
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B.,
Spahni, R., et al. (2013). Present state of global wetland extent and
wetland methane modelling: methodology of a model inter-comparison
project (WETCHIMP). Geoscientific Model Development, 6(3), 617–641.https://doi.org/10.5194/gmd-6-617-2013
Zhang, Z., Li, Y., Chen, F., Barlage, M. & Li, Z. Evaluation of
convection-permitting WRF CONUS simulation on the relationship between
soil moisture and heatwaves. Clim. Dyn. (2018)
doi:10.1007/s00382-018-4508-5.
Zhang, Z., Li, Y., Barlage, M., Chen, F., Miguez-Macho, G., Ireson, A.,
& Li, Z. (2020). Modeling groundwater responses to climate change in
the Prairie Pothole Region. Hydrology and Earth System Sciences, 24(2),
655–672.https://doi.org/10.5194/hess-24-655-2020