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Abstract
A study of the application of nonconvex regularization operators to the

electromagnetic sounding inverse problem is presented. A comparison is made
among four regularization algorithms: Total Variation (TV), Infimal Convolu-
tion of TV with TV 2 and TV combined TV 2 and a non convex operator based
recently proposed. The non convex regularization operator is approximated
by the convex dual, and the minimization is then implemented considering
the equivalence between the Bregman iteration and the augmented Lagrangian
methods.

Introduction
Tikhonov’s regularization method is the standard technique applied to
obtain models of the subsurface conductivity distribution from electric
or electromagnetic measurements.

UT (m) = ‖F (m)− d‖2H + λP (m). (1)

F : M ⊃ D(F) → H represents the direct functional, applied to
an element on the model space M, a Banach space and returning a
member of the Hilbert space H of data. P (m) = ‖ 5m‖2M is for
Tikhonov’s maximum smoothness functional the usual approach. We
consider the discrete version of linear problem F (m) = K(m) =∫
κm, with κ the kernel of a Fredholm integral equation of the first

kind. An important requirement for the regularizer is to allow the re-
covery of edges, and smooth the homogeneous parts. As is well known,
Total Variation (TV) is now the standard approach to meet this require-
ment.

Nonconvex Regularization
A transformation that has been used to define functional approxi-
mations allowing to implement iterative algorithms is the Legendre-
Fenchel transformation (LFT):

f∗(u) = sup
x∈H

(〈x, u〉 − f (x)). (2)

Consider the minimization of (1) with P (m) =
∫
φ(|∇m|), with φ a

nonconvex, nonsmooth function such as

φ1(|t|) =
|t|

1 + ρ|t|
, (3)

with ρ > 0. Vese and Chan demonstrated, using LFT, that

φ(t) = inf
v

(v2t + ψ(v)), ∀t ≥ 0, (4)

obtaining ψ1(v) =
(v−1)2

ρ . Recently, a methodology was proposed for
the minimization of (1) with the nonconvex operator φ(|∇m|). The
algorithm, named NSNC consider the dual functional

UNSNC(m, b) =‖Am− d‖2 (5)

+λ(
∑
k

φ∗[(Dxm)k] +
∑
k

φ∗[(Dzm)k]) (6)

+α(
∑
k

(Dxm)2
k +

∑
k

(Dzm)2
k), (7)

with φ∗ the convex dual as defined in (4).
Alternating minimizations are applied over m and v, and the con-

vexity of ψ allows to easily incorporate the procedure in a Bregman
algorithm.

TV12

A combined first and second order variational operator for denoising is
considered. The discrete version of the modeling is:

min

{
UTV 12 =

1

2

∫
Ω
|Am− d|sdx + α1‖∇m‖1 + α2‖∇2m‖1

}
.

(8)
A split Bregman algorithm can be implemented for the minimization

UTV 12(m, v, w) =‖Am− d‖2 (9)

+α1(‖v‖1 +
γ1

2
‖∇m− v − d1‖22) (10)

+α2(‖w‖1 +
γ2

2
‖∇2m− w − d2‖22), (11)

that can be realized in three steps:

mk+1 = min
m

UTV 12(m, v, w) (12)

vk+1 = min
v
‖v‖1 + α1

γ1

2
‖∇m− v − dk1‖

2
2, (13)

wk+1 = min
w
‖w‖1 + α2

γ2

2
‖∇2m− w − dk2‖

2
2. (14)

And the Bregman updates

dk+1 = dk + (d− Amk+1) (15)

dk+1
1 = dk1 + (vk+1 −∇mk+1) (16)

dk+1
2 = dk2 + (wk+1 −∇2mk+1) (17)

Infimal Convolution

Infimal convolution was introduced by Chambolle and Lions in the
context of total variation denoising. The infimal convolution of two
functionals Φ and Ψ is defined as

(Φ�Ψ)(u) := inf
u=v+w

Φ(v) + Ψ(w) (18)

Benning et. al. proposed the infimal convolution model (ICTV) con-
sidering TV and TV 2

ICTVβ(u) := (TV�TV 2)(u) := inf
u=v+w

(TV (v) + βTV 2(w)) (19)

A Split Bregman procedure in each of the two terms is imple-
mented here, considering P (m) = infm=m1+m2(α1‖∇(m − m1)‖1 +
α2‖∆m2‖1). Defining p = ∇m, using Split Bregman procedure on
each term of IC, along with the Bregman update on the fitness term,
the algorithm would aim to minimize

UICTV (m, p, v, w) =
1

2
‖Am− dk1‖

2 (20)

+α1(‖v‖1 +
γ1

2
‖∇m− p− v − dk2‖

2
2) (21)

+α2(‖w‖1 +
γ2

2
‖divp− w − dk3‖

2
2), (22)

and then update dk1 , d
k
2 and dk3 .

Applications
Application to synthetic data for electromagnetic geosounding method
at low induction frequencies is presented. Parameters used are ob-
served on Table 1 for TV12 and IC algorithms. λ = 0.01 and 0.001 for
NSNC and TV, respectively, and ρ = 0.01 in φ1.

Operator α1 α2 γ1 γ2 λ

TV12 0.0001 0.0001 100 100 -
IC 0.001 0.0001 20 10 -

Table 1: Algorithm Parameters

Figure 1: Model used to generate synthetic data

Figure 2: Resulting model for the TV regularizer

Figure 3: Model obtained with NSNC regularizer

Figure 4: Model developed with TV12 regularizer

Figure 5: Model developed by the IC regularizer

Application to field data

The methods were applied to Las Auras field data. The purpose of the
surveys was to identify sediment-filled faults affecting the construc-
tion of a dam. We are considering the vertical and horizontal dipole
measurements taken at several points across strike for 10, 20 and 40 m
separations.

Figure 6: Results for the field data (a) field data, (b) NS2 result.

Conclusions

A comparison of the application of four regularization operators is pre-
sented. Total Variation, a combination of Total Variation with a second
order TV, a Infimal Convolution of TV and second order TV and a
nonsmooth, nonconvex optimization algorithm were implemented. TV
presents the worst results, IC shows better model than TV12, but the
best results are observed for the non convex operator, for the synthetic
data.


