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Abstract 20 

 21 

Supervised deep learning models have become a popular choice for seismic phase arrival 22 

detection. However, they tend to perform poorly on out-of-distribution data and require large 23 

training sets to aid generalization and prevent overfitting. This presents an issue when using these 24 

models in new monitoring settings. In this work, we develop a deep learning model for automating 25 

phase arrival detection at Nabro volcano using a limited amount of training data (2498 event 26 

waveforms recorded over 35 days) through a process known as transfer learning. We use the 27 

feature extraction layers of an existing, extensively-trained seismic phase picking model to form 28 

the base of a new all-convolutional model, which we call U-GPD. We demonstrate that transfer 29 

learning reduces overfitting and model error relative to training the same model from scratch, 30 

particularly for small training sets (e.g., 500 waveforms). The new U-GPD model achieves greater 31 

classification accuracy and smaller arrival time residuals than off-the-shelf applications of two 32 

existing, extensively-trained baseline models for a test set of 800 event and noise waveforms from 33 

Nabro volcano. When applied to 14 months of continuous Nabro data, the new U-GPD model 34 

detects 31,387 events with at least four P-wave arrivals and one S-wave arrival, which is more 35 

than the original base model (26,808 events) and our existing manual catalogue (2,926 events), 36 

with smaller location errors. The new model is also more efficient when applied as a sliding 37 

window, processing 14 months of data from 7 stations in less than 4 hours on a single GPU. 38 

 39 

Plain Language Summary 40 

 41 

Seismic monitoring increasingly relies on automated signal processing as the rate of data 42 

acquisition grows. Supervised deep learning models have proven to be effective for detecting and 43 

characterizing seismic events, but training such highly parameterized models generally requires 44 

large amounts of manually labelled data. Once trained, however, these models extract general 45 

seismic waveform features that can be used to train new models with more limited training data. 46 

In this work, we use the generalized knowledge of seismic data from a model trained on millions 47 

of earthquakes in California to train a new model for detecting volcanic earthquakes at Nabro 48 

volcano, Eritrea, a recently active and, prior to its 2011 eruption, poorly monitored volcano. Using 49 
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a small training set of waveforms, the new model more accurately detects phase arrivals and noise 50 

than off-the-shelf applications of two baseline models. The new model is efficient, processing 14 51 

months of data in less than 4 hours. It is also effective, detecting more volcanic events and showing 52 

improved levels of S-wave arrival picking. The result is smaller event location errors than even 53 

our manual picks. This level of efficiency and consistency highlights the role that machine learning 54 

can play in volcano-seismic monitoring. 55 

 56 

1 Introduction 57 

 58 

Seismic monitoring plays a fundamental part in mitigating hazards at volcanoes. During 59 

periods of unrest, thousands of earthquakes can occur each day, producing a diverse range of 60 

seismic signals that reflect a multitude of interlinked volcanic processes (e.g., migrating fluids, 61 

fault movement, explosions, rockfalls). These earthquakes are generally recorded by broadband 62 

seismometers, which are highly sensitive to ground motion across a wide range of frequencies and 63 

record signals at high sample rates (typically 100 times or more per second). This level of detail, 64 

however, comes at the cost of generating vast amounts of data. Many seismic networks utilize tens 65 

or even hundreds of seismometers at a given time (e.g., Hansen & Schmandt, 2015), making real-66 

time manual inspection of these time series practically infeasible. Previous seismic deployments 67 

have also generated extensive legacy datasets that can offer insights into historical volcanic activity 68 

and opportunities to further our understanding of volcanic processes. The main challenge is 69 

therefore to identify and characterize volcanic earthquakes in a robust and timely manner so as to 70 

provide vital clues regarding the state of a volcano and the likelihood or impact of an eruption or 71 

hazard, as well as be able to accurately and efficiently process large existing datasets for further 72 

analysis within a reasonable timeframe. 73 

 74 

Identifying earthquake phase arrivals, particularly the initial primary (P-) and 75 

secondary/shear (S-) wave arrivals, forms the basis of most seismic processing tasks (e.g., 76 

determining locations, magnitudes and source parameters). Manually identifying these phase 77 

arrivals yields greater accuracy and estimates of arrival time uncertainty than automated 78 

approaches but is extremely time-consuming. Alternatively, most automated approaches are orders 79 
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of magnitude quicker but typically require clear phase arrivals, existing ‘templates’ of previously 80 

catalogued earthquakes (e.g., Gibbons & Ringdal, 2006; Lengliné et al., 2016; Shelly et al., 2007), 81 

or pre-processing / feature extraction steps calibrated for a small set of earthquake characteristics 82 

(e.g., trigger algorithms based on the ratio of short-term average to long-term average signal 83 

amplitude, STA/LTA; Withers et al., 1998). A challenge for application to volcanology is that 84 

volcanic earthquakes can exhibit widely varying time-frequency characteristics, often with low 85 

amplitudes or obscured phase arrivals, and new phases of unrest can produce previously unseen 86 

seismic signals that differ from existing earthquake templates. Furthermore, methods based on 87 

existing seismic catalogues are unsuitable for new seismic deployments where a catalogue of 88 

events has not been collected. 89 

 90 

A recently successful approach for seismic phase arrival detection is the use of supervised 91 

deep learning models (e.g., Dokht et al., 2019; Mousavi et al., 2019; Ross et al., 2018; Woollam 92 

et al., 2019; Zhu & Beroza, 2019). These methods are based on convolutional neural networks 93 

(CNN), a variant of classical neural networks that employ convolution operations, as opposed to 94 

matrix multiplication, in at least part of the model. These operations are employed in ‘hidden’ 95 

convolutional layers that allow the network to learn a large set of filters to extract useful features 96 

from the input data and map them to a desired output (e.g., to identify phase arrivals in earthquake 97 

waveforms; Fig 1). Typically, multiple convolutional layers are applied in succession and in 98 

combination with other operations, such as non-linear ‘activation’, down-sampling and 99 

normalization, to extract complex patterns from the data using a hierarchy of simpler filter kernels. 100 

These extracted features can then be fed into a standard fully-connected neural network or other 101 

machine learning architecture for classification, segmentation, regression, clustering or inference 102 

(e.g., Mousavi et al., 2019; Ross et al., 2018; van den Ende & Ampuero, 2020). As such, the 103 

‘convolutional’ part of CNNs act as the model’s feature extraction system. With each successive 104 

convolutional layer, the extracted features move from lower-level, general signal features 105 

(resembling, for example, long/short period wavelets in seismological waveform models; Fig 1A 106 

inset) to more task specific, high-level features (Yosinski et al., 2014). The final ‘classification’ 107 

layers of the model map these features to the desired output and can be considered the most task 108 

specific part of the model, empirically tuned to the distribution of the training data (Yosinski et 109 

al., 2014). Such an approach gives these models a strong advantage over traditional algorithms 110 
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that require considerable manual intervention or rely on a small set of manually determined 111 

characteristics and simple threshold criteria. Supervised deep learning models, however, require 112 

substantial amounts of labelled data during training to generalize to out-of-sample data (the amount 113 

dependent on various factors, such as network architecture, number of network parameters and 114 

training hyperparameters; e.g., D’souza et al., 2020; He et al., 2019; Sun et al., 2017). They can 115 

also suffer significant loss in performance when faced with data that differs in source or 116 

distribution from their training data (e.g., Barbedo, 2018; Zech et al., 2018). This requirement can 117 

place the traditional paradigm of supervised learning (i.e., using a large amount of hand-labelled 118 

data to train a single model for a desired domain or problem) out of reach for many real-world 119 

applications. 120 

 121 

Transfer learning is based on the idea of knowledge transfer from one task to another (Pan 122 

& Yang, 2010; Zhuang et al., 2020) and can be a powerful tool when we do not have sufficient 123 

labelled data to train a reliable model from scratch. At its simplest, the first n convolutional layers 124 

and their weights from the feature extraction part of an existing model are copied to the first n 125 

layers of a new model for a related or similar task, with the remaining layers either re-initialized 126 

with randomized weights or replaced (e.g., Razavian et al., 2014; Yosinski et al., 2014). These 127 

tasks need not be near-identical or even superficially related, as long as low-level data 128 

characteristics are shared between tasks (e.g., Efremova et al., 2019; Tran et al., 2020; Zamir et 129 

al., 2018). The intuition is that generalized knowledge of data structure and properties from one 130 

model trained with abundant labelled data (or ‘big data’) can guide a learning algorithm towards a 131 

good solution for a new task with far more limited, or even no, labelled data. 132 

 133 

In this paper, we evaluate the utility of inductive transfer learning (i.e., when labelled data 134 

are available for both the source and target tasks) for small seismic training sets and produce a 135 

deep learning model that accurately and robustly picks phase arrivals from a deployment at Nabro 136 

volcano in Eritrea, a region with little or no prior seismic monitoring. We leverage the knowledge 137 

acquired from training a model on millions of seismic waveforms recorded by the Southern 138 

California Seismic Network (SCSN), hereby referred to as the GPD model (Generalized seismic 139 

Phase Detection; Ross et al., 2018), and apply it to seismograms from Nabro volcano in Eritrea, 140 

for which we have limited hand-labelled data (manual phase arrival picks) from the first couple of 141 
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months of a 14-month seismic deployment (Goitom, 2017; Hamlyn et al., 2014). The new model 142 

task differs from the original GPD model task in that it is modified from one of classification 143 

(assigning a single class label P-wave, S-wave or noise to an entire 4-second waveform; Fig 1A) 144 

to one of segmentation (assigning a class label P-wave, S-wave or noise to each datapoint within 145 

that 4-second waveform; Fig 1B). We achieve this by replacing the fully-connected uppermost 146 

layers of the original GPD model with further convolutional layers, creating an all-convolutional 147 

model commonly referred to as a U-Net (Ronneberger et al., 2015). We refer to this specific model 148 

design as the U-GPD model, utilizing GPD model weights within a U-Net architecture. The new 149 

data from Nabro volcano also exhibit differences in instrument calibration and sample rates from 150 

the original GPD model training data, as well as differing waveform characteristics between 151 

tectonic and volcanic event types (Lahr et al., 1994; Lapins et al., 2020; McNutt & Roman, 2015).  152 

 153 

In the following section, we introduce transfer learning and recent applications in 154 

seismological deep learning. In Sections 3 and 4, we present our proposed transfer learning 155 

method, U-GPD model architecture and seismic data recorded at Nabro volcano.  In Section 5, we 156 

present a series of model comparisons. We first use common training metrics to demonstrate that 157 

transfer learning reduces overfitting and model error, particularly for very small training sets (< 158 

1000 waveforms), when compared with a model reinitialized with randomized weights before 159 

training (i.e., trained from scratch with no transfer learning). We then apply these new models to 160 

a test dataset of known P-/S-wave arrivals and sections of noise and compare performance with 161 

off-the-shelf applications of the base GPD model and another extensively-trained phase-picking 162 

model, PhaseNet (Zhu & Beroza, 2019). We find that the U-GPD transfer learning model yields 163 

improved phase arrival identification, particularly for S-waves, and false detection rate at Nabro 164 

volcano. Altering the model task from classification to segmentation also improves pick time 165 

residuals over the base GPD model for these test data. Finally, we apply both our new U-GPD 166 

transfer learning model and the original base GPD model to the full 14-month seismic deployment 167 

at Nabro volcano through a sliding window approach. The new U-GPD model identifies more 168 

useable S-wave arrivals than the base GPD model, yielding smaller subsequent location errors than 169 

even our manual analyst’s phase arrival picks. The new model also runs an order of magnitude 170 

faster, processing 14 months of data from 7 broadband seismometers in less than 4 hours on a 171 

single GPU. Our findings indicate that transfer learning can be extremely useful for volcano 172 
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seismic monitoring, even with limited computing resources and data. We conclude this paper with 173 

a discussion of our findings, methodology and practical considerations of transfer learning in 174 

Section 6. All data and code used throughout this paper are made fully and publicly available (see 175 

Data Availability Statement). 176 

 177 
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 179 
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Figure 1. a) Model architecture for Generalized seismic Phase Detection (GPD) CNN model (Ross 180 

et al., 2018). Model can be considered as two parts: a feature extraction system (convolutional 181 

layers) and classification part (fully connected layers). GPD model outputs 3 x prediction values 182 

(probability of P, S or noise) for an entire 400-sample 3-component waveform (i.e., output 183 

dimensions: 1 x 3). Examples of filter kernels (dashed line inset) from lowest convolutional layer 184 

that extract generalized seismic waveform features determined through model training on 185 

extensive SCSN dataset. These indicate that the GPD model has learnt to extract different features 186 

from vertical and horizontal components. b) Proposed transfer learning model architecture (“U-187 

GPD”). GPD model feature extraction system is copied to new model and fine-tuned with new 188 

Nabro data and low learning rate. Low learning rate ensures that useful features are not 189 

‘unlearned’. New convolutional layers replace the GPD classification layers and are trained using 190 

new Nabro data and higher learning rate. Model outputs 3 x prediction values for each datapoint 191 

in 400-sample 3-component waveform (i.e., output dimensions: 400 x 3). 192 

 193 

2 Transfer Learning 194 

 195 

There are many approaches to transfer learning (see Pan & Yang, 2010; Zhuang et al., 2020 196 

for comprehensive surveys), including using ‘off-the-shelf’ feature extraction systems from 197 

existing state-of-the-art CNNs (e.g., Maqsood et al., 2019; Razavian et al., 2014), learning domain-198 

invariant or global representations across multiple tasks (e.g., Glorot et al., 2011; Li et al., 2014; 199 

Tzeng et al., 2015; Zhuang et al., 2015), applying pre-processing steps to make input data 200 

representations more similar between datasets (e.g., Daumé, 2007; Sun et al., 2016) and the use of 201 

domain-adversarial models (e.g., Ganin et al., 2016). Here we employ the first of these approaches 202 

for P- and S-wave arrival time picking at Nabro volcano, utilizing pre-trained filters from an 203 

existing, extensively trained CNN model (the GPD model; Ross et al., 2018) to train a new model 204 

with different output dimension and task type (see Section 3.1, U-GPD Model Architecture). Other 205 

seismological studies that have employed transfer learning in this way have used pre-trained filters 206 

from models designed for non-seismological tasks, such as image recognition. For example, filters 207 

trained to recognize photographic images or handwritten characters have been used to detect 208 

earthquakes and classify volcano-seismic event types from spectrograms (Huot et al., 2018; Lara 209 

et al., 2020; Titos et al., 2020) and interpret seismic facies (Dramsch & Lüthje, 2018).  210 
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 211 

Some studies have chosen to fine-tune entire seismic deep learning models, essentially 212 

updating the models with new data (or equivalently ‘pre-training’ the models with larger datasets, 213 

depending on perspective). El Zini et al. (2020) pre-train an autoencoder with abundant unlabeled 214 

data to learn compressed data representations of 2D seismic images. These model weights then 215 

serve as a starting point for a model that segments seismic images, with weights fine-tuned using 216 

limited labelled training data. This approach was shown to outperform the transfer of weights from 217 

image recognition models and training a model from scratch. Bueno et al. (2020) fine-tune a 218 

Bayesian neural network (BNN) to improve classification of volcano-seismic event characteristics 219 

between datasets and time periods. They show that this approach increases model accuracy and 220 

reduces epistemic uncertainty when applied to new volcanic systems or phases of activity.  With 221 

a similar aim but different approach to the work of this paper, Chai et al. (2020) utilize pre-trained 222 

weights from another existing phase arrival detection model, PhaseNet (Zhu & Beroza, 2019), to 223 

pick phase arrivals from hydraulic fracturing experiments. They use the entirety of the PhaseNet 224 

model and its pre-trained weights as a starting point for training and then fine-tune all model 225 

weights equally using just 3,500 seismograms. They present improved results over the original 226 

PhaseNet model, which was trained using 700,000 seismograms of regional Californian seismicity, 227 

when applied to higher sample rate data (2 kHz) from a very different setting (i.e., hydraulic 228 

fracturing). Whilst these studies show that fine-tuning entire models can be an effective strategy, 229 

poor hyperparameter choices (model learning rate, number of training epochs, etc.) can 230 

inadvertently retrain the model (also known as ‘catastrophic forgetting’; e.g., Kirkpatrick et al., 231 

2017) or lead to settling on a non-global minimum within the parameter space, reopening the 232 

potential for overfitting when the number of model parameters is large and the training dataset is 233 

small (El Zini et al., 2020; Yosinski et al., 2014). The work in this paper differs from that of Chai 234 

et al. (2020) in that only the weights from the feature extraction part (i.e., the first ‘half’) of the 235 

GPD model are transferred to our new U-GPD model. These weights are fine-tuned using a much 236 

lower learning rate (weight update step size) to retain useful learned knowledge from the original 237 

model but optimize cohesion with the rest of the new model, which is redesigned to reduce the 238 

total number of trainable parameters, among other optimizations (see Section 3.1, Model 239 

Architecture), and initialized with randomized weights (Fig 1). 240 

 241 
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3 Proposed Model 242 

3.1 U-GPD Model Architecture 243 

 244 

As outlined briefly above, we utilize pre-trained parameters from the convolutional layers 245 

of the GPD model as a starting point for our U-GPD transfer learning model. The original GPD 246 

model was trained using 4.5 million hand-labelled seismograms (1.5 million of each class P, S and 247 

noise) recorded by the Southern California Seismic Network (SCSN) between the years 2000 and 248 

2017. These training data were all 400-sample (4 sec) 3-component waveforms, high-pass filtered 249 

above 2 Hz and (re)sampled at 100 Hz. All events had epicentral distances less than 100 km and 250 

magnitudes between -0.81 and 5.7 𝑀 (various magnitude scales). The GPD model was chosen as 251 

a base for our transfer learning model as these data characteristics are comparable to those 252 

observed and recorded by volcano observatories. Furthermore, the short input length of 4 seconds 253 

(400 samples at 100 Hz sample frequency) means there is less chance of erroneously labelling or 254 

missing relatively small magnitude or overlapping phase arrivals. Finally, the GPD model’s 255 

‘sequential’ architecture, with each layer being solely connected to the layers directly before and 256 

after, also means the model is more interpretable and makes it easier to isolate its feature extraction 257 

system. 258 

 259 

During model training, we fine-tune these pre-trained parameters using a very small 260 

learning rate (1	 ×	10!"), rather than keep them fixed (e.g., Yosinski et al., 2014). The aim of this 261 

fine-tuning step is to modify any highly specific features from the source domain (particularly in 262 

the higher-level feature extraction layers) and overcome optimization difficulties arising from 263 

splitting the GPD convolutional layers from co-adapted classification layers (Yosinski et al., 2014) 264 

without unlearning the important generalized waveform features we wish to exploit. We then 265 

replace the GPD model’s fully-connected layers (i.e., the task-specific classification part of the 266 

model) with further convolutional layers and up-sampling operations, combined with ReLU 267 

activation function (Nair & Hinton, 2010) and batch normalization (Ioffe & Szegedy, 2015), to 268 

produce a model output with the same dimensions as model input (400 samples x 3 channels; Fig 269 

1). Each of the three output channels represents the model’s prediction (or ‘probability’) of a P-270 

wave arrival, S-wave arrival or neither (hereby referred to as noise), respectively, at each datapoint 271 
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in the waveform. This all-convolutional approach has been adopted by other phase arrival picking 272 

models (e.g., Woollam et al., 2019; Zhu & Beroza, 2019) and has several distinct advantages when 273 

applied to seismic phase arrival detection: i) it provides less ambiguous labelling of phase arrivals 274 

when compared to the original GPD model’s approach of assigning a single class prediction (P, S 275 

or noise) to an entire 400-sample 3-channel waveform; ii) convolutional layers tend to have fewer 276 

parameters than fully connected neural network layers so less training data is required to avoid 277 

overfitting; iii) by producing a model with input and output traces of same dimension, we require 278 

less overlap when applied as a rolling window method, producing a model that runs orders of 279 

magnitude faster on continuous sections of data. These new convolutional layers are initialized 280 

with completely randomized weights and trained with a higher learning rate (1	 ×	10!#) than the 281 

pre-trained GPD weights. We use dilated filter kernels in these new convolutional layers (e.g., van 282 

den Oord et al., 2016; Yu & Koltun, 2016) to increase the size of the model’s receptive field (or 283 

‘field of view’) and aggregate multi-scale context. Finally, the new layers are subjected to spatial 284 

dropout (Tompson et al., 2015), where 30% of the feature maps (output of filter operations) in 285 

each convolutional layer are effectively dropped (set to zero) at the start of each training epoch. 286 

This step promotes independence between the features the model extracts and prevents overfitting 287 

(Tompson et al., 2015). Precise details of U-GPD model dimensions and hyperparameters are 288 

provided in Supplementary Materials. 289 

 290 

The overall network architecture outlined above is sometimes referred to as a U-Net 291 

(Ronneberger et al., 2015). With each step through the network, the input data are progressively 292 

downsampled with an increasing number of features extracted, creating a contracting network path 293 

that is forced to sacrifice detail and learn a more compressed, general representation of the input 294 

waveform to discriminate between classes (P, S or noise). The model then follows a symmetrically 295 

expanding path, where the data are progressively upsampled and the number of features reduced, 296 

to regain precise temporal or spatial detail and return an output with equal dimension to the model 297 

input (Ronneberger et al., 2015). Skip connections (addition operators), which act as direct, one-298 

way pathways between layers in the contracting and expanding sides of the model (Fig 1B), are 299 

used to retain precise waveform details that may be lost through this contraction/expansion process 300 

and have been shown to greatly improve the likelihood of model parameters settling on the global 301 

minimum during training (Li et al., 2017). 302 
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 303 

3.2 Phase Arrival Labels and Model Hyperparameters 304 

 305 

Each 3-component waveform in our training dataset has a corresponding 3-channel ‘mask’ 306 

that provides a ground truth label (P, S or noise) for each waveform datapoint. During training, the 307 

model aims to minimize the difference between its predictions and these ground truth labels. 308 

Labels are presented as binary values (0’s or 1’s), with P-wave arrivals indicated by a +/- 0.14 sec 309 

boxcar function, centered on the manually picked P-wave arrival time, and S-wave arrivals 310 

indicated by +/- 0.19 sec boxcar function, also centered on the manually picked S-wave arrival 311 

time. These boxcar widths provide a good balance between phase arrival detection rate and arrival 312 

time precision and compensate for human error in the ground truth labels. Previous studies have 313 

used Gaussian-style probability masks, with values ranging between 0 and 1, for labelling phase 314 

arrivals (e.g., Woollam et al., 2019; Zhu & Beroza, 2019). We find that label accuracy on our test 315 

data (e.g., Fig 5) and event location error distributions from the full deployment (e.g., Fig 8C & 316 

D) are near-identical when using either approach but training with boxcar masks produces a model 317 

that detects ~ 10% more events when run over continuous data. 318 

 319 

As with the original GPD model, our new U-GPD model was trained using a categorical 320 

cross entropy loss function (see Supplementary Materials) and the Adam optimization algorithm 321 

(Kingma & Ba, 2014). The model weights that produced lowest loss value on the validation dataset 322 

during training were selected as our final model weights. Other loss functions that address the 323 

imbalance between arrival and noise labels (as the majority of labels in any given waveform are 324 

not a phase arrival), such as a focal loss function that effectively adds weighting parameters to 325 

cross entropy loss (Lin et al., 2017), were trialed but yielded no improvement in model 326 

performance. 327 

 328 

4 Data 329 

 330 

Nabro volcano is one of two calderas that form the Bidu Volcanic Massif on the Eritrea-331 

Ethiopia international border (Fig 2). Located in the Afar region at the northern end of the Main 332 
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Ethiopian Rift, it erupted unexpectedly for the first time in recorded history on 12th June, 2011, 333 

disrupting continental aviation and initiating a significant humanitarian crisis (Bojanowski, 2011; 334 

Donovan et al., 2018; Goitom et al., 2015). At the time, there were no seismic or other monitoring 335 

networks operating in Eritrea but earthquakes were felt around the volcano several hours and days 336 

prior to eruption, prompting evacuation (Goitom et al., 2015). This seismicity is the first of note 337 

in global catalogues for the region (Goitom et al., 2015). Despite this fortuitous warning, at least 338 

seven people were tragically killed and about 12,000 were displaced (Bojanowski, 2011; Goitom 339 

et al., 2015; Hamlyn et al., 2014). The eruption is particularly notable for the vast amount of SO2 340 

emitted into the atmosphere, one of the largest eruptive SO2 masses globally since the eruption of 341 

Mount Pinatubo in 1991 (Fromm et al., 2014; Goitom et al., 2015; Theys et al., 2013), and the 342 

comparative rarity of recorded historical eruptions in the region (Goitom et al., 2015; Hamlyn et 343 

al., 2014). 344 

 345 

In August, 2011, approximately two months after the eruption began, eight 3-component 346 

broadband seismometers (5 x Guralp CMG-6T, 3 x Guralp CMG-40T; Fig 2) were deployed 347 

around the volcano to monitor ongoing activity (Hamlyn et al., 2014). These stations remained 348 

operational for 14 months until October, 2012. The first two months of data were collected at a 349 

sample rate of 100 Hz before dataloggers were switched to a sample rate of 50 Hz for the remainder 350 

of the deployment to maximize data recovery while minimizing service runs. Manual phase arrival 351 

picking conducted on the first four months of data (2011-08-30 to 2011-12-31; Goitom, 2017; 352 

Hamlyn et al., 2014) identified a total of 2926 events, from which the first 35 days of data (all 100 353 

Hz sample rate) were quality checked and used for training and validating our transfer learning 354 

model. Five subsequent days of data (2 x 100 Hz days, 3 x 50 Hz days) were selected and quality 355 

checked to serve as test data. The reason to exclude 50 Hz data from model training is to emulate 356 

data availability in the early stages of this seismic deployment and demonstrate that changes in 357 

sample rate can be overcome without compiling new training datasets through a process known as 358 

data augmentation. The raw data for all datasets (training, validation and testing) were self-359 

normalized, with linear trend removed, and left unfiltered. 360 

 361 
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 362 
 363 

Figure 2. Regional topographic map (90 m CGIAR Shuttle Radar Topography Mission and 364 

GEBCO bathymetry model, grey-scale map center) and seismic deployment (30 m ALOS Digital 365 

Surface Model, color map bottom right) around Nabro volcano. Red triangles (center map) indicate 366 

Holocene volcanoes (Global Volcanism Program, 2013) with Nabro volcano highlighted in white. 367 

Inverted blue triangles (bottom right map) indicate operational broadband seismic stations 368 

deployed around Nabro volcano from August 2011 to October 2012 (station NAB6, inverted 369 

yellow triangle, was flooded shortly after deployment and not operational). Training and validation 370 

data were taken from dark blue stations only (NAB1, NAB2, NAB3, NAB4 and NAB8). 371 
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 372 

A total of 2921 waveforms with labelled P- and S-wave arrivals from 978 events (2011-373 

08-30 to 2011-10-03) and five stations were used as training and validation data (only five stations 374 

were consistently operational during this time; dark blue stations in Fig 2 bottom right map). 375 

Training and validation data were grouped and divided so that no event appeared in both datasets 376 

to avoid data leakage (the model being trained on event data that also appears in validation or 377 

testing). 857 events (2498 waveforms) were used for model training and 121 events (423 378 

waveforms) were used for model validation, a training-validation split of approximately 85%-15%. 379 

624 sections of noise (20 secs length) were manually identified across all five stations (2011-08-380 

31 to 2011-09-27), with 500 sections (2500 waveforms) and 85 sections (425 waveforms) used for 381 

model training and validation, respectively. Two noise waveforms were randomly dropped from 382 

each dataset so that the training and validation noise data comprise 2498 and 423 waveforms, 383 

respectively, to match the number of event waveforms.  384 

 385 

A separate test dataset of 400 event waveforms with labelled P- and S-wave arrivals (132 386 

events) and 400 noise waveforms (80 sections of noise) was also produced for subsequent model 387 

testing. These data come from a different time period than those used for training and validation 388 

data, with 200 waveforms from a period where data were recorded at 100 Hz sample rate (2011-389 

10-04 and 2011-10-05) and 200 waveforms from a period with 50 Hz sample rate (2011-10-14, 390 

2011-10-15 and 2011-11-27) for each category. All training, validation and test data were 391 

manually identified and quality checked. 392 

 393 

The success of U-Net architectures relies on an effective data augmentation strategy when 394 

working with smaller datasets (Ronneberger et al., 2015). This allows the network to learn 395 

invariance to certain changes in input signal without them needing to appear in the annotated 396 

dataset. Here we outline a data augmentation strategy that improves performance of our U-GPD 397 

transfer learning model (Supplementary Materials). First, as all stations were switched from 100 398 

Hz sample frequency to 50 Hz sample frequency part way through the seismic deployment, we 399 

randomly select subsets of the training data (all originally sampled at 100 Hz) to be decimated to 400 

50 Hz sample frequency throughout training. Each training sample (i.e., each 3-component 401 

waveform) has a probability of 0.5 of being selected for decimation before each training epoch, 402 
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with an anti-aliasing, low-pass finite impulse response (FIR) filter applied and linear phase shift 403 

removed. Second, we randomly time-shift our P- and S-wave arrivals relative to the model input 404 

‘window’, so that our waveforms differ slightly from epoch to epoch and the model must learn 405 

signal features that indicate arrivals rather than where they occur within the input window (i.e., 406 

arrivals don’t need to occur in the center of the window for the model to detect them). With our 407 

noise data, a random 400-sample window is chosen at each training epoch from our 20-second 408 

noise sections, introducing more waveform variety between training epochs. 409 

 410 

All data processing and model training/testing were performed in Python using the ObsPy 411 

(Beyreuther et al., 2010; Krischer et al., 2015; Megies et al., 2011), TensorFlow (Abadi et al., 412 

2015; https://tensorflow.org) and Keras (Chollet et al., 2015; https://keras.io) libraries. 413 

 414 

5 Results 415 

5.1 Training Metrics (Transfer Learning vs No Transfer Learning) 416 

 417 

To examine the impact of transfer learning and determine how much training data is 418 

required to produce an effective model, we use varying sized subsets of the training data 419 

throughout model training (i.e., 250, 500, 750, …, 2000, 2250 and 2498 training samples). Figure 420 

3 compares how model loss (measure of distance between model predictions and ground truth 421 

labels) on training and validation data evolves throughout training between our transfer learning 422 

model and the same model with completely re-initialized weights (i.e., with no transfer learning) 423 

for our smallest and largest subsets of training data (250 and 2498 training samples, respectively). 424 

The learning rate is set to be equal (1	 ×	10!#) across the whole re-initialized model as we are no 425 

longer fine-tuning existing knowledge. All other hyperparameters, including dropout rate, are kept 426 

the same. The models trained without transfer learning (Fig 3B and D) show a much greater degree 427 

of overfitting: the model loss on the training data continues to decrease with more training while 428 

the loss on validation data (data that the model does not use during training) hits an inflection point 429 

and starts increasing, reflecting that the model is ‘memorizing’ the precise features of the training 430 

data at the cost of generalization (Shorten & Khoshgoftaar, 2019). By contrast, the validation loss 431 

continues to decrease for the models trained with transfer learning (Fig 3A and C). Furthermore, 432 
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the minimum validation loss achieved by the transfer learning models for each training dataset size 433 

is lower than when transfer learning is not employed (Fig 3 horizontal dashed lines). Such 434 

diagnostics indicate that transfer learning is successfully preventing overfitting to the training data 435 

and will likely produce a model that generalizes better to non-training data (Shorten & 436 

Khoshgoftaar, 2019). The greatly improved performance on validation data using the smallest 437 

subset of training data (Fig 3A and B) shows that transfer learning is particularly useful for 438 

reducing overfitting and model loss when training data are very limited, but this advantage is 439 

progressively diminished with increasing training dataset size (Figs 3 and 4). 440 

 441 

 442 

 443 

Figure 3. Model loss vs. training epoch number. a) Transfer learning model and 250 training 444 

samples of each class (P, S or neither). b) Model trained without transfer learning (i.e., initially 445 
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randomized weights) and 250 training samples of each class. c) Transfer learning model and full 446 

training dataset (2498 training samples of each class). d) Model trained without transfer learning 447 

(i.e., initially randomized weights) and full training dataset. Blue curve shows model loss for 448 

training data, red curve shows model loss for validation data (not seen during training). A lower 449 

model loss on training data (blue) than validation data (red) means the model shows signs of 450 

overfitting. The degree of overfitting (gap between blue and red curves) is much greater for the 451 

models without transfer learning (b and d) with validation loss hitting an inflection point then 452 

increasing whilst training loss continues to decrease. The transfer learning models also achieve a 453 

smaller minimum validation loss (horizontal dashed line) for each training set size. 454 

 455 

Figure 4 shows the highest model accuracy (the proportion of labels the model classifies 456 

correctly) and lowest model loss achieved by our transfer learning and re-initialized models on 457 

validation data when trained using each subset size of training data. The transfer learning model 458 

achieves lower model loss regardless of training dataset size (Fig 4B). As training dataset size 459 

increases, the difference between the lowest loss achieved by the two models (gap between red 460 

circles and red triangles, Fig 4B) decreases and the advantages of transfer learning diminish. 461 

Generally, loss is considered a more robust metric than accuracy for model performance on future 462 

data as it measures the distance between model predictions and ground truth labels, whereas 463 

accuracy simply measures a binary true/false score. However, accuracy still provides useful 464 

information regarding model performance. In particular, the transfer learning model shows a stable 465 

relationship between maximizing model accuracy and minimizing model loss (gap between black 466 

and red circles is very small for all training subset sizes), where the training strategy of minimizing 467 

model loss appears to achieve the same goal as maximizing model accuracy, again a sign of 468 

reduced overfitting. The re-initialized model (black and red triangles), on the other hand, shows a 469 

much less stable relationship in this regard, with diverging training scores (Fig 4) indicating that 470 

high model accuracy comes at the cost of higher model loss and low model loss comes at the cost 471 

of lower model accuracy for these small training set sizes when transfer learning is not employed. 472 

The increased model loss for model weights with highest model accuracy (black triangles) also 473 

suggests that the model has become overconfident in its predictions (it has large errors on the small 474 

proportion of labels it gets wrong) and is therefore likely to perform worse on out-of-distribution 475 
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data, with more false or missed phase arrival detections (e.g., a phase arrival being labelled as 476 

noise with high model confidence, or vice versa). 477 

 478 

 Model performance between the two approaches (transfer learning vs re-initialization) 479 

converges as training set size increases, indicating that the need for transfer learning decreases 480 

with increased training set size, as expected. In fact, model performance with transfer learning 481 

appears to plateau, or possibly even degrade, at training subset sizes of more than 1500 samples. 482 

This suggests that, with enough training data, transfer learning could potentially inhibit the model’s 483 

ability to learn useful features in the new data that are absent in the original GPD training data. 484 

This apparent variance in performance may also simply be a result of the stochasticity arising from 485 

training using randomized weights in the new part of our transfer learning model. 486 

 487 

 488 

 489 

Figure 4. Model accuracy (a) and loss (b) for various subsets of training data. Open red circles 490 

are transfer learning model weights from epoch that achieves lowest validation loss (e.g., dashed 491 

horizontal lines in Fig 3), open black circles are transfer learning model weights from epoch that 492 

achieves highest validation accuracy, solid red triangles are re-initialized model (no transfer 493 

learning) weights from epoch that achieves lowest validation loss, and solid black triangles are re-494 

initialized model weights from epoch that achieves highest validation accuracy. 495 

No. of training examples for each class (P/S/N)

Va
lid

at
io

n 
ac

cu
ra

cy
 (h

ig
he

r i
s 

be
tte

r)

Transfer learning (weights with highest accuracy)
Transfer learning (weights with lowest loss)
Reinitialised model (weights with highest accuracy)
Reinitialised model (weights with lowest loss)

A. Accuracy on validation data

0 500 1000 1500 2000 2500

0.980

0.985

0.990

0.995

1.000

No. of training examples for each class (P/S/N)

Va
lid

at
io

n 
lo

ss
 (l

ow
er

 is
 b

et
te

r)

Transfer learning (weights with highest accuracy)
Transfer learning (weights with lowest loss)
Reinitialised model (weights with highest accuracy)
Reinitialised model (weights with lowest loss)

B. Loss on validation data

0 500 1000 1500 2000 2500

0.00

0.02

0.04

0.06

0.08

0.10



Confidential manuscript submitted to JGR: Solid Earth 

 21 

 496 

5.2 Test Dataset (Known Arrival Times) 497 

 498 

Following model training, we test the above models (i.e., new model with and without 499 

transfer learning) and two baseline models (GPD and PhaseNet) using the test dataset outlined in 500 

Section 4. We examine the proportion of correct class predictions (Fig 5) and the residuals between 501 

model and manually determined phase arrival pick times (Fig 6). Due to differences in model task 502 

types (classification vs segmentation), we apply all models as sliding windows over 1000-sample 503 

waveforms (note that the PhaseNet model takes a 3000-sample waveform as input so we examine 504 

only the middle 1000 samples for this model). To account for human picking error in collating our 505 

test set, we define a true positive for each phase arrival type (P or S) as the model prediction 506 

exceeding a given threshold value for that arrival type within 0.5 secs of the manually determined 507 

arrival, such that predicted arrival times very close to the manually determined arrival time are 508 

considered accurate. A true positive for sections of noise is defined as no phase arrival prediction 509 

exceeding a given threshold value at any point within that section of data. The test data are pre-510 

processed as per the training data for each model (i.e., GPD model tested on 2 Hz high-pass filtered 511 

data and all other models, including PhaseNet, tested on raw data; all detrended and self-512 

normalized). 513 

 514 

 The GPD model is tested using four different threshold values (Fig 5A – D) as this value 515 

strongly controls the number of false or missed phase arrival detections generated by this model. 516 

When the threshold is set to be whichever class label (P, S or N) has the highest predicted value 517 

for a given waveform, nearly all P- and S-wave arrivals are detected by the GPD model (99.75 % 518 

and 95 % detection rate, respectively; Fig 5A). However, this threshold criterion makes the GPD 519 

model extremely prone to false phase arrival detections in sections of noise, with 44 % of 1000-520 

sample noise waveforms in our test dataset containing at least one false phase arrival detection 521 

(Fig 5A, bottom right square) and many of our 1000-sample event waveforms containing multiple 522 

phase arrival triggers (not shown). When this threshold criterion is applied to continuous sections 523 

of data from Nabro, the number of false phase arrival detections overwhelmingly outweighs the 524 

number of true phase arrival detections and becomes unmanageable in terms of correctly 525 
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associating phases, identifying true events and processing the data within computational memory 526 

constraints.  527 

 528 

One way to lower the number of false phase arrival detections is to use a higher threshold 529 

value for P- and S-wave predictions. Figure 5B shows the GPD model’s performance on our test 530 

data using a 0.9 threshold value (i.e., a P or S prediction ‘probability’ must exceed 0.9 to be 531 

included). The number of false detections in sections of noise is greatly reduced (down from 44 % 532 

of waveforms to 10 % of waveforms) but at the cost of reduced true phase arrival detections (~ 533 

95% and ~82% of P- and S-wave arrivals, respectively). Part of this performance dip is 534 

undoubtedly due to the difference in sample rates between one half of the test data (50 Hz) and the 535 

GPD model’s training data (all 100 Hz). When the threshold value is increased further (i.e., P or S 536 

prediction must exceed 0.95 or 0.99; Fig 5C and D), the GPD model yields even fewer false phase 537 

arrival detections in noise sections but at the cost of fewer P- and S-wave arrivals.  538 

 539 

Figure 5E shows the performance of the PhaseNet model on our test dataset. This model is 540 

included as it adopts the same U-Net segmentation approach as our new model and is trained on 541 

data from a variety of instrument types, although the training data is still exclusively from southern 542 

California. The PhaseNet model is much less prone to false phase arrival detections than the GPD 543 

model (Fig 5E, bottom right square); as such, a much lower threshold value (0.4) can be used to 544 

maximize the number of true phase arrival detections. This model accurately identifies ~ 89% and 545 

~ 83 % of P- and S-wave arrivals in our test dataset, which is better than the GPD model with a 546 

threshold value that achieves a similar false detection rate (e.g., Fig 5D), but detects fewer phase 547 

arrivals than our transfer learning and reinitialized models trained with Nabro data (Fig 5F – I). 548 

 549 
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 550 

 551 

Figure 5. Confusion matrices for base GPD model (a – d), PhaseNet model (e), U-GPD transfer 552 

learning model (f, 500 training samples, and g, 2498 training samples) and re-initialized model (h, 553 

500 training samples, and i, 2498 training samples). Values in matrices are proportion of ground 554 

truth phase arrivals assigned by each model to a given class (values of 1 along diagonal from top 555 

left to bottom right means all phase arrivals and sections of noise correctly identified). 556 

 557 

When trained using a subset of just 500 training samples for each class (P/S/N) and 558 

evaluated using a prediction threshold value of 0.4, the transfer learning approach correctly detects 559 

~ 93% and ~94% of P- and S-wave arrivals with very few false phase arrival detections in sections 560 

of noise (~ 1 %; Fig 5F), a clear improvement over our model trained with re-initialized weights 561 

and the same training subset (Fig 5H). When our full training dataset is used (2498 samples for 562 

each class), model performance converges between transfer learning (Fig 5G) and re-initialization 563 

(Fig 5I), with a similar number of correctly identified phase arrivals and false detections in noise, 564 

although the transfer learning model still performs marginally better, particularly on sections of 565 

noise. In essence, the transfer learning model strikes a better balance between high phase arrival 566 

detection rate (~ 97 – 98% for each phase arrival type; Fig 5G, top left and center squares) and low 567 

false detection rates in sections of noise (~ 1%; Fig 5G, bottom right square) on our test data from 568 
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Nabro volcano than any of the existing baseline models (Fig 5A – E) or training a model from 569 

scratch (Fig 5I). 570 

 571 

Figure 6 shows the residuals for each model between their predicted phase arrival times 572 

and the original manual pick times for these test waveforms. Predicted phase arrival times were 573 

determined using a simple trigger algorithm (e.g., Withers et al., 1998) on each model’s probability 574 

time series with the time series index that yields maximum predicted value chosen as the pick time 575 

for a given phase arrival type. The models that employ semantic segmentation (i.e., PhaseNet, our 576 

U-GPD transfer learning model and our re-initialized model; Fig 6B – F) show comparable pick 577 

time precision (root mean square deviation [RMSD] of 0.036, 0.038 and 0.044 seconds, 578 

respectively, for each model’s P-wave predictions and RMSD of 0.053, 0.053 and 0.065 seconds, 579 

respectively, for each model’s S-wave predictions), with no predicted arrival times more than 0.3 580 

seconds before or after the manually determined pick time, regardless of training dataset size. The 581 

GPD model (Fig 6A), by comparison, has a more diffuse range of phase arrival pick times (RMSD 582 

of 0.217 seconds for P-waves and 0.188 seconds for S-waves), with some model picks made more 583 

than 1 second before or after the manually determined arrival time. This is almost certainly a result 584 

of its more ambiguous class labelling (Fig 1) and the broad phase arrival probability peaks it 585 

generates. 586 

 587 
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 588 

 589 

Figure 6. Model phase pick residuals vs. manual phase picks for base GPD model (a), PhaseNet 590 

model (b), U-GPD transfer learning model (c, 500 training samples, and d, 2498 training samples), 591 
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and reinitialized model (e, 500 training samples, and f, 2498 training samples). The models based 592 

on semantic segmentation (b – f) yield smaller phase pick residuals. 593 

 594 

5.3 Full 14-Month Deployment (Unknown Arrival Times) 595 

 596 
Whilst evaluating model performance on individual, manually scrutinized waveforms is 597 

useful for benchmarking and yielding estimates of model efficacy, the model’s performance in a 598 

‘real-world’ setting is ultimately of most importance to seismic analysts. Evaluating such 599 

performance is inherently more challenging, however, as the number of events in long sections of 600 

monitoring data and their respective phase arrival times are unknown, and other considerations, 601 

such as computational time and resources (e.g., memory requirements and availability of optimized 602 

hardware), affect model feasibility as a monitoring tool. 603 

 604 

In this section, we present results of our best performing model in the prior section (U-605 

GPD transfer learning model trained with full training dataset of 2498 samples of each class) and 606 

the original base GPD model when run over the full 14-month Nabro seismic deployment (Fig 7). 607 

As with the test dataset in Section 5.2, phase arrivals are detected at individual stations through a 608 

simple trigger algorithm, where an arrival is detected if the probability assigned to that class label 609 

(P or S) exceeds a given threshold (e.g., 0.4 for our U-GPD transfer learning model). The phase 610 

arrival time is determined as the waveform sample with the highest probability for that phase. 611 

 612 

The U-GPD transfer learning model was applied to the data as a sliding window with 50 613 

% overlap (i.e., applied at ‘time shifts’ of 200 samples) over 24-hour sections of data from each 614 

individual station. The model takes 5 seconds to process 24 hours of 3-component data at 100 Hz 615 

sample rate (or 3 seconds per day at 50 Hz sample rate) on a single graphics processing unit (GPU; 616 

NVIDIA GeForce RTX 2080 Ti), a rate many orders of magnitude faster than ‘real-time’ even 617 

when run on hundreds of stations. To avoid poor predictions due to window edge effects, only the 618 

middle 200 sample predictions out of 400 from each window are used to predict phase arrivals and 619 

are concatenated to produce one long continuous prediction trace without overlap or gaps and with 620 

the same sample rate as that of the input signal (i.e., 100 or 50 Hz). With all other processing steps 621 

(e.g., software initialization, data read/write, signal windowing, running trigger algorithm, etc.), 622 
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the U-GPD transfer learning model picks phase arrivals at all 7 available stations from the full 14-623 

month deployment in less than 4 hours using a single GPU (greatly reduced when parallelized over 624 

multiple GPUs), indicating that it could easily be used within real-time monitoring constraints. 625 

 626 

Conversely, as the GPD model produces only one class prediction per window (Fig 1A), 627 

we apply this model with much greater overlap (97.5 %; every 10 samples of data) and with 628 

varying threshold values (0.9, 0.95 and 0.99) for phase arrival detection triggering. This generates 629 

a prediction trace with a much coarser sample rate than the original input signal (i.e., from 100 or 630 

50 Hz to 10 or 5 Hz, respectively) and takes 26 seconds per 24 hours’ 3-component data at 100 Hz 631 

sample rate (or 15 seconds per day at 50 Hz sample rate) on the same NVIDIA GPU, approximately 632 

a five-fold increase in computational time with a tenth of the temporal detail. With all other 633 

processing steps, the GPD model took almost 50 hours to run over the full 14-month deployment 634 

using a single GPU, more than a ten-fold increase in computational time over the transfer learning 635 

model, due to more (pre-)processing required (e.g., more signal windows generated and 636 

subsequent processing). Assuming a linear increase in computational time, running the model as a 637 

sliding window over every sample of data would take ~ 260 seconds per 24 hours’ 3-component 638 

data at 100 Hz sample rate and ~ 500 hours (nearly 3 weeks) for the full 14-month deployment and 639 

7 stations. While this is still faster than real-time, these timescales for a single or limited number 640 

of station(s) could become limiting when applied at hundreds of stations, particularly without high 641 

performance computing resources. 642 

 643 

5.3.1 Phase Association Method 644 

 645 

Both models detect P- and S-wave phase arrivals but do not associate them to the same 646 

event. To assess the number of locatable events detected, we group P-wave phase arrival triggers 647 

into 4-second bins and keep only bins with arrivals detected at four or more stations. This bin size 648 

was chosen to encompass the maximum plausible travel time between any two stations. If multiple 649 

arrivals were detected at the same station within a 4-second bin, the detection threshold was 650 

increased for all arrivals in that particular bin to retain only the highest probability phase picks. If 651 

any of these bins now had arrivals at less than four stations, as a result of removing lower 652 
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probability phase picks, they were discarded as there would be too few stations to constrain event 653 

location. If there were still multiple arrivals present at any given station, only the arrivals with 654 

highest probability for each station were kept. Finally, if phase arrival bins intersected (a subset of 655 

one bin was contained in another), the bin with highest mean probability was kept. This association 656 

method is clearly quite crude, and only works for small, local arrays, but allows a broad evaluation 657 

of model performance at detecting phase arrivals. 658 

 659 

We associate S-wave arrivals to their corresponding P-wave arrivals by first locating events 660 

using NonLinLoc (e.g., Lomax et al., 2000), a widely used software package for probabilistic 661 

earthquake location, using the P-wave arrival bins outlined above and a simple 1D velocity model 662 

(Fig 7A). The difference between P-wave arrival and event origin times were used to predict which 663 

S-wave arrival detections should be associated with each P-wave arrival using a Vp/Vs ratio of 664 

1.76 and S-wave travel time error of 0.25 (25%). S-wave arrival triggers that lay within this error 665 

bound for each detected P-wave arrival were associated to that event. S-wave arrivals at stations 666 

without a detected P-wave arrival were not included. All events were then located again in 667 

NonLinLoc using all included phase arrivals (Fig 7B). 668 

 669 

 670 

 671 

Figure 7. U-GPD transfer learning model event locations (total no. of events = 33,950) using 672 

automated phase association strategy. a) P-wave phase arrival triggers are grouped into 4 second 673 
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bins and these groupings are used to obtain initial event hypocenters and origin times. b) S-wave 674 

phase arrival triggers are associated to P-waves in (a) using initial origin times, a Vp/Vs ratio of 675 

1.76 and a travel-time error of 25 %. Events are then located again using all included P-wave and 676 

S-wave arrivals. 677 

 678 

5.3.2 Detected Events and Location Errors 679 

 680 

Figure 8 shows the cumulative number of events detected by the U-GPD transfer learning 681 

model (threshold value of 0.4; black solid line) and the original GPD model (threshold values of 682 

0.9, 0.95 and 0.99; grey lines). The cumulative number of events from an existing manual 683 

catalogue for this deployment (Goitom, 2017; Hamlyn et al., 2014), some of which provided the 684 

transfer learning model training data, is also given for reference. When only P-wave arrivals are 685 

used (Fig 8A), the GPD model with detection threshold of 0.9 appears to detect the most events 686 

(total no. of events detected by GPD model = 41,007; total no. of events detected by transfer 687 

learning model = 33,950). A threshold of 0.95 also detects more events than the transfer learning 688 

model until shortly after the switch in instrument sample rates from 100 Hz to 50 Hz. However, 689 

when we consider events with at least one associated S-wave arrival, the transfer learning model 690 

detects more events overall (Fig 8B; no. of events detected by transfer learning model = 31,387; 691 

no. of events detected by GPD model with 0.9 threshold = 26,808). This is consistent with the 692 

results from our test dataset in Section 5.2, with the proportion of S-wave arrivals accurately 693 

detected by the GPD model at these threshold values much lower than the proportion of P-wave 694 

arrivals detected (Fig 5B – D). Furthermore, 6 % of noise waveforms and 16% of S-wave arrivals 695 

from our test data were mislabeled by the GPD model (0.9 threshold value) as P-wave arrivals (Fig 696 

5B), a higher rate of false detections or labels than the transfer learning model (1 % of noise 697 

sections and 0.5% of S-waves, respectively; Fig 5G). This means that a higher proportion of the 698 

P-wave groupings detected by this model with 0.9 threshold value are likely to include mislabeled 699 

S-waves or false arrivals. 700 

 701 
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 702 

 703 

Figure 8. Cumulative number of events detected by GPD model (various thresholds, grey lines) 704 

and transfer learning model trained on full Nabro dataset (2498 samples of each class, 0.4 705 

threshold, black line). Blue dashed line is existing manual catalogue (Goitom, 2017). All training 706 

/ validation waveforms are from dates before switch in sample frequency (vertical dashed line). a) 707 
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Cumulative number of events detected using P-wave arrivals only (see main text for event binning 708 

procedure). b) Cumulative number of events with at least one associated S-wave arrival. 709 

 710 

To scrutinize these results further, we examine the number of stations with P- and S-wave 711 

arrival detections per event (Fig 9A – B). In general, the events detected and picked by the U-GPD 712 

transfer learning model include more stations and considerably more S-wave arrivals than those 713 

picked by the GPD model, although the number detected by the GPD model may have been 714 

reduced by using a coarser prediction trace (every 10 samples, a requirement to reduce model run 715 

time to a reasonable timeframe). This increase in the number of stations and S-wave arrivals per 716 

event will constrain event locations, as seen in the location errors derived from the models’ phase 717 

arrival picks (Fig 9C – D). 718 

 719 

The horizontal errors (Fig 9C; standard deviation of estimated Gaussian error distributions) 720 

for the locations produced using the transfer learning model pick times are comparable to the 721 

existing manually picked events. Furthermore, vertical (depth) errors are much improved over the 722 

manual catalogue (Fig 9D), likely reflecting more consistency in S-wave arrival picking than that 723 

of a manual analyst. The GPD model, by comparison, produces a more diffuse range of horizontal 724 

and vertical errors, which is likely to be a combination of coarser prediction trace, poorer pick 725 

precision (Fig 6A), lack of S-wave arrivals (Fig 9B) and false/mislabeled P-wave arrival detections 726 

(Fig 5B). This interpretation is further supported when we look at the number of event locations 727 

lying within the array (i.e., event locations lying within the convex hull of station coordinates) for 728 

each model: NonLinLoc locates more events within the array using the transfer learning picks (n 729 

= 23,859) than using the GPD model with 0.9 threshold value (n = 22,826). While we expect many 730 

events to occur outside of the array (e.g., at neighboring faults or volcanic centres), this metric 731 

shows that a much larger proportion of event locations detected by the GPD model lie away from 732 

the volcanic edifice, which may reflect poorer pick precision, false/mislabeled arrivals or coarser 733 

prediction trace, but may also reflect the event types (i.e., regional tectonic) that the original model 734 

was trained on. 735 

 736 
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 737 

 738 

Figure 9. a) Number of P-wave arrival picks per event for transfer learning model (grey) and base 739 

GPD model (gold). b) Number of S-wave arrival picks per event. c) Histogram of Gaussian 740 

horizontal location errors (1 standard deviation) for events picked by transfer learning model (grey) 741 

and base GPD model (gold), and those in the existing manual catalogue (blue). d) Histogram of 742 

Gaussian vertical (depth) location errors (1 standard deviation). 743 

 744 

6 Discussion 745 

 746 

Transfer learning using existing seismological deep learning models can be a highly 747 

effective strategy to automate phase arrival picking in settings with little or no prior monitoring. 748 

We demonstrate that, with a limited number of hand-labelled waveforms (on the order of hundreds 749 

to low thousands) and a few minutes of training time, one can produce a consistent and effective 750 
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deep learning model for phase arrival detection that requires no other manual intervention or tuning 751 

and can process years of data in a matter of hours. 752 

 753 

For small training datasets, the use of pre-existing, generalized CNN filters greatly reduces 754 

model overfitting (i.e., model parameters ‘memorizing’ the training data) when compared with 755 

training a model from scratch (Fig 3) and yields a more stable relationship between maximizing 756 

model accuracy and minimizing model error (Fig 4). Furthermore, when combined with a good 757 

data augmentation strategy, transfer learning can also address the issue of processing data when 758 

instrument sample rates differ from those used to train existing models. When applied to data from 759 

Nabro volcano, augmenting our training set with decimated waveforms greatly improves model 760 

performance on lower sample rate data (Supplementary Materials). As such, hand-labelled training 761 

data from the first 35 days of the deployment (all 100 Hz sample rate) were sufficient to detect 762 

phase arrivals throughout the duration of the deployment, even after instrument sample rates were 763 

switched to 50 Hz (Fig 8). Without this data augmentation step, model performance on lower 764 

sample rate data declines dramatically (Supplementary Materials). This shows that where sample 765 

rates are altered or new instruments added during a seismic deployment, data augmentation can 766 

overcome the cost of collecting further hand-labelled data and allow models to be adapted cheaply 767 

and quickly throughout the deployment. 768 

 769 

The introduction of new, task-specific data and the change in model task from one of 770 

classification to one of segmentation also improves our U-GPD model pick time precision (Fig 6), 771 

the number of stations per detected event (Fig 9A), the number of S-wave arrivals detected (Figs 772 

5 and 9B) and computational efficiency over the original base GPD model, as well as potentially 773 

reducing the number of false/mislabeled P-wave detections (Fig 5) and increasing the number of 774 

identified events that relate directly to volcanic activity (evidenced by the increased number of 775 

events located within the array). Without manual intervention or sophisticated phase association, 776 

phase arrival picks from the U-GPD transfer learning model produce locations with smaller depth 777 

errors than the base GPD model and even manually determined phase arrival times (Fig 9D). This 778 

is likely a result of more consistent picking and labelling, particularly for S-wave arrivals, which 779 

is difficult even for manual analysts to perform consistently, and suggests that very few of the 780 

events detected are false.  781 
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 782 

Given the greatly improved computational time over the base GPD model, the small 783 

number of training events required and the use of a high-level, user-focused programming library 784 

(Keras), this approach is well within the reach of volcano observatories and research groups. 785 

Previous studies that analyze the pre-, syn- and post-eruptive periods at Nabro volcano have relied 786 

on manually-produced seismic catalogues comprising hundreds of events (e.g., Goitom et al., 787 

2015; Hamlyn et al., 2014; the latter locating 658 events over 38 days, a rate of < 18 events per 788 

day). Our U-GPD transfer learning model yields a seismic catalogue that is order of magnitudes 789 

larger (33,950 events over 396 days, a rate of > 85 events per day; Figs 7 and 8), with smaller 790 

location errors (Fig 9), in a matter of hours. Furthermore, as the model processes 1D waveform 791 

data, as opposed to 2D spectrogram images in some other existing models (e.g., Dokht et al., 2019; 792 

Lara et al., 2020; Titos et al., 2020), it runs quickly on high resolution data without using a GPU 793 

optimized for deep learning frameworks (32 secs per 24 hours of 100 Hz data on an Intel Core i7 794 

desktop CPU) and so could easily be deployed for real-time monitoring with limited computing 795 

resources or at much larger arrays. The methods and computational times in this paper have relied 796 

on standard, generic libraries (ObsPy, TensorFlow and Keras); the use of more optimized, 797 

compiled code or higher-performance / lower-level languages (e.g., Julia and C) could greatly 798 

improve computational times further.  799 

 800 

 Beyond phase arrival picking, the generalized waveform features extracted by existing, 801 

extensively trained models, such as the GPD model (Fig 1A), could serve as a useful feature 802 

extraction system for models designed for other waveform processing tasks. For example, 803 

information regarding frequency content and orientation of seismic energy extracted by the GPD 804 

model (Fig 1A inset) could reasonably provide useful features for a new model designed to 805 

automatically classify volcano seismic event types (e.g., Bueno et al., 2020; Hibert et al., 2017; 806 

Lara et al., 2020), particularly when available annotated datasets are small or unbalanced. 807 

However, with larger datasets, there is the potential for transfer learning to inhibit learning of new, 808 

useful features, particularly if the source and target tasks or data distributions differ considerably. 809 

 810 

The number of seismological studies to date that employ transfer learning is relatively low 811 

(e.g., Bueno et al., 2020; Chai et al., 2020; El Zini et al., 2020; Huot et al., 2018; Titos et al., 2020). 812 
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This is undoubtedly, in part, due to the lack of extensively trained, well-documented, publicly 813 

available seismological models. However, the number is likely to grow as more extensive datasets 814 

and models are developed and released into the public domain. We credit the availability of the 815 

GPD model in the public domain and use of a popular, user-focused machine learning framework 816 

(Keras) as the foundation of the work presented in this paper. Such availability facilitates 817 

adaptation and experimentation; development of other publicly available models and extensive 818 

datasets would aid progress in the field of seismological machine learning.  819 

 820 

Whilst the application of transfer learning can overcome the perception that deep learning 821 

models require a ‘large upfront cost’ in terms of data and computational resources, the 822 

development and benchmarking of large-scale, extensive models and datasets are still imperative 823 

to push the field of seismological machine learning forwards and extend applications to all aspects 824 

of seismic processing and inference. However, it is hoped that applications such as the one 825 

presented in this paper will motivate the initial investment in the development of such models so 826 

that the cost of producing effective task-specific models (e.g., through transfer learning) is 827 

progressively reduced. 828 

 829 
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