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Introduction  
The supplementary information describes the collection, reduction, and mapping of high 
spatial resolution data acquired by the Gamma Ray and Neutron Detector (GRaND) in 
Dawn final mission phase (Text S1 and S2).  

Text S3 describes a mineral mixing model used to estimate the concentration of 
hydrogen within and around Occator crater based on mineral maps derived from data 
acquired by Dawn’s Visible and Infrared Mapping Spectrometer (VIR). 

Text S4 provides an overview of the thermophysical ice stability model used to support 
the interpretation of the data. 

Figure S1 demonstrates that the high-resolution GRaND data are sensitive to the 
presence of hydrogen within the interior of Occator crater and the ejecta blanket. 

Figure S2 shows the longitudinal dependence of crater density and hydrogen 
concentration. 

Figure S3 compares the pattern of large craters with the distribution of hydrogen.  
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Text S1. Data and corrections 1 
The GRaND data used in this study are available from the Planetary Data System 2 

(PDS) in PDS4 format:  3 

https://sbn.psi.edu/pds/resource/dawn/dawngrandPDS4.html 4 

In Dawn’s final mission phase, GRaND acquired data in a highly eccentric orbit with 5 
a south-to-north trajectory around Ceres. The orbit was in a 3:1 resonance with Ceres 6 
(27h orbital period), which enabled acquisition of data along a selected meridian. The 7 
periapsides drifted along a great circle, starting in the western hemisphere north of 8 
Occator crater, gradually moving southward along the 240E meridian and crossing into 9 
the eastern hemisphere.  The last data were acquired north of the equator in the eastern 10 
hemisphere along the antimeridian (60E) (Fig. 1a).  11 

Data acquired between 8-Jun and 26-Oct of 2018, just prior to end-of-mission 12 
(1-Nov) were used. During this time, the spacecraft completed 123 eccentric orbits, with 13 
periapsides ranging from less than 30 km near the equator to about 55 km near the 14 
South Pole (Fig. 1b). Data from 10 orbits for which the main antenna was Earth-pointed 15 
were discarded. The remaining 113 orbits were used in the analysis, which included 16 
60690 science data records. Of these, 540 records (0.9%) were flagged as invalid and 17 
removed, leaving 60,145 data records for use in the analysis. To ensure ample spatial 18 
sampling of the surface, the accumulation time for science data records was commanded 19 
to 35s for altitudes below about 1200 km. At higher altitudes, the accumulation time was 20 
set to 455s. 21 

The data were acquired under quiet Sun conditions. No data were discarded due to 22 
solar activity. Following previous work (Prettyman et al., 2012; Prettyman et al., 2017), the 23 
GRaND triples and higher order coincidence counter (triples+) was used as a proxy for 24 
the flux of galactic cosmic rays, which interact with the regolith to produce gamma-rays 25 
and neutrons. At altitudes greater than a few body radii, contributions from secondary 26 
particles produced by cosmic rays are negligible. The altitude of apoapsis was about 27 
4000 km (8.5 body radii), which enabled variations in the flux of galactic cosmic rays to 28 
be monitored every orbit. The triples+ rate measured at altitudes >6 body radii was 29 
resampled via linear interpolation to determine the variations in the cosmic ray flux for 30 
the entire time series. 31 

At low altitudes (within a few body radii), thermal and epithermal neutrons 32 
originating from Ceres’ surface interact with GRaND’s +Z lithium-loaded glass scintillator 33 
via the 6Li(n,α) reaction.  This reaction makes a peak in the CAT1 pulse height spectrum, 34 
which can be analyzed to determine the reaction rate (Prettyman et al., 2011). The peak 35 
area was determined for each science accumulation interval by subtracting a background 36 
spectrum measured at high altitude from a region-of-interest containing the peak (see 37 
Fig. 1c and Prettyman et al., 2017, supplement). For each measurement, the background 38 
spectrum was normalized to the continuum determined for each measurement from 39 
counts in a high energy region above the peak. The shape of the background was 40 
assumed to be the same for all measurements and was determined from high altitude 41 

https://sbn.psi.edu/pds/resource/dawn/dawngrandPDS4.html
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measurements. The same approach for peak extraction was used in all previous studies 42 
(Prettyman et al., 2011; 2012; 2017). 43 

The peak areas were divided by live time and corrections were applied to remove 44 
variations in the flux of galactic cosmic rays and measurement geometry. This produced 45 
a time-series of corrected interaction rates sensitive only to variations in surface 46 
composition. For measurement geometry, the 6Li(n,α) interaction rates were calculated at 47 
the mid-point location of each accumulation interval assuming the composition of Ceres’ 48 
was homogeneous with a CI chondrite composition. The leakage current of neutrons 49 
(energy-angle distribution) for  an arbitrary surface parcel was calculated using the 50 
Monte Carlo N-Particle eXtended transport code (McKinney et al., 2006). The Monte 51 
Carlo algorithm by Prettyman et al. (Prettyman et al., 2017; 2019) was used to model the 52 
response of the instrument to leakage neutrons at each orbital location, accounting for 53 
Ceres’ shape and topography using a polygonal shape model determined from Framing 54 
Camera images using stereophotoclinometry (Park & Buccino, 2018; Park et al., 2019). 55 
The shape model was decimated to minimize compute times at high altitudes, where the 56 
instrument resolution is broader than the scale of surface features. For altitudes lower 57 
than 200 km, the mesh was decimated from 5123 to 2563 quadrilaterals, such that the 58 
mean distance between mesh points was about 3 km. This is sufficient to model the 59 
geometry of large-scale features such as Occator crater. Normalizing the measurements 60 
to simulated counts for a homogeneous surface removes artifacts of Ceres’ shape and 61 
topography. 62 

Text S2. Hydrogen mapping 63 
The corrected 6Li(n,α) interaction rates were mapped onto the surface of Ceres 64 

using a circle superposition algorithm that accounts for variations in the spatial 65 
resolution of the instrument with altitude. Individual measurements are sensitive to the 66 
composition within an approximately circular surface region centered at the subsatellite 67 
point. The diameter of the circle is given by the spatial resolution of the spectrometer, 68 
which varies in proportion to altitude (e.g., Prettyman et al., 2019). For each 69 
measurement, the corrected interaction rate is uniformly distributed on the surface 70 
within the corresponding circle. The surface contributions from all the measurements are 71 
then averaged together to form a map.  72 

Circle superposition approximates the double convolution of surface features by 73 
the response function of the spectrometer, which is a conservative approach for 74 
detection of variations in surface composition. The method is a robust extension of 75 
mapping algorithms that place measurements at the subsatellite point (Maurice et al., 76 
2004). Circle superposition accounts for the widely varying spatial influence and limited 77 
spatial sampling of the measurements acquired in the eccentric orbits. 78 

The maps presented in Figs. 2 and 3 were constructed from 5088 measurements 79 
acquired below 100 km altitude with the instrument pointed to within 20 degrees of 80 
body center. For the selected measurements, the average pointing angle was 4.8 81 
degrees, with a population standard deviation of 3.5 degrees. Most of the data (98%) 82 
was acquired with a pointing angle <12 degrees, with 94% within 10 degrees and 59% 83 
within 5 degrees. This is consistent with the quality of the pointing data used for 84 
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hydrogen mapping in LAMO, for which the cutoff was 12 degrees (Prettyman et al., 85 
2017).  86 

Selection of measurements made below 100 km provided ample spatial coverage 87 
to examine global latitude variations observed previously in LAMO (Prettyman et al., 88 
2017), with at least 3× higher spatial resolution. We used 1.5 as the factor relating 89 
altitude to spatial resolution, consistent with previous studies of low-altitude data sets 90 
(Haines et al., 1978; Lawrence et al., 2003; Prettyman et al., 2009), and conservatively 91 
larger than predicted for the lithium-loaded glass scintillator at LAMO altitudes 92 
(Prettyman et al., 2019). Map values within the point cloud are insensitive to moderate 93 
variations in the scaling factor. Mapped variations in regions outside the point cloud are 94 
an extrapolation of the data and may not be as accurate as points inside the cloud. 95 
Regions with high confidence are bounded by white contours in Figs. 2 and 3.  Points 96 
within this region have been sampled at least 50 times. The maximum spatial resolution 97 
(minimum full width at half maximum arc length on the surface) supported by the data is 98 
about 50 km, given the minimum altitude sampled was about 30 km. This scale is 99 
indicated by the circle in Fig. 2c.  100 

The distribution of hydrogen was determined from the mapped corrected 101 
interaction rates using the method described by Prettyman et al. (2017). For comparison, 102 
the counting data within 20 degrees of the equator were normalized to match the values 103 
acquired previously in LAMO. This accounted for differences in counting rates resulting 104 
from changes in instrument settings, drifts in gain, and changing solar conditions 105 
between LAMO and high-resolution observations made near the end of the mission. 106 
Hydrogen concentrations derived from thermal and epithermal counting data are subject 107 
to systematic contributions from other elements. Based on modeling of Ceres analog 108 
materials, this source of uncertainty is smaller than 1 wt.% eq. H2O (Prettyman et al., 109 
2017). 110 

The statistical uncertainty (1-sigma) in mapped hydrogen concentrations was 111 
determined using Monte Carlo error propagation, given estimates of the uncertainty in 112 
the measurements. The circle superposition algorithm was applied to 100 random 113 
samples of the time-series counting data. The population standard deviation is indicated 114 
by the vertical lines in Fig. 2b. 115 

Text S3. Mineral mixing model 116 
Maps of mineral mixing fractions in the Occator region were determined from VIR 117 

spectra by (Raponi et al., 2019) by least squares fitting of spectral end-members. These 118 
included Mg-, Al-, and NH4-bearing phyllosilicates, Mg- and Na-carbonates, ammonium 119 
chloride, and a dark component. Following previous studies (Marchi et al., 2019; 120 
McSween et al., 2017; Prettyman et al., 2017; 2019), the reported mixing fractions were 121 
interpreted as volume fractions, which were used to determine hydrogen concentrations 122 
given approximate mineral structural formulae and densities. A map of hydrogen 123 
concentrations derived from VIR mineralogy is shown in Fig. 3a.  124 

Note that the dark component is spectrally featureless in the near infrared, 125 
consistent with a mixture of magnetite, troilite, and partially hydrated, amorphous 126 
carbon (De Sanctis et al., 2015); however, the spectral mixing fraction for this component 127 
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is very high outside the faculae, greater than 0.9 in some locations. With such high 128 
mixing fractions, no combination of spectrally featureless minerals can match ice-free 129 
concentrations of hydrogen and iron determined by GRaND. Instead, we modeled the 130 
dark component as the global average composition inferred simultaneously from GRaND 131 
and VIR data (Table 1, Case B of Marchi et al. (2019), which includes featureless 132 
components as well as contributions from hydrated minerals and carbonates. This gives 133 
the correct hydrogen content for dark materials representative of the global regolith, 134 
while allowing variability in hydrogen contributions from specific minerals identified by 135 
(Raponi et al., 2019) within the Occator region. Our ad hoc approach for estimating 136 
hydrogen concentrations is justified given the large uncertainties involved in interpreting 137 
VIR-derived spectral mixing fractions as mineral abundances (McSween et al., 2017). 138 

The VIR-derived hydrogen map (Fig. 3a) only includes lattice water and hydrogen in 139 
amorphous carbon. At depths greater than the optical surface, bound water (i.e., to salts 140 
and in the interlayer of clay minerals) may be present along with water ice. The mineral 141 
mixing model results in relatively low concentrations of hydrogen in the faculae (as low 142 
as 8 wt.% eq. H2O) compared to their dark surroundings (about 17 wt.% eq. H2O). 143 

Text S4. Thermophysical model 144 
Thermophysical models for water ice stability were run based on a temperature 145 

model (Landis et al., 2017; Landis et al., 2019) utilizing orbital parameters determined by 146 
the Dawn mission. Our model matches other numerical calculations for Ceres surface and 147 
subsurface temperatures (Prettyman et al., 2017; Schorghofer, 2016). The modeled 148 
temperatures were used in a Knudsen-diffusion model previously developed for airless 149 
bodies (Schorghofer, 2008). The diffusive loss of water vapor determines the thickness of 150 
regolith that builds up, and further buries the ice-bearing layer. The following parameters 151 
and assumptions were used:  152 
• Grain sizes from the analysis of VIR data for lobate deposits on the floor of Occator 153 

crater and the ejecta blanket (~110- and 70-µm, respectively) (Raponi et al., 2019) 154 
were used to estimate the vapor diffusion coefficient (see Fig. 3b).  155 

• Thermal inertia of 15 SI units for the over-lying lithic sublimation lag (Rivkin et al., 156 
2011) is used for the thermal model. 157 

• Regolith surface single-scattering albedo of 0.09 (Carrozzo et al., 2018; Li et al., 2016). 158 
• Obliquity, argument of perihelion from Dawn mission results (Russell et al., 2016). 159 
• Depth-to-ice values are not significantly affected by the ~25 kyr obliquity cycles over 160 

the lifetime of Occator (Landis et al., 2017; Schorghofer, 2016). 161 
• Shadowing from crater walls is negligible due to Occator’s relatively large diameter 162 

and relatively flat floor. 163 
• The initial sublimation lag depth is 3 cm, which represents a barrier to diffusion. This 164 

lag depth is also many times the diurnal skin depth in Ceres’ desiccated regolith. We 165 
assume the temperature of the ice is equal to the annual average surface 166 
temperature.  167 

To estimate water loss from hydrated salts, we modified the model by assuming (1) 168 
the buried water-bearing salt was natron (Na2CO3 ⋅10H2O), (2) the temperature of the 169 
natron was equal to the annual average surface temperature calculated for the regolith 170 
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given the aforementioned parameters, and (3) all water molecules released from natron 171 
are lost instantaneously (the molecules did not condense to form ice or rehydrate the 172 
natron). We calculated the salt dehydration rate using the Arrhenius equation with 173 
constants derived from experiments of natron dehydration under Europa-like conditions 174 
(McCord et al., 2001). We found that at Occator crater, natron within the subsurface 175 
dehydrated on short timescales compared to the crater’s estimated age of 20 Myr (Scully 176 
et al., 2019). This is consistent with the detection of only dehydrated sodium carbonate 177 
at Occator (Raponi et al., 2019). This supports the conclusion that hydrated sodium 178 
carbonate is unlikely to be a major contributor of water in the shallow sub-surface 179 
compared to water ice.  180 

Recent work  (Bu et al., 2018a; Bu et al., 2018b) has suggested that the dehydration 181 
of salts on Ceres depends also on grain size. It suggests that the grain sizes used in 182 
McCord et al. (2001), were large enough to add additional dehydration time due to the 183 
diffusion of water vapor through the grain itself. Therefore, dehydration times based on 184 
constants for the Arrhenius model from McCord et al. (2001), are possibly only upper 185 
limits.  186 

Other hydrated salts such as hydrohalite (NaCl⋅2H2O), which was detected by VIR in 187 
Ceralia Facula (De Sanctis et al., 2020), and nahcolite (NaHCO3), which degrades to form 188 
NaCO3 under conditions present on Ceres’ surface (Zolotov, 2017), are not likely a 189 
significant source of H. For example, even if nahcolite were concentrated in the shallow 190 
subsurface, it could account for no more than 11 wt.% equivalent H2O. Experiments and 191 
modeling indicate the dehydration times for these minerals are also short compared to 192 
geologic time (Bu et al., 2018a; Bu et al., 2018b; Zolotov, 2017). Without the high 193 
pressures needed to re-hydrate these minerals, it is unlikely that they contribute as much 194 
hydrogen as water ice in the Occator region.   195 
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 196 
Figure S1. Spatial sensitivity of GRaND to geologic units within Occator 197 
crater. (a) Three orbits with nearly identical trajectories passing through the 198 
center of Occator crater are superimposed on a geologic map of Ceres (Williams 199 
et al., 2019). Locations of measurement center points (black circles) are plotted. 200 
The points of closest approach (about 35-km altitude) are highlighted in red. (b) 201 
The measured 6Li(n,α) interaction rate averaged over the three orbits is shown 202 
(error bars indicate 1σ statistical precision). The dip within the crater boundary 203 
(dashed lines) is interpreted as elevated [H] within the crater interior. (c) A 204 
simulation of the response of GRaND to neutrons emitted from geologic units 205 
shows that the instrument is sensitive to the composition of the crater interior. 206 
The contribution from the faculae is negligible compared to lobate deposits and 207 
terrace material, which are possible locations for subsurface ice. 208 
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 209 
Figure S2. Longitudinal dependence of large craters and hydrogen 210 
concentration. The chart shows averages of the 20-degree equal area maps of 211 
crater density and hydrogen concentration (Fig. 4a) taken along meridians 212 
separated by 20 degrees longitude. The longitudinal variation in hydrogen 213 
concentration with crater density is correlated (r = 0.55). Given the coefficient of 214 
determination (r2 = 0.30), the variation in hydrogen concentration is reduced by 215 
30% when crater density is used as a predictor. As described in the main text, 216 
both crater density and hydrogen concentration have a broad maximum near 217 
180E longitude.218 
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 219 
Figure S3. Comparison of the pattern of large craters and the distribution of 220 
hydrogen. Scatter plot of the density of large craters (20-100 km diameter) 221 
versus the concentration of hydrogen using data presented in Fig. 4a (see 222 
caption for the definition of crater density and data sources). The coefficient of 223 
determination (r2) indicates strength of correlation and gives the fractional 224 
reduction in the variability of hydrogen that occurs when crater density is used as 225 
a predictor (see legend). The correlation is strong when all data points are 226 
considered; however, the concentration of hydrogen sensed by GRaND depends 227 
on the depth of subsurface water ice, which is controlled by near-surface 228 
temperature. Annual averaged surface temperatures, which vary with latitude 229 
with nearly hemispheric symmetry, were estimated using the model described in 230 
Text S4. The independent variable (crater density) is anticorrelated with 231 
temperature (r = -0.64). As a result, temperature is a confounding variable. To 232 
control for temperature, we divided the data set into three latitude ranges 233 
(combining N and S latitude bands). The distribution of large craters accounts for 234 
a portion of the variability within the selected ranges, which supports our 235 
replenishment hypothesis; however, the strength of correlation is such that 236 
processes other than impacts must also affect regolith hydrogen content.237 
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