References
  1. Abe, O.E., Otero Villamide, X., Paparini, C. et al. (2017), Performance evaluation of GNSS-TEC estimation techniques at the grid point in middle and low latitudes during different geomagnetic conditions, J. Geod., 91, 409–417, https://doi.org/10.1007/s00190-016-0972-z.
  2. Akmaev, R. A. (2011), Whole atmosphere modeling: Connecting terrestrial and space weather, Rev. Geophys., 49, RG4004, doi:10.1029/2011RG000364.
  3. Appleton, E. V., and Barnett, M. A. F. (1925), On some direct evidence for downward atmospheric reflection of electric rays, Proc. R. Soc. Lond. A, 109: 621–641, http://doi.org/10.1098/rspa.1925.0149.
  4. Appleton, E. V. (1946), Two Anomalies in the Ionosphere, Nature, 157, 691, https://doi.org/10.1038/157691a0.
  5. Bale, S.D., Goetz, K., Harvey, P.R. et al. (2016), The FIELDS Instrument Suite for Solar Probe Plus, Space Sci. Rev., 204, 49–82, https://doi.org/10.1007/s11214-016-0244-5.
  6. Bilitza, D., McKinnell, LA., Reinisch, B. Fuller-Rowell, T. (2011), The international reference ionosphere today and in the future. J Geod 85, 909–920, https://doi.org/10.1007/s00190-010-0427-x.
  7. Borovsky, J. E., and Denton, M. H. (2006), Differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi:10.1029/2005JA011447.
  8. Brice, N. M., Ioannidis, G. A. (1970), The magnetospheres of Jupiter and Earth, 13 (2), 173-183, https://doi.org/10.1016/0019-1035(70)90048-5.
  9. Diaz-Aguado, M. F., Bonnell, J. W., Bale, S. D., Wang, J., & Gruntman, M. (2021a). Parker Solar Probe FIELDS instrument charging in the near Sun environment: Part 1: Computational model. Journal of Geophysical Research: Space Physics, 126, e2020JA028688. https://doi.org/10.1029/2020JA028688.
  10. Diaz-Aguado, M. F., Bonnell, J. W., Bale, S. D., Wang, J., & Gruntman, M. (2021b). Parker solar probe FIELDS instrument charging in the near Sun environment: Part 2: Comparison of in-flight data and modeling results. Journal of Geophysical Research: Space Physics, 126, e2020JA028689.
  11. Dickinson, R. E., Ridley E. C., and Roble, R. G. (1981), A three-dimensional general circulation model of the thermosphere, J. Geophys. Res., 86, 1499-1512, https://doi.org/10.1029/JA086iA03p01499.
  12. Fejer, B. G. and Scherliess, L. (1995), Time Dependent Response of Equatorial Ionospheric Electric Fields to Magnetospheric Disturbances, Geophys. Res. Lett. 22, 851–854, https://doi.org/10.1029/95GL00390.
  13. Fejer, B. G., Scherliess, L., and de Paula, E. R. (1999), Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104(A9), 19859– 19869, doi:10.1029/1999JA900271.
  14. Goldman, A. E., S. R. Emani, L. C. Pérez-Angel, J. A. Rodríguez-Ramos, J. C. Stegen, and P. Fox (2021), Special collection on open collaboration across geosciences , Eos, 102, https://doi.org/10.1029/2021EO153180.
  15. Gopalswamy, N. (2006), Properties of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 124, 145–168. https://doi.org/10.1007/s11214-006-9102-1.
  16. Haider, S. A., Mahajan, K. K., and Kallio, E. (2011), Mars ionosphere: A review of experimental results and modeling studies, Rev. Geophys., 49, RG4001, doi:10.1029/2011RG000357.
  17. Nava, B., Coïsson, P., Radicella, S.M. (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol. Terr. Phys., 70(15), 1856-1862, https://doi.org/10.1016/j.jastp.2008.01.015.
  18. Rastogi, R. G., and J. A. Klobuchar (1990), Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res., 95(A11), 19,045–19,052, doi:10.1029/JA095iA11p19045.
  19. Rawer, K., Bilitza, D. (1989), Electron density profile description in the international reference ionosphere, J. Atmos. Terr. Phys., 51 (9–10), 781–790, https://doi.org/10.1016/0021-9169(89)90035-4.
  20. Richmond, A. D., Ridley, E. C., and Roble, R. G. (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 6, 601-604, https://doi.org/10.1029/92GL00401.
  21. Rishbeth, H. (1977), Dynamics of the equatorial F-region, J. Atmos. Terr. Phys., 39(9-10), 1159-1168, https://doi.org/10.1016/0021-9169(77)90024-1.
  22. Rishbeth, H. (1997), The ionospheric E-layer and F-layer dynamos — a tutorial review, J. Atmos. Sol. Terr. Phys., 59(15), 1873-1880, https://doi.org/10.1016/S1364-6826(97)00005-9.
  23. Russell, C. T. (1993), Planetary magnetospheres, Rep. Prog. Phys., 56, 687-732.
  24. Shinagawa. H. (2000), Our current understanding of the ionosphere of Mars, Adv. Space Res., 26(10), 1599-1608, https://doi.org/10.1016/S0273-1177(00)00099-5.
  25. Sun, Y.-Y., Matsuo, T., Maruyama, N., and Liu, J.-Y. (2015), Field-aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT-3/COSMIC hmF2 data under geomagnetically quiet conditions. J. Geophys. Res. Space Physics, 120, 3130– 3149, doi: 10.1002/2014JA020768.
  26. Sur, D., Haldar, S., Ray, S., and Paul A., (2017), Response of data-driven artificial neural network-based TEC models to neutral wind for different locations, seasons, and solar activity levels from the Indian longitude sector, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023678.
  27. Temmer, M. (2006), Space weather: the solar perspective, Living Rev. Sol. Phys., 18, 4. https://doi.org/10.1007/s41116-021-00030-3.
  28. Vidotto, A.A. (2021), The evolution of the solar wind, Living Rev. Sol. Phys., 18, 3. https://doi.org/10.1007/s41116-021-00029-w
  29. Wilkinson, M. D. et al. (2016), The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data 3:160018, doi: 10.1038/sdata.2016.18.