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ABSTRACT

The Lagrangian and Eulerian surface current signatures of a low-mode internal tide propa-

gating through a turbulent balanced flow are compared in idealized numerical simulations.

Lagrangian and Eulerian total (i.e. coherent plus incoherent) tidal amplitudes are found to

be similar. Compared to Eulerian diagnostics, the Lagrangian tidal signal is more incoher-

ent with comparable or smaller incoherence timescales and larger incoherent amplitudes.

The larger level of incoherence in Lagrangian data is proposed to result from the defor-

mation of Eulerian internal tide signal induced by drifter displacements. Based on the

latter hypothesis, a theoretical model successfully predicts Lagrangian autocovariances

by relating Lagrangian and Eulerian autocovariances and the properties of the internal

tides and jet. These results have implications for the separation of balanced flow and

internal tides signals in the sea level data collected by the future Surface Water and Ocean

Topography (SWOT) satellite mission.
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1. Introduction24

The disentangling of internal tides and balanced flow is a key issue for incoming wide-25

swath altimetric missions such as the SWOT (Surface and Water and Ocean Topography,26

(Morrow et al. 2019)) and Guanlan (Chen et al. 2019). SWOT will in particular provide27

instantaneous 2D sea level maps, with an expected horizontal resolution of the order of28

15–45 km (Wang et al. 2019). With this resolution, internal tides and mesoscale balanced29

flow will be captured, providing a unique opportunity to study both motions and their30

interactions. While both motions have distinct time scales, they can have similar length31

scales (order of tens to hundreds of kilometers) which makes their separation via spatial32

filtering difficult. The coarse temporal resolution of these instruments (20 day repeat time33

approximately for SWOT) will also prevent separation by temporal filtering. The resulting34

difficult disentanglement of internal tides and balanced flow in wide-swath altimetric35

data is expected to deteriorate the quality of surface velocity estimations via geostrophy36

(Chelton et al. 2019). Internal tides (or baroclinic tides) are internal waves generated by37

the barotropic tide when it passes over a topography (Garrett and Kunze 2007). They are38

initially phase-locked with the tidal forcing and would remain so if they were propagating39

in a quiescent environment. Such phase-locked internal tide field is commonly referred to40

as coherent or stationary. (To avoid any confusion with the concept of stationarity in the41

context of statistics, we shall use the term "coherent" throughout this paper.) However,42

as internal tides travel in a background stratification that varies in time (Buijsman et al.43

2017), or pass through a turbulent jet (Ponte and Klein 2015; Dunphy et al. 2017; Savage44

et al. 2020), they are disturbed and progressively loose their coherence. The fraction of45

the internal tide that is no longer phase-locked with the tidal forcing and/or of not constant46

amplitude is the incoherent internal tide, and the mechanisms and typical timescales47

associated with this loss of coherency remains insufficiently constrained at present days.48

Internal tides can then be scattered (towards different scales or frequency), e.g. by the49
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corrugated topography, or dissipated close or far from the generation’s site (Whalen et al.50

2020; Savva and Vanneste 2018; Savage et al. 2020). A fraction of the internal tides51

energy (mainly high modes) dissipates close to their generation’s location (Whalen et al.52

2020) but a significant part travels in the open ocean over potentially great distances – up53

to thousands of kilometers – with a low-mode vertical structure (Zhao et al. 2016).54

Several works used altimeter observations to study baroclinic tide including its inco-55

herent component. Because of their limited temporal sampling compared to internal56

tides periods, satellite altimetric observations enables the identification of the internal57

tide signature that remains coherent over a couple of years (Ray and Zaron 2016; Zaron58

2019). More recently, averaged amplitudes of non-coherent sea level signatures were also59

obtained (Zaron 2017; Nelson et al. 2019).60

To overcome limitations of altimeter data, the use of the global drifter program (GDP)61

dataset has recently been considered (Zaron 2017, 2019). GDP drifter tracks are resolved62

temporally down to an hour with a horizontal positioning sufficiently accurate in order63

to capture the signatures of near-inertial waves (Elipot et al. 2010; Sykulski et al. 2016)64

and tidal motions (Elipot et al. 2016; Yu et al. 2019; Zaron and Elipot 2020). Assuming65

specific stochastic models for low-frequency and near-inertial motions, Sykulski et al.66

(2016) designed for example efficient statistical methods in order to fit models parameters67

to drifter velocity time series.68

One of the challenges associated with the analysis and interpretation of Lagrangian data69

is the advection of a drifter by the flow. The data collected by a drifter as it is displaced70

by the flow may entangle Eulerian spatial and temporal variability and give a distorted71

perspective of variability as described in the Eulerian frame of reference. LaCasce (2008)72

reviewed conceptual frameworks that have been developed in order to tackle this issue73

(Lumpkin et al. 2002; Middleton 1985; Davis 1983, 1985). Two regimes are typically74

identified: fixed float and frozen turbulence. The prevalence of one regime over the other75
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is determined by the parameter α = TE/Ta, where TE is the Eulerian evolution timescale76

of the flow and Ta is the time required for a drifter to travel the Eulerian characteristic77

spatial scale of the observed fluctuation. Ta is given by L/U, with U the typical advection78

velocity and L the spatial scale of fluctuations. If α� 1, the time required for the drifter79

to travel the length L is greater than the timescale of the fluctuation, TE . In this case, one80

can expect an agreement between the Lagrangian and Eulerian timescales. Conversely, if81

α� 1, it takes a drifter a time smaller than TE to travel a distance L, causing a more rapid82

fluctuation in the Lagrangian perspective. We apply in these paper these ideas to the case83

of the case of internal tides interacting with a balanced flow.84

Zaron and Elipot (2020) found a spectral broadening of barotropic tidal peaks in La-85

grangian data compared to Eulerian ones, due to flow and/or tides spatial inhomogeneity.86

Such broadening is expected to complicate the extraction of internal tides properties87

(e.g. overall amplitudes, coherence/non-coherent fractions, incoherent timescales) from88

lagrangian drifter data, depending on the regions of the ocean and the associated dynami-89

cal regime. In order to improve our understanding of this issue, we quantify and compare90

in this study the internal tide amplitudes and incoherence timescales diagnosed in Eulerian91

and Lagrangian frames of reference in an idealized configuration.92

We first present the numerical set-up used in this study as well as the statistical models93

and methods used to estimate internal tide amplitudes and decorrelation timescales. The94

results are shown in the second part for one simulation at first, and then for several95

simulations with varying balanced flow intensities. Lastly, we develop a theoretical model96

to predict Lagrangian autocovariance fromEulerian one and qualitatively validate it against97

our numerical simulations. The Discussion of the results and Conclusion complete the98

paper.99
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2. Numerical simulations and Lagrangian data100

a. Numerical simulations101

We performed idealized numerical simulations of an internal tide crossing a balanced102

flow. The numerical model is the Coastal and Regional Ocean COmunity model, CROCO103

(CROCO and CROCOTOOLS are available at https://www.croco-ocean.org ) solving the104

hydrostatic primitive equations. Its configuration follows Ponte et al. (2017) with a zonally105

periodic rectangular numerical domain (1024 km x 3072 km). The Coriolis frequency fol-106

lows the beta-plane approximation and is representative ofmid-latitudes. A turbulent zonal107

balanced flow crosses the domain at its center along the meridional direction. Numerical108

simulations are initialized with a baroclinically unstable balanced flow. Relaxation of zon-109

ally averaged fields towards initial conditions(velocities, temperature, sea level) maintains110

the turbulence generated by the balanced flow destabilization. Simulations with different111

balanced flow strength are obtained by modulating the strength of the initial balanced flow112

or equivalently the latitudinal thermal gradient. After 500 days, relaxation of the zonal113

mean fields toward the initial balanced flow is ceased. The balanced flow has a mean114

velocity amplitude maximum around 1450km in the center of the balanced flow (Fig.1a,115

red line). The balanced flow amplitude decays over the observed period of time with a116

maximum around 0.6 m/s at the beginning and around 0.4 m/s at the end. The balanced117

flow velocity is computed by averaging each velocity component (u and v) over 2 days.118

The balanced flow is surfaced intensified (Fig. 1c) and its vertical structure essentially119

consists of the barotropic and first baroclinic modes. In the center area, the low-passed120

velocity indicates ∼60% and ∼40% of the kinetic energy are found in the barotropic and121

first baroclinic mode respectively.122

Amode-1 internal tide is generated at y = 400 km with a semi-diurnal frequency (2 cpd).123

Its signature at the surface dominates the total velocity amplitude in the northern and124

southern areas (Fig.1a, green line compared to red line). The mode-1 wavelength is125
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approximately between 170 and 185 km in the south and between 160 and 180km in the126

north.127

It is worth mentioning that the first baroclinic mode accounts for 98% of the the internal128

tide’s vertically-integrated kinetic energy south and north of the balanced flow and around129

90% in the balanced flow. The generation of internal tide higher modes after interaction130

with the balanced flow is thus negligible in our simulations. Sponge layers at the top and131

the bottom of the domain (y < 300 km and y > 2700 km) prevent reflections against top132

and bottom boundaries. Finally, about 8000 simulated near-surface drifters (referred to as133

drifters in the rest of this study) are also initialized at day 500 on a regular grid extending134

from 600 km to 2400 km and are advected online (Fig.1b).135

Dunphy et al. (2017) reports, for the same numerical setup, on the nature of interactions136

between balanced flow and internal tide and, in particular, on the role played by the respec-137

tive vertical structures of both processes. This works instead focuses on the distortions of138

the internal tide signal induced by displacements of surface drifters which explains why139

most of the attention is paid next on surface flow properties. Further discussion on the140

relative spatial structures of both processes for this more specific issue are found in section141

5a.142

b. Lagrangian outputs overview143

In the central part of the domain, the balanced flow dominates drifter net motions with144

averaged displacements of about 300 km in the x-direction and 160 km in the y-direction145

over a 40 day timewindow (Fig. 2c). For comparison purposes the internal tide wavelength146

is of about 175km. Away from the balanced flow (Fig.2a and e), the net distance traveled147

in the y-direction by the selected drifters is of about 20–30 km – which is a fraction of148

an internal tide wavelength. Internal tides, on the other hand, generate smaller periodical149

displacements, of the order of 2–3 km.150
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Eulerian and Lagrangian meridional velocity time series exhibit significant differences,151

visually, in the balanced flow at both low and internal tide frequency (amplitude and152

phase) over a 40 day temporal window (Fig. 2d). Meridional velocity time series outside153

the balanced flow (Fig. 2b and f) exhibit smaller differences between both frames of154

reference. Modulations of internal tide fluctuations are faster in the north compared to the155

south in both Eulerian and Lagrangian time series. This discrepancy reflects the loss of156

coherence of the internal tide as it propagates northward and interacts with the balanced157

flow.158

c. Methods : Estimation of Eulerian and Lagrangian amplitudes and timescales159

To quantify the loss of coherence of internal tides and the differences and similari-160

ties between Eulerian and Lagrangian diagnostics, we estimate amplitude and decorre-161

lation/incoherence time scales associated with the balanced flow and internal tides and162

compare the results in different parts of the domain.163

1) Autocorrelation models164

For both the Eulerian and Lagrangian signals, we assume that a time dependent velocity165

component v may be written as the sum of an internal tide part, ṽ, and a balanced (or jet)166

part, v:167

v = ṽ+ v (1)

where actual spatial and temporal dependencies have been omitted. Note that an alter-168

native would be to use a complex velocity, w = u+ iv instead of individual components169

(zonal or meridional) (Sykulski et al. 2016). This choice is justified when dealing with170

polarized motions such as near-inertial waves but is less relevant for internal tides. We171

considered that this is not needed in our case and would be more suited for more realistic172
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configurations including inertial waves (Sykulski et al. 2016).173

174

We assume the internal tide velocity time series is described by :175

ṽ(t) =<
[̃
ve(t)eiωt

]
with< the real part (2)

where ṽe is the complex-valued amplitude of the tidal oscillations of the tides and depends176

slowly on time, thus capturing the incoherence of the tide, and, whereω/2π is the frequency177

of the internal tide.178

The internal tide signal can be decomposed into coherent and incoherent contributions.179

The coherent part is defined with a coherent temporal averaging operator (i.e. a temporal180

average with fixed phased with respect to ω frequency oscillations) :181

ṽcoh = 〈̃v〉c, (3)

=<
[
〈̃ve〉eiωt

]
(4)

where 〈·〉 is a time averaging operator.182

Hence the incoherent part, defined as the total velocity minus the coherent part :183

ṽinc = ṽ− 〈̃v〉, (5)

=<
[
(̃ve − 〈̃ve〉c)eiωt

]
(6)

Assuming internal tide velocities and jet velocities are uncorrelated, the total autocovari-184

ance, C, equals to the sum of the autocovariances of ṽ and v :185

C(τ) = 〈v(t)v(t + τ)〉 = C̃(τ)+C(τ), (7)

There is no report in the literature nor clear physical expectations for the shape of186

incoherent signal complex envelopes. A heuristic choice is thus made here by assuming187

the envelope of the incoherent signal is an exponentially decaying function of time lag,188

with a decay timescale, T̃ , which will be referred to as the incoherence timescale. The189
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tide autocovariance is expressed as:190

C̃(τ) =
[
Ṽ2

coh + Ṽ2
ince−τ/T̃

]
× cos(ωτ) (8)

where capital letters are constants.191

This model bears some resemblance with the autocorrelation derived by Sykulski et al.192

(2016). We stress however that the resemblance is fortuitous as the derivation of Sykulski193

et al. (2016) is not expected to hold for internal tides whose generation mechanisms and194

dynamics differ substantially from that of near-inertial waves which would not justify the195

use of the same model a priori.196

The balanced velocity autocovariance is assumed to have the simple form :197

C(τ) = V
2
e−τ/T (9)

where T is the decorrelation timescale. An alternative model was proposed by Veneziani198

et al. (2004), introducing a term of balanced flow oscillation, cos(Ωτ), which accounts for199

eddies and meanders. The model does improve the visual agreement between meridional200

autocorrelations and their fit in the center of the domain but does not affect estimates of201

internal tide properties which are the focus of this study. We thus opted for the simpler202

form Eq.9.203

The total autocovariance is finally given by:204

C(τ) = C̃(τ)+C(τ) =
[
Ṽ2

coh + Ṽ2
ince−τ/T̃

]
× cos(ωτ)+V

2
e−τ/T (10)

2) Autocorrelations and parameters estimation205

For each drifter’s trajectory the velocity time series is split into segments of length206

Tw, overlapping each other by 50%. A time window of 40 day is chosen. This value207

is the result of the following compromise: time windows used for the computation of208

Lagrangian individual autocovariances has to be short enough for the result to be typical209

of a specific area, while being long enough to capture potentially long decorrelation210
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timescales. Eulerian mean velocities, averaged in time and zonal direction is interpolated211

on drifters trajectories and removed. No significant impacts of this removal were observed212

on the results for the tidal signal. Indiviudal autocovariances are then computed over213

each segment and averaged within 50 km wide meridional bins. Each autocovariance214

segment is attributed to a bin depending on the mean position over the period T. We215

did not find a significant sensitivity of our results to the length of the window. The216

Eulerian individual autocovariance is computed at each grid point using the same time217

windows and bin-averaged meridionally as for the Lagrangian autocovariance. Averaged218

autocovariances are then divided by the averaged autocovariance at time lag zero to obtain219

the averaged autocorrelation.220

221

The heuristic model, developed in Section 2c1, is fitted to averaged autocovariances222

which provides estimates for parameters T̃ , Ṽcoh,Ṽinc, T and V to find the best fit. The fit223

is done using a non linear least square regression (Jones et al. 2001–). Lower bounds are224

fixed to zero for amplitudes and, one and two days for T̃ and T respectively. Confidence225

intervals are computed using a bootstrapmethod (Efron 1981). Within each bin, individual226

autocovariances are randomly resampled one hundred times (with replacement). Each227

resampled dataset leads to an averaged autocovariance and amplitudes and timescales228

parameters estimates using the fit described previously. 95% confidence intervals are229

derived from the distribution of the parameter estimates.230

3. Signatures of internal tides and balanced flow in Eulerian and Lagrangian per-231

spective232

a. Velocity autocorrelations233

Lagrangian and Eulerian velocity autocorrelations (resp. Fig. 3 a and b; function of time234

lag and y) highlight three regimes that coincides with the southern (y <1000km), central235
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(1000km< y <1800km), and, northern (y >1800km) parts of the numerical domain and236

correspond to typical drifter trajectories shown in Fig. 2a, c and e. Autocorrelation at237

these latitudes of interest are further shown in Fig. 4.238

In the northern and southern parts of the numerical domain, semi-diurnal oscillations239

associated with internal tides, stand out on both Eulerian and Lagrangian autocorrelations.240

In these areas, the signal seems to be dominated by internal tides with no signature of the241

balanced flow visually. No decay of oscillations amplitudes with time lag are visible in242

the south —especially in the Eulerian perspective (see Fig. 4f)— indicating that internal243

tides are nearly coherent there. A mild decay of these oscillations is observed in the north,244

on the other hand, and indicates internal tides are partially incoherent there. There are245

no significant visual differences between Lagrangian and Eulerian autocorrelations in the246

northern and southern areas.247

Conversely, the central area exhibits a decay – especially in the Lagrangian perspective248

– of the tidal oscillations combined to a slower general decay associated with the slower249

balanced motion. As observed in drifters trajectories and velocity time series (Fig. 2,250

panels c and d), this is the area where drifters are most significantly displaced by the251

balanced flow and where Lagrangian and Eulerian time series differ substantially. Semi-252

diurnal oscillations of the Lagrangian autocorrelation are not visible after lags of about253

5 days (Fig. 3a and Fig. 4c) while they are observed after 20 days on the Eulerian254

autocorrelation (Fig. 3b and Fig. 4d). The decorrelation of the balanced motion is also255

faster in Lagrangian autocorrelation compared to Eulerian one, and exhibits a negative256

lobe around τ ∼ 4 days which we attribute to the meridionally oscillating trajectories of257

drifters caught in the balanced flow. The faster decay of the low-frequency signature258

on Lagrangian autocorrelations is attributed to the projection of spatial variability into259

temporal one along drifter trajectories (Lumpkin et al. 2002; LaCasce 2008).260
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b. Estimates of velocity amplitudes and decorrelation timescales261

Eulerian meridional profiles of incoherence timescales and coherent and incoherent tide262

amplitudes (red lines Fig.5a, c and d) obtained after fitting averaged autocovariances onto263

Eq.10 translate a loss of the coherence of internal tides during the crossing of the balanced264

flow. In the south, the tidal signal is essentially coherent with Eulerian coherent amplitudes265

that are larger than incoherent ones (∼0.06 ms−1 versus ∼0.01 ms−1; see Fig. 5c) and a266

flat envelope of autocorrelations oscillations (Fig. 4f).267

In the center of the numerical domain, the internal tide propagation is perturbed by268

the balanced flow and results in a loss of coherence with larger Eulerian incoherent to269

coherent amplitude ratios. This trend culminates in the northern part of the domain with270

incoherent amplitudes up to ∼0.08 ms−1 and coherent amplitudes of about ∼0.05 ms−1.271

Note that the total (coherent+incoherent) tidal amplitude increases northward (more clearly272

seen on Fig. 6)e. This increase is caused by variations of the Coriolis frequency and of273

the stratification. Furthermore, a northwards surface intensification of the vertical mode274

structure requires an increase of the surface amplitude for a given vertically integrated275

energy flux. All together, these mechanisms result in a northward increase of the surface276

coherent and incoherent amplitude.277

Incoherent timescales exhibit values of about 5 days in the south and increases northward278

to reach values comprised between 10 and 20 days. We note that the envelope of the279

Eulerian tidal oscillations in the north (blue lines Fig. 4b) does reach a plateau, consistent280

with a remaining coherent component and justifying the form of the fit for the motions we281

use (eq. 8).282

Lagrangian parameters present a significantly different picture compared to the Eulerian283

one as suggested by drifter trajectories (Fig. 2 a, c and e) and autocorrelations (Fig. 3).284

In the south, the envelope of the Lagrangian autocorrelation (Fig. 4 e) decays faster than285

the Eulerian one. Lagrangian incoherent and coherent amplitudes (red lines on Fig. 5c286
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and d) present similar values (∼0.03 ms−1 and ∼0.04 ms−1 respectively). Incoherent287

timescales (Fig. 5a) remain between 10 and 20 days. In the center, incoherent amplitudes288

largely dominate and reach values of about ∼0.08 ms−1 against ∼0.01 ms−1 for coherent289

amplitudes. Incoherent timescales decrease sharply in the same area down to1 day in its290

center. The larger level of incoherence of internal tide signature on Lagrangian velocities291

compared to Eulerian one is coined "apparent incoherence" and attributed to the distortion292

of the Eulerian signal by balanced motions which is largest in the center area. In the north,293

such apparent incoherence diminishes and Lagrangian autocorrelations and parameters294

are comparable to Eulerian ones (Fig. 4 a and b, Fig. 5a,c and d).295

As expected, balanced motions amplitudes diagnosed from autocorrelations parametric296

fit are maximum in the central area where the balanced flow resides (Fig. 5e). The297

Lagrangian balanced motion decorrelation timescales (Fig. 5b) reach the lowest boundary298

(∼2 days) in the central area. The Eulerian decorrelation timescales are larger, ≤10 days.299

It corresponds to the area of high balanced amplitude (Fig. 5e). It also coincides with the300

area of low Lagrangian incoherence timescales which supports an apparent incoherence301

in Lagrangian diagnostics dominant in this part.302

c. Sensitivity to the balanced flow EKE303

The sensitivity of internal tide Lagrangian/Eulerian properties to the balanced flow EKE304

is investigated with five numerical simulations of increasing balanced flow strength. The305

meridional distributions of velocity amplitudes (Figure 6b) indicates a two-fold increase306

across simulations (Fig.6b).307

The internal tide total velocity amplitude, defined by
√

Ṽ2
coh + Ṽ2

inc, increases northwards308

(Fig.6e), as explained in section 3b. This increase is more pronounced for larger bal-309

anced flow strength, as expected from the larger change of stratification, and is of similar310

magnitude in both Eulerian and Lagrangian perspectives.311
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Starting with the two most energetic simulations, S3 and S4, both Eulerian and La-312

grangian diagnostics show a loss of coherence of internal tides that occurs when internal313

tides cross the balanced flow. In the south area, the incoherent Eulerian tidal amplitude is314

smaller than the coherent one by a factor 4 which indicates the internal tide is essentially315

there (dashed lines in Fig. 6c and d). Lagrangian coherent and incoherent amplitudes316

are comparable, on the other hand, which indicates some apparent incoherence. In the317

center area, Eulerian and Lagrangian incoherent amplitudes increase while Lagrangian318

coherent amplitude drops sharply to zero. Lagrangian incoherent timescales (Fig. 6a)319

reach minimal values (≤5days) while Eulerian ones remain around or above 5 days in all320

simulations. The width of this area of apparent incoherence is clearly identified from La-321

grangian incoherent timescales (Fig. 6a) and is consistent with the increase of the strength322

of the balanced flow (Fig. 6b). In the northern area, both simulations exhibit comparable323

Eulerian and Lagrangian incoherent amplitudes and timescales, i.e. there is little apparent324

incoherence.325

In the intermediate case, S2, a sharp decrease of Lagrangian coherent amplitude and326

incoherence timescales identifies apparent incoherence in the center area similarly to S3327

and S4. However we find discrepancies in the Eulerian frame of reference. The Eulerian328

coherent amplitude drops sharply to 0 in the north while the incoherent timescale increases329

towards values between 30 and 40 days. This might be caused by a inconsistency of the330

fit in the north because the tidal oscillations do not reach a plateau in the 40 days time331

window.332

Unlike S3 and S4, the two least energetic simulations, S0 and S1, show a weak loss of333

coherence in Eulerian perspective as coherent amplitudes exceeds incoherent ones at all334

meridional positions. Lagrangian coherent amplitude drops sharply to zero in the balanced335

flow while the incoherent amplitude one exhibits a bump and timescales drop to 1 day.336
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This indicates that Lagrangian apparent incoherence is effective even in weakly energetic337

simulations.338

4. Lagrangianmodel for autocovariance and comparison to observed autocovariance339

a. Theoretical expectation for the Lagrangian autocorrelation340

A theoretical model is developed next in order to predict Lagrangian velocity auto-341

covariances based on Eulerian ones along with flow parameters. The model effectively342

represents distortions, in the Lagrangian frame of reference, of Eulerian tidal fluctuations343

induced by drifters displacements associated with the balanced flow.344

We then validate this model based on the Eulerian and Lagrangian autocovariance345

presented in previous sections.346

We assume that the tidal signal is a modulated monochromatic wave propagating in a347

single direction (say x) and characterized by a frequency ω and wavenumber k:348

ṽ(x,t) =<
{
ṽe(x,t)ei(ωt−k x)

}
, (11)

where ṽe is the complex amplitude, which varies slowly both in time and space. Let’s349

consider a parcel traveling with the flow with trajectory X(t). The autocovariance of ṽ as350

measured along the parcel trajectory is given by:351

C̃L(τ) = 〈ṽ(t + τ)ṽ(t)〉, (12)

=
1
2
<

{〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]
ei

[
ωτ−k(X(t+τ)−X(t))

] 〉}
, (13)

=
1
2
<

{
eiωτ ×

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]
e−ikδX(t,τ)

〉}
, (14)

where we assume that oscillation terms (∝ e±2iωt) are smoothed out by the averaging352

procedure and we have introduced the displacement δX(t,τ) = X(t + τ)− X(t).353

We assume here that the internal tide is not transported by the balanced surface flow354

which is reasonable for low mode internal tides as further discussed in section 5a. In such355
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case, the amplitude of the tide and the displacement are presumably uncorrelated:356

C̃L(τ) =
1
2
<

{
eiωτ ×

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]〉
×

〈
e−ikδX(t,τ)

〉}
, (15)

The second term in the product of (15) right hand-side combines both the spatial and357

temporal variability of the Eulerian tidal envelope in general. As further discussed in358

sect. 4b, horizontal displacements after time intervals comparable to a incoherent time359

scale can be expected to be smaller than the length scale of the complex amplitude of the360

tide, which leads to:361

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]〉
≈ C̃e(τ), (16)

where C̃e(τ) is the fixed point (i.e. zero spatial lag) autocovariance of the tidal amplitude.362

The displacement may be decomposed into a wave high frequency contribution and363

a lower frequency component that may be associated with an independent flow and/or364

wave motions themselves via second order effects (Wagner and Young 2015). The former365

contribution is time periodic with frequency ω and a bounded amplitude equal to the wave366

excursion (Ṽ/ω where Ṽ is the amplitude of the wave velocity) which is small compared367

to 1/k.368

The low frequency displacement is likely to continuously grow on the other hand and369

produces a displacement that ultimately dominates in the exponential of (15) right hand-370

side third term, even for flow amplitudes smaller than tidal ones. We will thus ignore tide371

displacements in the latter exponential. To proceed further, we assume that the balanced372

flow is a stationary Gaussian process, with rms amplitude V̄ (over one direction) and373

exponential decorrelation in time with typical time scale T̄ – consistently with the model374

(9).375

Such model – sometimes referred as an unbiased correlated velocity model in the liter-376

ature (Gurarie et al. 2017) – corresponds to the time-homogeneous Ornstein-Uhlenbeck377
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process. The displacement δX(t,τ) is also a Gaussian process with null mean and variance378

given by (Pope 2015, Chap. 12):379

σ2(τ) ≡ 〈δX(t,τ)2〉 = 2T̄2V̄2
[
τ/T̄ −

(
1− e−τ/T̄

)]
. (17)

Note that the variance of the displacement admits two asymptotic regimes : σ2(τ)→ V̄2τ2
380

for τ� T̄ , and σ2(τ)→ 2V̄2T̄τ for τ� T̄ . The third term in the right hand side of eq. (15)381

may then be computed :382 〈
e−ikδX(t,τ)

〉
=

∫ ∞

−∞

cos(kδX)p(δX)dδX, (18)

=

∫ ∞

−∞

cos(kδX)
e−δX2/(2σ2)

σ
√

2π
dδX (19)

= e−σ
2k2/2 = exp

(
−k2V̄2T̄2

[
τ/T̄ −(1− e−τ/T̄ )

] )
(20)

Combining (16) with (20) into (15) leads to the following expression for the autocovari-383

ance of internal tide in the Lagrangian frame of reference:384

C̃L(τ) = C̃e(τ)cos(ωτ)e−σ
2(τ)k2/2 (21)

= C̃E (τ)e−σ
2(τ)k2/2, (22)

which becomes with the heuristic model of Eulerian tidal autocovariance C̃E (8):385

C̃L(τ) = cos(ωτ)
(
Ṽ2

coh + Ṽ2
inc exp(−τ/T̃E )

)
e−σ

2(τ)k2/2 (23)

The Lagrangian autocorrelation (22) and (23) have no coherent part and decay as fast or386

faster than the Eulerian autocorrelation because of the last term on the right hand-side of387

both equations. This larger incoherence in the Lagrangian frame of reference embodies388

the "apparent" incoherence. Its origin is purely kinematic and associated with drifter389

displacements relative to tidal phase patterns as indicated by the origin of this term in390

(15).391

The parameter kσ(τ) delimits two distinct regimes:392
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• Weak advection, kσ(τ) � 1 : The signature of the tidal signal in the Lagrangian393

frame of reference matches the Eulerian one: C̃L(τ) ∼ C̃E (τ). Lagrangian coherent394

and non-coherent contributions directly reflect Eulerian ones.395

• Strong advection, kσ(τ) � 1 : Lagrangian and Eulerian autocorrelations differ sub-396

stantially. The parameter kV̄T̄ controls the form of the Lagrangian tidal envelope. For397

kV̄T̄ � 1, the exponential decay of the Lagrangian autocorrelation scales is quadratic398

in τ with decay time scale 1/kV̄ : C̃L(τ) ∼ Ṽ2
coh cos(ωτ)× e−k2V̄2τ2 . For kV̄T̄ � 1, the399

balanced flow decorrelation induces a linear exponential decay with decay time scale400

1/k2V̄2T̄ : C̃L(τ) ∼ Ṽ2
coh cos(ωτ)× e−k2V̄2T̄τ.401

These theoretical predictions are in qualitative agreement with the observed decrease of402

Lagrangian coherent amplitude and incoherent time scales in the central area (Fig. 5 and403

6 (a) and (d)).404

b. Comparison of observed autocovariances and predicted Lagrangian ones405

Observed Lagrangian internal tide autocorrelation envelopes (Fig. 7 middle column)406

are assembled from Lagrangian averaged autocovariance fitted parameters and Eq.8 (with407

the cosine term omitted and normalization by the value at lag 0). These envelopes408

are compared to predicted Lagrangian envelopes (Fig. 7 right column) estimated from409

observed Eulerian autocovariances (assembled similarly as Lagrangian ones and shown410

on Fig. 7 left column) and Eq. (22)411

Observed Eulerian autocorrelation envelopes exhibit decay rates that are increasingly412

faster in the northwards direction for all three simulations considered (S0, S2 and S4; shown413

in Fig. 7, top, middle and bottom rows respectively). This reflects the loss of coherence414

of the internal tide as it propagates northwards.415

Observed Lagrangian autocorrelation envelopes have markedly different structure with416

a well-defined central area characterized by a rapid (couple of days timescale) fall-off417
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compared to Eulerian envelopes. The width of this area of strong apparent incoherence418

is increasing with the balanced flow strength. Outside of this area, the south and north419

autocorrelation decay are slower and hence closer to Eulerian ones with a more rapid420

decay in the north compared to the south. Predicted Lagrangian envelopes reproduce the421

rapid envelope fall-off in the center, the north/south contrast, as well as the sensitivity of422

the envelopes to balanced flow strength. We conclude the model proposed in order to423

relate Eulerian and Lagrangian tidal autocovariances is thus consistent with observations.424

According to Eq.(22), Lagrangian incoherence can be governed either by Eulerian inco-425

herence, or by the distortion of tidal signals induced by drifter displacements (i.e. apparent426

incoherence). The theoretical model indicates that the three following parameters provide427

the information necessary to interpret the nature of the Lagrangian incoherence: the ratio428

of Eulerian incoherent to coherent amplitude Ṽinc/Ṽcoh (Fig. 8a); the Lagrangian to Eu-429

lerian incoherent timescales rE = T̃L/T̃E (Fig. 8b); and ra,inc = k2σ2(T̃L) (Fig. 8c) which430

represents the apparent incoherence. If the model is exact and parameters are correctly431

estimated, at least one of the last two parameters should be about unity. These param-432

eters are leveraged next in order to determine the regimes encountered in the numerical433

simulations and strengthen our interpretations.434

In the southern area, the ratio of Eulerian incoherent to coherent amplitudes (Fig. 8a) is435

smaller than unity for all simulations : internal tides are coherent in the Eulerian frame of436

reference. The moderate values of the apparent incoherence parameter (0.2 < ra,inc < 0.4)437

suggest float displacement do induce distortions of tidal signals and apparent incoherence.438

We speculate the values ra,inc are not closer to unity because of the inappropriate form of439

the decay employed in the fit (e.g. linear exponential decay vs quadratic), a point which is440

further discussed in section 4b.441

In the central area, the ratio of Eulerian incoherent to coherent amplitudes increases but442

remains moderate (i.e. <1). The apparent incoherence parameter is maximum with values443
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up to unity. This coincides with values of rE smaller than 0.3 which equivalently states444

that the Lagrangian incoherence timescale is a fraction of the Eulerian one. This regime445

is one of strong apparent incoherence.446

In the north, the ratio of Eulerian incoherent to coherent amplitudes is larger than one for447

S2, S3 and S4, i.e. the tide is predominantly incoherent in the Eulerian frame of reference.448

For least energetic simulations (S0 and S1), the tide is predominantly coherent but with449

some incoherent contribution. The apparent incoherence term exhibits moderate to small450

values while the ratio rE is close to unity. We interpret this situation has one where451

the both Eulerian incoherence and apparent incoherence both contribute to the observed452

Lagrangian incoherence.453

5. Discussion454

a. On the nature of internal tide propagation in the presence of a background flow455

The assumption of no transport of the internal tide by the surface flow used to derive456

(15) is now discussed. Low mode internal tides have by definition large vertical scales –457

similar to that of the background flow. Advection by the balanced flow is of particular458

importance for discussing the Eulerian/Lagrangian distortion, even though it does not459

fully capture the interaction between the balanced flow and the internal tide (Dunphy et al.460

2017; Savage et al. 2020). A vertical mode expansion of equations of motions linearized461

around the balanced background flow shows that advection of the internal tide mode is462

driven by a non-trivial weighted average of the background flow. This effective advection463

is expressed as H−1
∫ 0
−H φ

2
nUdz (Kelly and Lermusiaux 2016), where φn is the standard464

pressure mode for an internal tide with vertical mode number n and U is the balanced flow465

(see also Duda et al. 2018, for a more technical approach). Thus, for a surface intensified466

background flow, the flow advecting the drifter (at the surface) and the one advecting the467

21



internal tide mode is different, explaining why the Lagrangian observer renders a distorted468

view of the internal tide signal.469

For the simulation with moderate jet intensity S2, for instance, the mode 1 effective470

advection velocity (computed, but not shown) is of order 0.2 ms−1 at its maximum, while471

the surface velocity is typically greater than 1 ms−1: the Eulerian distortion, driven by the472

effective advection velocity, is therefore smaller than the Lagrangian distortion, driven by473

the difference between this effective advection and the surface velocity transporting the474

drifter.475

For small scale internal tides on the other hand, ray theory can be used to describe476

their propagation through the background flow (Broutman et al. 2004). This approach477

shows that wave packets are advected by the local flow, which is associated with a Doppler478

shifting of the Eulerian frequency: ω = ω̂+ k ·U, where ω and ω̂ are respectively the479

tide absolute (or Eulerian) and intrinsic (as measured in a frame of reference moving480

with the balanced flow) frequencies and k is the wave vector. Ignoring advection of the481

drifter by the tidal current, the signal measured by the drifter coincides with the tidal482

field in the frame co-moving with the mean flow with least distortion in the Lagrangian483

frame of reference. This situation is opposite to the configuration investigated here, as484

Lagrangian autocorrelation exhibits faster decrease with time lag compared to Eulerian485

auto-correlation, and the theoretical model proposed here would obviously not be relevant.486

In a realistic configuration, the range of validity of each of these two regimes (e.g. small487

vs large scale internal tide) remains to be quantified.488

b. On the internal tide spatial incoherence489

Another assumption of the theoretical model required to derive (16) is that spatial vari-490

ations of the complex tidal amplitude may be neglected. In reality the amplitude of the491

internal tide propagates with the internal tide group speed, which results in spatial variabil-492
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ity if a temporal one is admitted. A reasonable estimate of the associated horizontal length493

scale is T̃E cg. A sufficient condition for (16) to hold is thus that the drifter displacement494

after a decorrelation time scale T̃L remains smaller than the complex amplitude horizontal495

length scale:496

δX(T̃L) � T̃E cg . (24)

An upper bound for this displacement is T̃L max(V̄,Ṽ), which enables to rewrite the497

preceding condition as:498

T̃L

T̃E
�

cg
max(V̄,Ṽ)

. (25)

We believe this condition is met in general based on 1/ typical values for cg (around499

2 m/s for the first mode semi-diurnal internal tide at mid-latitude (Zhao 2017)) and500

flow amplitude, 2/ observations that T̃L ≤ T̃E , this inequality being self-consistent with501

theoretical model predictions and 3/ the observation that stronger flows and thus weaker502

cg/V̄ concur with smaller T̃L/T̃E ratios.503

Spatial inhomogeneities of the tidal amplitude could, at the cost of added complexity,504

potentially be included in the model without the approximation (16). This would require505

combining information about horizontal displacement distribution and the tidal amplitude506

spatial-temporal autocorrelation. However, diagnostics of spatio-temporal autocorrelation507

of the internal tide field have never been reported – to our knowledge.508

c. Autocorrelation models and coherent/incoherent decomposition509

Heuristic choices have been made regarding the shape of the internal tide and balanced510

motion autocorrelation. Limits to these choices are visible on Figure 4c for balanced511

motions and are speculated to affect estimates of internal tide incoherent time scales in512

the southern part of the domain.513

At earlier stage of this work, we chose an envelope for the internal tide autocorrelation514

that included a single exponential decaying term instead of the sum of coherent/incoherent515
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contributions. We eventually abandoned this choice, because it does not naturally lead516

to a decomposition of the signal into coherent/non-coherent contributions, and because517

it resulted in overly large time scales in coherent cases (>1000 days). One may also fit518

the more general form Eq.(23) to Lagrangian autocorrelations, for example, and evaluate519

its relevance compared to the single linear exponential form. This would add one more520

parameter to estimate, however, and would require to determine whether this more general521

form leads to a significant an improvement whichwe felt was a study on its own. Therefore,522

we did not attempt to do this in favour of a more qualitative assessment of the theory.523

Determining what form is more appropriate for Eulerian/Lagrangian low-524

frequency/internal tide autocorrelations is a study on its own that will require more525

advanced statistical tools (Sykulski et al. 2016; Gurarie et al. 2017) and that we be-526

lieve may be more relevant to perform in realistic settings (e.g. observation or numerical527

simulations). Sykulski et al. (2016) proposes a more general alternative with the Matérn528

process whichmay help to more accurately modeling statistically the low frequency signal.529

6. Conclusion530

This study investigated, in idealized numerical simulations, the signature of internal531

tides on surface velocities via the computation of averaged autocorrelations and fits of532

these autocorrelations on heuristic models. This exercise was performed on both Eulerian533

and Lagrangian time series which enabled to compare and contrast internal tide signatures534

in both frames of reference. The central result of this study is that displacements of drifters535

induced by low-frequency motions produce distortions of the tide signals in Lagrangian536

time series which results in larger levels of incoherence compared to Eulerian ones. We537

coined this process "apparent incoherence". Sensitivity experiments enabled to verify538

that this apparent incoherence is increasing with balanced-motion intensity. A theoretical539
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model, relating Lagrangian averaged autocovariances to Eulerian ones and accounting for540

apparent incoherence, was derived and validated against observed estimates.541

These results highlight the relevance of GDP data for the mapping of global internal tide542

properties. More specifically, we were able to recover the total internal tide variance from543

drifter velocity averaged autocorrelations. Pending validation in more realistic conditions,544

the knowledge of the distribution of internal tide surface kinetic energy that could be545

inferred from drifter tracks would be a substantial constraint for the mapping of internal546

tides. Our study suggests that the identification of (Eulerian) coherent versus incoherent547

contributions from drifter data may be complicated because of apparent incoherence, as548

anticipated in earlier studies (Zaron and Elipot 2020). This may still be feasible in areas549

where incoherence is significant and rapid and/or where low-frequency variability is weak.550

The theoretical model developed may provide guidance in order to decide where this may551

occur in the ocean.552

Improved mapping of internal tides are directly relevant to the future analysis of SWOT553

data, to the validation of emerging high resolution global numerical simulations resolving554

tides (Arbic et al. 2018; Yu et al. 2019), as well as to our fundamental understanding of555

internal tide lifecycle.556

More advanced and likely efficient statistical tools may be required before tackling557

realistic configurations. Substantial difficulties are associated with the superposition of558

motions in the real ocean (neighboring tidal harmonics, near-inertial variability) and with559

the effective statistical stationarity of these motions. Parametric estimations based on560

maximum likelihood theory offer promising perspectives whether formulated in spectral561

space (Sykulski et al. 2019) or temporal space (Fleming et al. 2014). Filtering based562

approaches taking into account the bivariate nature of the velocity signal may also be563

relevant Lilly and Olhede (2009). These tools may help identify which statistical models564

are better suited to describe tidal and low-frequency variability as well as resolve the565
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temporal evolution of the parameters (e.g. amplitude, frequency, bandwidths) describing566

these processes, which would be a substantial improvement over descriptions of the567

averaged variability.568

The estimation of internal tides properties in a realistic set-up will be carried out569

using MITgcm simulation LLC4320 using Eulerian outputs of the simulation as well as570

Lagrangian simulated trajectories. Further analysis should enable us to estimate if our571

results hold in realistic configuration.572
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Figure 1. (a) : Mean field of zonal (blue line), meridional (orange line), total (green) and low-passed

(red) velocity amplitudes ; (b) : Zonal velocity at t=750 days (color) with positions of 1/4 of the drifters

at the same time represented by black dots. (c) : Averaged temporally low-passed kinetic energy

and vertical structure of first baroclinic mode at the center of the numerical domain, x'500km and

y'1450km.
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Figure 2. Trajectories of 3 drifters in three different area of the domain (north (a and b), central (c

and d) and south (e and f)) over a period of 40 days and corresponding time series. Left column :

Trajectory of each the drifter (black line) with the meridional velocity in the background. The red circle

represents the position of the drifter at initial time, t0, and the blue diamond the position at mid period.

A black straight line is plotted representing a quarter of the wavelength. Right column : Meridional

velocity time series along the drifter trajectory in red and at a fixed position (blue diamond in the left

figure) in blue.
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Figure 3. Autocorrelation of meridional velocity v computed from Lagrangian outputs (a) and

Eulerian one (b). The y-axis corresponds to the y bins in which the autocorrelation have been averaged.

The x-axis is the time lag. Horizontal black lines indicate the three latitudes of interest discussed in

the paper (see Figs. 2 and 4)

734

735

736

737

34



Timelag (days)
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C v
v

(a)
Lagrangian

Lagrangian : Data
Lagrangian : Fit
TL 13.89 TL 40.60
Vinc, L 0.084 VL 0.012
Vcoh, L 0.041

Lagrangian : Data
Lagrangian : Fit
TL 13.89 TL 40.60
Vinc, L 0.084 VL 0.012
Vcoh, L 0.041

Timelag (days)

C v
v

(b)
Eulerian

Eulerian : Data
Eulerian : Fit
TE 12.86 TE 45.33
Vinc, E 0.078 VE 0.016
Vcoh, E 0.056

Eulerian : Data
Eulerian : Fit
TE 12.86 TE 45.33
Vinc, E 0.078 VE 0.016
Vcoh, E 0.056

Timelag (days)
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C v
v

(c)

Lagrangian : Data
Lagrangian : Fit
TL 1.00 TL 8.21
Vinc, L 0.080 VL 0.327
Vcoh, L 0.004

Lagrangian : Data
Lagrangian : Fit
TL 1.00 TL 8.21
Vinc, L 0.080 VL 0.327
Vcoh, L 0.004

Timelag (days)

C v
v

(d)

Eulerian : Data
Eulerian : Fit
TE 13.43 TE 27.10
Vinc, E 0.044 VE 0.372
Vcoh, E 0.063

Eulerian : Data
Eulerian : Fit
TE 13.43 TE 27.10
Vinc, E 0.044 VE 0.372
Vcoh, E 0.063

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timelag (days)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C v
v

(e)

Lagrangian : Data
Lagrangian : Fit
TL 13.50 TL 52.04
Vinc, L 0.044 VL 0.014
Vcoh, L 0.045

Lagrangian : Data
Lagrangian : Fit
TL 13.50 TL 52.04
Vinc, L 0.044 VL 0.014
Vcoh, L 0.045

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timelag (days)

C v
v

(f)

Eulerian : Data
Eulerian : Fit
TE 6.20 TE 50.65
Vinc, E 0.011 VE 0.019
Vcoh, E 0.059

Eulerian : Data
Eulerian : Fit
TE 6.20 TE 50.65
Vinc, E 0.011 VE 0.019
Vcoh, E 0.059

Figure 4. Autocorrelation of meridional velocity at fixed bin in three different area : north (a and

b), center (c and d) and south (e and f) of the domain). The Eulerian (right column) and Lagrangian

(left column) autocorrelation derived from our data are represented respectively in blue and red.

The autocorrelation corresponding to the best fit of our theoretical model (eq.(7)) with the averaged

autocovariance are plotted in black dashed lines. Corresponding values of the fitted parameters are

indicated in each panel.
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Figure 5. Estimated eulerian (blue lines) and Lagrangian (red lines) incoherence timescale, T̃ (a),

decorrelation of the balanced flow, T (b) and tidal and balanced components amplitudes, Ṽinc (c), Ṽcoh

(d) and V (e). The estimates are found by fitting the theoretical model (Eq.(10)) to the autocorrelation

of v. Error due to sampling are computed via bootstrap and represented by the gray area.
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Figure 6. Estimated parameters for five simulations. (a) Lagrangian and Eulerian internal tides

incoherence timescales, T̃ . (c), (d) and (e) : Internal tide incoherent and coherent velocity amplitudes,

Ṽinc and Ṽcoh and total tidal amplitude,
√

Ṽ2
inc + Ṽ2

coh
. (b) balanced flow amplitude, V is also repre-

sented. Incoherence timescales lower than 1 day and larger than 40 days were not allowed by our fitting

procedure.

748

749

750

751

752

37



Figure 7. Envelope of the internal tide autocorrelation functions for 3 simulations (corresponding to

rows). From top to bottom the balanced flow’s strength increases. The envelope of the fitted Eulerian

(left column) and Lagrangian (middle column) autocorrelation as well as the predicted Lagrangian

autocorrelation (right column) are plotted.
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Figure 8. Level of incoherence, ratio of Eulerian incoherent to coherent amplitudes (a) Ṽinc/Ṽcoh and

(b) rE = T̃L/T̃E as well as (c) the term in the exponential (Eq. (22)), ra,inc = k2σ2(T̃L), are represented.
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