References
Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D.
Scott (2002), The Atmospheric Bridge: The Influence of ENSO
Teleconnections on Air–Sea Interaction over the Global Oceans. J.
Climate, 15 ,
2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
Armour, K., J. Marshall, J. Scott, et al. (2016), Southern Ocean warming
delayed by circumpolar upwelling and equatorward transport, Nature
Geosci, 9, 549–554, https://doi.org/10.1038/ngeo2731
Barnes, E. A., and L. M. Polvani (2015), CMIP5 Projections of Arctic
Amplification, of the North American / North Atlantic circulation, and
of their relationship, Journal of Climate, 28, 5254-5271,
https://doi.org/10.1175/JCLI-D-14-00589.1
Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms
(2009), Increase in Agulhas leakage due to poleward shift in the
southern hemisphere westerlies, Nature, 462, 495-498,
https://doi.org/10.1038/nature08519
Biastoch, A., D. V. Sein, J. V. Durgadoo, Q. Wang, and S. Danilov
(2018), Simulating the Agulhas system in global ocean models – nesting
vs. multi-resolution unstructured meshes, Ocean Modelling, 121,117-131, https://doi.org/10.1016/j.ocemod.2017.12.002
Bintanja, R., et al. (2013), Important role for ocean warming and
increased ice-shelf melt in Antarctic sea-ice expansion, Nature
Geoscience, 6, 376-379, https://doi.org/10.1038/ngeo1767
Bintanja, R., and F. Selten (2014), Future increases in Arctic
precipitation linked to local evaporation and sea-ice retreat,Nature 509 , 479–482,
https://doi.org/10.1038/nature13259.
Blackport, R., and P. J. Kushner (2017), Isolating the Atmospheric
Circulation Response to Arctic Sea Ice Loss in the Coupled Climate
System, Journal of Climate, 30, 2163-2185,
https://doi.org/10.1175/JCLI-D-16-0257.1
Cai, W., A. Santoso, G. Wang, G. et al. (2015), ENSO and greenhouse
warming, Nature Clim Change, 5, 849–859,
https://doi.org/10.1038/nclimate2743
Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J.
Vavrus (2016), Sinuosity of midlatitude atmospheric flow in a warming
world. Geophysical Research Letters, 43, 8259-8268,
https://doi.org/10.1002/2016GL070309
Chemke, R., L. Zanna, and L. M. Polvani (2020), Identifying a human
signal in the North Atlantic warming hole, Nature Communications,
11, 1540, https://doi.org/10.1038/s41467-020-15285-x
Chen, G., P. Zhang, and J. Lu (2020), Sensitivity of the Latitude of the
Westerly Jet Stream to Climate Forcing, Geophysical Research
Letters, 47, https://doi.org/10.1029/2019GL086563
cmip6-cmor-tableshttps://github.com/PCMDI/cmip6-cmor-tablesaccess date 2019/12/19
Cheng, W., J. C. H. Chiang, and D. Zhang (2013), Atlantic Meridional
Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical
Simulations, J. Climate, 26,7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1
Copernicus Climate Change Service (C3S) (2017), ERA5: Fifth generation
of ECMWF atmospheric reanalyses of the global climate, Copernicus
Climate Change Service Climate Data Store
(CDS), 29.07.2020 , https://cds.climate.copernicus.eu/cdsapp#!/home
Curry, B., C. M. Lee, B. Petrie, R. E. Moritz, and R. Kwok (2014)
Multiyear Volume, Liquid Freshwater, and Sea Ice Transports through
Davis Strait, 2004–10, J. Phys. Oceanogr., 44, 1244-1266.
Danilov, S., G. Kivman, J. Schröter (2004), A finite-element ocean
model: principles and evaluation, Ocean Model, 6 , 125–150.
Ding, Q., A. Schweiger, M. L’Heureux, et al. (2017), Influence of
high-latitude atmospheric circulation changes on summertime Arctic sea
ice, Nature Clim Change, 7, 289–295,
https://doi.org/10.1038/nclimate3241
Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti (2014),
Shortwave and longwave radiative contributions to global warming under
increasing CO2, Proceedings of the National Academy of Sciences,
111, 16700-16705
Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K.
Chereskin (2016), Mean Antarctic circumpolar current transport measured
in Drake passage, Geophys. Res. Lett., 43, 11760-11767
England, M., A. Jahn, and L. Polvani (2019), Nonuniform contribution of
internal variability to recent Arctic sea ice loss, Journal of
Climate , 32, 4039–4053,
https://doi.org/10.1175/JCLI-D-18-0864.1
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, K. E. Taylor (2016), Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel
(2017), updated daily. Sea Ice Index, Version 3.0. Boulder, Colorado
USA. NSIDC: National Snow and Ice Data Center,
https://doi.org/10.7265/N5K072F8. [02.04.2020].
Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P.
Krasting, and M. Winton (2015), Dominance of the Southern Ocean in
Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J.
Climate, 28 ,
862–886, https://doi.org/10.1175/JCLI-D-14-00117.1
GISS (2019), GISS surface temperature analysis GISTEMP v4. Available
online athttps://data.giss.nasa.gov/gistemp/.
Golaz, J.-C., et al. (2019), The DOE E3SM Coupled Model Version 1:
Overview and Evaluation at Standard Resolution, Journal of
Advances in Modeling Earth Systems, 11, 2089-2129,
https://doi.org/10.1029/2018MS001603
Good, S. A., M. J. Martin and N. A. Rayner (2013), EN4: quality
controlled ocean temperature and salinity profiles and monthly objective
analyses with uncertainty estimates, Journal of Geophysical
Research: Oceans, 118, 6704-6716,
https://doi.org/10.1002/2013JC009067
Gordon, A., J. Sprintall, H. van Aken, D. Susanto, S. Wijffels, R.
Molcard, A. Ffield, W. Pranowo, and S. Wirasantosa (2010), The
Indonesian throughflow during 2004–2006 as observed by the INSTANT
program, Dynam. Atmos. Oceans, 50, 115-128,
https://doi.org/10.1016/j.dynatmoce.2009.12.002
Gregory, J. M., W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R.
B. Thorpe, J. A. Lowe, T. C. Johns, K. D. Williams (2004), A new method
for diagnosing radiative forcing and climate sensitivity,Geophysical Research Letters, 31, L03205,
https://doi.org/10.1029/2003GL018747
Griffies, S. M., G. Danabasoglu, P. J. Durack, A. J. Adcroft, V. Balaji,
C. W. Böning, E. P. Chassignet, E. Curchitser, J. Deshayes, H. Drange,
B. Fox-Kemper, P. J. Gleckler, J. M. Gregory, H. Haak, R. W. Hallberg,
P. Heimbach, H. T. Hewitt, D. M. Holland, T. Ilyina, J. H. Jungclaus, Y.
Komuro, J. P. Krasting, W. G. Large, S. J. Marsland, S. Masina, T. J.
McDougall, A. J. G. Nurser, J. C. Orr, A. Pirani, F. Qiao, R. J.
Stouffer, K. E. Taylor, A. M. Treguier, H. Tsujino, P. Uotila, M.
Valdivieso, Q. Wang, M. Winton, and S. G. Yeager (2016), OMIP
contribution to CMIP6: experimental and diagnostic protocol for the
physical component of the Ocean Model Intercomparison Project.Geosci. Model Dev., 9, 3231–3296,
https://doi.org/10.5194/gmd-9-3231-2016
Grosfeld, K., R. Treffeisen, J. Asseng, A. Bartsch, B. Bräuer, B.
Fritzsch, R. Gerdes, S. Hendricks, W. Hiller, G. Heygster, T. Krumpen,
P. Lemke, C. Melsheimer, M. Nicolaus, R. Ricker, and M. Weigelt (2016),
Online sea-ice knowledge and data platform
<www.meereisportal.de>, Polarforschung,
Bremerhaven, Alfred Wegener Institute for Polar and Marine Research &
German Society of Polar Research, 85 (2), 143-155,
https://doi.org/10.2312/polfor.2016.011
Haarsma R. J., M. J. Roberts, P. L. Vidale, C. A. Senior, A. Bellucci,
Q. Bao, P. Chang, S. Corti, N. S. Fuckar, V. Guemas, J. von Hardenberg,
W. Hazeleger, C. Kodama, T. Koenigk, L. R. Leung, J. Lu, J.-J. Luo, J.
Mao, M. S. Mizielinski, R. Mizuta, P. Nobre, M. Satoh, E. Scoccimarro,
T. Semmler, J. Small, and J.-S. von Storch (2016), High Resolution Model
Intercomparison Project (HighResMIP v1.0) for CMIP6, Geoscientific
Model Development, 9, 4185-4208,
https://doi.org/10.5194/gmd-9-4185-2016
Ham, Y.‐G. (2017), A reduction in the asymmetry of ENSO amplitude due to
global warming: The role of atmospheric feedback, Geophys. Res.
Lett., 44, 8576–8584,
https://doi.org/10.1002/2017GL074842
Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010),
Global surface
temperature change, Rev. Geophys., 48, RG4004,
https://doi.org/10.1029/2010RG000345
Hegewald, J. (2019), seamore - cmorize simulation data to a given CMIP6
data request, https://doi.org/10.5281/zenodo.3585711
Hersbach, H., et al. (2020), The ERA5 global reanalysis, Quarterly
Journal of the Royal Meteorological Society,https://doi.org/10.1002/qj.3803
Hirschi, J. J.‐M., B. Barnier, C. Böning, A. Biastoch, A. T. Blaker, A.
Coward, et al. (2020), The Atlantic meridional overturning circulation
in high‐resolution models. Journal of Geophysical Research:
Oceans , 125, e2019JC015522,
https://doi.org/10.1029/2019JC015522
Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu (2009), Improving
the global precipitation record: GPCP version 2.1. Geophysical
Research Letters 36, L17808
IPCC (2013), Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin,
G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia,
V. Bex and P. M. Midgley (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC (2014), Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K.
Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Juckes, M., K. E. Taylor, P. J. Durack, B. Lawrence, M. S. Mizielinski,
A. Pamment, J. Y. Peterschmitt, M. Rixen, and S. Sénési (2020), The
CMIP6 data request (DREQ, version 01.00.31), Geosci. Model Dev.,
13, 201-224, https://doi.org/10.5194/gmd-13-201-2020
Jung, T., M. J. Miller, T. N. Palmer, P. Towers, N. Wedi, D.
Achuthavarier, J. M. Adams, E. L. Altshuler, B. A. Cash, J. L. Kinter
III, L. Marx, C. Stan, and K. I. Hodges (2012), High-resolution global
climate simulations with the ECMWF model in Project Athena: Experimental
design, model climate, and seasonal forecast skill, J. Climate ,25, 3155–3172,
https://doi.org/10.1175/JCLI-D-11-00265.1
Johnson, G. C., J. M. Lyman, and N. G. Loeb (2016), Improving estimates
of Earth’s energy imbalance, Nat Clim Change, 6 ,
639–640, https://doi.org/10.1038/nclimate3043
Kageyama, M., P. Braconnot, S. P. Harrison, A. M. Haywood, J. H.
Jungclaus, B. L. Otto-Bliesner, J.-Y. Peterschmitt, A. Abe-Ouchi, S.
Albani, P. J. Bartlein, C. Brierley, M. Crucifix, A. Dolan, L.
Fernandez-Donado, H. Fischer, P. O. Hopcroft, R. F. Ivanovic, F.
Lambert, D. J. Lunt, N. M. Mahowald, W. R. Peltier, S. J. Phipps, D. M.
Roche, G. A. Schmidt, L. Tarasov, P. J. Valdes, Q. Zhang, and T. Zhou
(2018), The PMIP4 contribution to CMIP6 - Part 1: Overview and
over-arching analysis plan. Geosci. Model Dev., 11, 1033–1057,
https://doi.org/10.5194/gmd-11-1033-2018
Kay, J. E., M. M. Holland, and A. Jahn (2011), Inter-annual to
multi-decadal Arctic sea ice trends in a warming world.Geophysical Research Letters, 38, L15708,
https://doi.org/10.1029/2011GL048008
Keil, P., Mauritsen, T., Jungclaus, J. et al. (2020), Multiple
drivers of the North Atlantic warming hole, Nat. Clim.
Chang., 10, 667–671,
https://doi.org/10.1038/s41558-020-0819-8
Knutti, R., D. Masson, and A. Gettelman (2013), Climate model genealogy:
Generation CMIP5 and how we got there, Geophys. Res. Lett., 40,1194– 1199, https://doi.org/10.1002/grl.50256
Korn, P. (2017), Formulation of an Unstructured Grid Model for Global
Ocean Dynamics, Journal of Computational Physics, 339, 525-552,
https://doi.org/10.1016/j.jcp.2017.03.009
Large, W. G., J. C. McWilliams, S. C. Doney (1994), Oceanic vertical
mixing: a review and a model with a nonlocal boundary layer
parameterization. Rev Geophys, 32, 363–403
Lenderink, G., A. Buishand, and W. van Deursen (2007), Estimates of
future discharges of the river Rhine using two scenario methodologies:
direct versus delta approach. Hydrol. Earth Syst. Sci., 11,1145-1159
Lenssen, N., G. Schmidt, J. Hansen, M. Menne,A. Persin,R. Ruedy, and D.
Zyss (2019),
Improvements in the
GISTEMP uncertainty model, J. Geophys. Res. Atmos., 124,6307-6326, https://doi.org/10.1029/2018JD029522
Loeb N. G., S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. N.
Norris, and X. Huang (2012), Advances in understanding top-of-atmosphere
radiation variability from satellite observations, Surv Geophys,
33 , 359-385
Lyu, K., X. Zhang, and J. A. Church (2020), Regional Dynamic Sea Level
Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future
Projections, and Their Linkages, J. Climate , 33,6377–6398, https://doi.org/10.1175/JCLI-D-19-1029.1
Masson, D., and R. Knutti, (2011), Climate model genealogy,Geophys. Res. Lett., 38, L08703,
https://doi.org/10.1029/2011GL046864
McDonagh, E. L., B. A. King, H. L. Bryden, P. Courtois, Z. Szuts, M.
Baringer, S. A. Cunningham, C. Atkinson, and G. McCarthy (2015),
Continuous estimate of Atlantic Oceanic freshwater flux at 26.5 N,J. Climate, 28, 8888-8906,
https://doi.org/10.1175/JCLI-D-14-00519.1
Mauritsen, T., et al. (2012), Tuning the climate of a global model,J. Adv. Model. Earth Syst., 4, M00A01,
https://doi.org/10.1029/2012MS000154
Mauritsen, T., et al. (2019), Developments in the MPI‐M Earth System
Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2,J. Adv. Model. Earth Syst.,https://doi.org/10.1029/2018MS001400
Meehl,
G. A., C. A. Senior, V. Eyring, G. Flato, J.F. Lamarque, R. J.,
Stouffer, K. E. Taylor, and M. Schlund, (2020), Context for interpreting
equilibrium climate sensitivity and transient climate response from the
CMIP6 Earth system models, Science Advances, 6, 26,
https://doi.org/10.1126/sciadv.aba1981
Meinshausen, M., Z. Nicholls, J. Lewis, M. J. Gidden, E. Vogel, M.
Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, J. G. Canadell, J.
S. Daniel, A. John, P. Krummel, G. Luderer, N. Meinshausen, S. A.
Montzka, P. Rayner, S. Reimann, S. J. Smith, M. van den Berg, G. J. M.
Velders, M. Vollmer, and H. J. Wang (2019), The SSP greenhouse gas
concentrations and their extensions to 2500, Geosci. Model Dev.
Discuss., https://doi.org/10.5194/gmd-2019-222
Menary, M. B., and R. A. Wood (2018), An anatomy of the projected North
Atlantic warming hole in CMIP5 models, Clim Dyn, 50, 3063–3080,
https://doi.org/10.1007/s00382-017-3793-8
Meredith, M., P. L. Woodworth, T. K. Chereskin, D. P. Marshall, L. C.
Allison, G. R. Bigg, K. Donohue, K. J. Heywood, C. W. Hughes, A.
Hibbert, A. M. Hogg, H. L. Johnson, L. Jullion, B. A. King, H. Leach,
Y.-D. Lenn, M. A. Morales-Maqueda, D. R. Munday, A. C. Naveira-Garabato,
C. Provost, J.-B. Sallée, and J. Sprintall (2011), Sustained monitoring
of the Southern Ocean at Drake Passage: past achievements and future
priorities, Rev. Geophys., 49, L05603,
https://doi.org/10.1029/2010RG000348
Müller,
W. A.,
J.
H. Jungclaus,
T.
Mauritsen,
J.
Baehr,
M.
Bittner,
R.
Budich,
F.
Bunzel,
M.
Esch,
R.
Ghosh,
H.
Haak,
T.
Ilyina,
T.
Kleine,
L.
Kornblueh,
H.
Li,
K.
Modali,
D.
Notz,
H.
Pohlmann,
E.
Roeckner,
I.
Stemmler,
F.
Tian, and
J.
Marotzke (2018), A Higher‐resolution Version of the Max Planck
Institute Earth System Model (MPI‐ESM1.2‐HR), Journal of Advances
in Modeling Earth Systems, https://doi.org/10.1029/2017MS001217
O’Neill B.C., C. Tebaldi, D. P. van Vuuren, V. Eyring, P.
Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J.-F. Lamarque, J.
Lowe, G. A. Meehl, R. Moss, K. Riahi, and B. M. Sanderson (2016), The
Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Geosci. Model Dev., 9, 3461–3482,
https://doi.org/10.5194/gmd-9-3461-2016
Notz, D., and SIMIP community (2020), Arctic Sea Ice in CMIP6.Geophysical Research Letters,https://doi.org/10.1029/2019GL086749
Petersen, M. R., X. S. Asay‐Davis, A. S. Berres, Q. Chen, N. Feige, M.
J. Hoffman, et al. (2019), An evaluation of the ocean and sea ice
climate of E3SM using MPAS and interannual CORE‐II forcing.
Journal of Advances in Modeling Earth Systems, 11, 1438– 1458,
https://doi.org/10.1029/2018MS001373
Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J.
C. Riedi, and R. A. Frey (2003), The MODIS cloud products: algorithms
and examples from terra, IEEE Trans Geosci Remote Sens, 41,459-473
Rackow, T., H. F. Goessling, T. Jung, D. Sidorenko, T. Semmler, D.
Barbi, and D. Handorf (2018), Towards multi-resolution global climate
modeling with ECHAM6-FESOM. Part II: climate variability, Climate
Dynamics 50, 2369, https://doi.org/10.1007/s00382-016-3192-6
Rackow, T., and S. Juricke (2020), Flow‐dependent stochastic coupling
for climate models with high ocean‐to‐atmosphere resolution ratio.Q J R Meteorol Soc., 146, 284-300,
https://doi.org/10.1002/qj.3674
Rackow T., D. V. Sein, T. Semmler, S. Danilov, N. V. Koldunov, D.
Sidorenko, Y. Wang, T. Jung (2019), Sensitivity of deep ocean biases to
horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0,Geosci. Model Dev., 12, 2635–2656,
https://doi.org/10.5194/gmd-12-2635-2019
Rackow, T. , D. Sidorenko, H. F. Goessling, A. Timmermann, and T. Jung
(2014), Modeling ENSO with ECHAM6-FESOM: Influence of the ocean
resolution, Ocean Sciences Meeting 2014, Hawaii Convention
Center, Honolulu, USA, 23 February 2014 - 28 February 2014,
https://doi.org/10.13140/2.1.2537.9209
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, A. Kaplan (2003), Global analyses
of sea surface temperature, sea ice, and night marine air temperature
since the late nineteenth century, J. Geophys. Res., 108 (D14),4407, https://doi.org/10.1029/2002JD002670
Reichler, T., J. Kim (2008), How well do coupled models simulate today’s
climate? Bull Am Meteorol Soc 89, 303–311
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C.
Haas (2017), A weekly Arctic sea-ice thickness data record from merged
CryoSat-2 and SMOS satellite data. The Cryosphere, 11,1607–1623, https://doi.org/10.5194/tc-11-1607-2017
Ridderinkhof, H., P. van der Werf, J. Ullgren, H. van Aken, P. van
Leeuwen, and W. de Ruijter (2010), Seasonal and interannual variability
in the Mozambique Channel from moored current observations, J.
Geophys. Res., 115, C06010, https://doi.org/10.1029/2009JC005619
Roach, A., K. Aagard, C. Pease, S. Salo, T. Weingartner, V. Pavlov, and
M. Kulakov (1995), Direct measurements of transport and water properties
through Bering Strait, J. Geophys. Res., 100, 18443-18457.
Roach, L. A.,
J.
Dörr, C. R.
Holmes,
F.
Massonnet,
E.
W. Blockley,
D.
Notz,
T.
Rackow,
M.
N. Raphael,
S.
P. O’Farrell,
D.
A. Bailey, and
C.
M. Bitz (2020), Antarctic Sea Ice Area in CMIP6, Geophysical
Research Letters, 47, e2019GL086729,
https://doi.org/10.1029/2019GL086729
Schauer, U., A. Beszczynska Moeller, W. Walczowski, E. Fahrbach, J.
Piechura, and E. Hansen (2008), Variation of measured heat flow through
the Fram Strait between 1997 and 2006, in: Arctic-Subarctic Ocean
Fluxes: Defining the Role of the Northern Seas in Climate, edited by:
Dickson, R., Springer, 65-85.
Sein, D. V., S. Danilov, A. Biastoch, J. V. Durgadoo, D. Sidorenko, S.
Harig, and Q. Wang (2016), Designing variable ocean model resolution
based on the observed ocean variability, Journal of Advances in
Modeling Earth Systems, 8, 904-916.
Sein, D. V., N. V. Koldunov, S. Danilov, Q. Wang, D. Sidorenko, I. Fast,
T. Rackow, W. Cabos, and T. Jung (2017), Ocean Modeling on A Mesh with
Resolution Following the Local Rossby Radius. Journal of Advances
in Modeling Earth Systems, 9, 2601–2614.
https://doi.org/10.1002/2017MS001099
Sein, D. V. , N. V. Koldunov, S. Danilov, D. Sidorenko, C. Wekerle, W.
Cabos, T. Rackow, P. Scholz, T. Semmler, Q. Wang, and T. Jung (2018),
The Relative Influence of Atmospheric and Oceanic Model Resolution on
the Circulation of the North Atlantic Ocean in a Coupled Climate Model,Journal of Advances in Modeling Earth Systems, 10, 2026-2041,
https://doi.org/10.1029/2018MS001327
Semmler, T., S. Danilov, T. Rackow, D. Sidorenko, J. Hegewald, D. Sein,
Q. Wang, T. Jung (2017), AWI AWI-CM 1.1 HR model output prepared for
CMIP6 HighResMIP, Earth System Grid Federation,http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.HighResMIP.AWI.AWI-CM-1-1-HR
Semmler, T., S. Danilov, T. Rackow, D. Sidorenko, D. Barbi, J. Hegewald,
D. Sein, Q. Wang, T. Jung (2018), AWI AWI-CM 1.1 MR model output
prepared for CMIP6 CMIP, version 20191219, Earth System Grid
Federation, https://doi.org/10.22033/ESGF/CMIP6.359
Semmler, T., E. Manzini, D. Matei, H. K. Pradhan, T. Jung (2019), AWI
AWI-CM 1.1 MR model output prepared for CMIP6 PAMIP pdSST-pdSIC, version
20191219, Earth System Grid Federation,https://doi.org/10.22033/ESGF/CMIP6.12040
Sidorenko, D., T. Rackow, T. Jung, T. Semmler, D. Barbi, S. Danilov, K.
Dethloff, W. Dorn, K. Fieg, H. F. Goessling, D. Handorf, S. Harig, W.
Hiller, S. Juricke, M. Losch, J. Schröter, D. V. Sein, Q. Wang, (2015),
Towards multi-resolution global climate modeling with ECHAM6–FESOM.
Part I: model formulation and mean climate, Climate Dynamics, 44,757-780.
Sidorenko D., N. V. Koldunov, Q. Wang, S. Danilov, H. F. Goessling, O.
Gurses, P. Scholz, D. V. Sein, E. Volodin, C. Wekerle, T. Jung (2018),
Influence of a salt plume
parameterization in a coupled climate model, Journal of Advances
in Modeling Earth Systems, 10,https://doi.org/10.1029/2018MS001291
Smedsrud, L. H., R. Ingvaldsen, J. E. Ø Nilsen, and Ø. Skagseth (2010),
Heat in the Barents Sea: transport, storage, and surface fluxes,Ocean Sci., 6, 219-234.
Smeed, D., B. Moat, D. Rayner, W. Johns, M. Baringer, D. Volkov, and E.
Frajka-Williams (2019), Atlantic meridional overturning circulation
observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning
Circulation and Heatflux Array-Western Boundary Time Series) array at
26N from 2004 to 2018,
https://doi.org/10.5285/8cd7e7bb-9a20-05d8-e053-6c86abc012c2
Smith D. M., J. A. Screen, C. Deser, J. Cohen, J. C. Fyfe, J.
Garcia-Serrano, T. Jung, V. Kattsov, D. Matei, R. Msadek, Y. Peings, M.
Sigmond, J. Ukita, J.-H. Yoon, X. Zhang (2018), The Polar Amplification
Model Intercomparison Project (PAMIP) contribution to CMIP6:
investigating the causes and consequences of polar amplification,Geoscientific Model Development Discussions,https://doi.org/10.5194/gmd-2018-82
Spreen, G., L. Kaleschke, and G.Heygster (2008), Sea ice remote sensing
using AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03,
doi:10.1029/2005JC003384
Steele, M., R. Morley, and W. Ermold (2001), PHC: A Global Ocean
hydrography with a high-quality Arctic Ocean, Journal of Climate,
14, 2079-2087
Stevens, B., M. Giorgetta, M. Esch, T. Mauritsen, T. Crueger, S. Rast,
M. Salzmann, H. Schmidt, J. Bader, K. Block, R. Brokopf, I. Fast, S.
Kinne, L. Kornblueh, U. Lohmann, R. Pincus, T. Reichler, and E. Roeckner
(2013), Atmospheric component of the MPI-M earth system model: ECHAM6.J Adv Model Earth Syst, 5 , 146–172
Stroeve, J., and D. Notz (2015), Insights on past and future sea-ice
evolution from combining observations and models, Global and
Planetary Change, 135 , 119-132
Timmermann, A., S. An, J. Kug, et al. (2018), El Niño–Southern
Oscillation
complexity. Nature, 559, 535–545. https://doi.org/10.1038/s41586-018-0252-6
Tokarska, K. B., M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F.
Lehner, and R. Knutti (2020), Past warming trend constrains future
warming in CMIP6 models, Science Advances, 6,https://doi.org/10.1126/sciadv.aaz9549
Tonboe, R. T., S. Eastwood, T. Lavergne, A. M. Sørensen, N. Rathmann, G.
Dybkjær, L. T. Pedersen, J. L. Høyer, and S. Kern (2016), The EUMETSAT
sea ice concentration climate data record, The Cryosphere, 10,2275–2290, https://doi.org/10.5194/tc-10-2275-2016
Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng (2016),
Insights into Earth’s energy imbalance from multiple sources.Journal of Climate, 29, 7495-7505,
https://doi.org/10.1175/JCLI-D-16-0339.1
Turner, J., J. S. Hoskins, T. J. Bracegirdle, G. J. Marshall, and T.
Phillips (2015), Recent changes in Antarctic sea ice,Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 373, 20140163,
https://doi.org/10.1098/rsta.2014.0163
de la Vara, A., W. Cabos, D. V. Sein, D. Sidorenko, N. V. Koldunov, S.
Koseki, P. M. M. Soares, and S. Danilov (2020), On the impact of
atmospheric vs oceanic resolutions on the representation of the sea
surface temperature in the South Eastern Tropical Atlantic, Clim
Dyn , https://doi.org/10.1007/s00382-020-05256-9
Wang, C., L. Zhang, S. K. Lee, L. Wu, and C. R. Mechoso (2014), A global
perspective on CMIP5 climate model biases. Nature Climate Change,
4, 201-205, https://doi.org/10.1038/nclimate2118
Wang, Q., S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang,
T. Jung, J. Schröter (2014), The Finite Element Sea Ice-Ocean Model
(FESOM) v.1.4: formulation of an ocean general circulation model,Geosci Model Dev, 7, 663–693
Wang, Q., C. Wekerle, S. Danilov, X. Wang, and T. Jung (2018), A 4.5 km
resolution Arctic Ocean simulation with the global multi-resolution
model FESOM 1.4, Geosci. Model Dev., 11, 1229-1255.
Weaver, A. J., J. Sedláček, M. Eby, K. Alexander, E. Crespin, T.
Fichefet, G. Philippon-Berthier, F. Joos, M. Kawamiya, K. Matsumoto, M.
Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, K. Zickfeld (2012),
Stability of the Atlantic meridional overturning circulation: A model
intercomparison. Geophys. Res. Lett., 39, L20709.
Weijer, W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. V. Hu, L. C.
Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang (2019),
Stability of the Atlantic Meridional Overturning Circulation: A Review
and Synthesis, Journal of Geophysical Research: Oceans,124, 5336-5375,
https://doi.org/10.1029/2019JC015083
Wekerle, C., Q. Wang, S. Danilov, T. Jung, and J. Schröter (2013), The
Canadian Arctic Archipelago throughflow in a multiresolution global
model: Model assessment and the driving mechanism of interannual
variability, J. Geophys. Res. Oceans, 118, 4525–4541,
https://doi.org/10.1002/jgrc.20330
Wild, M. (2020), The global energy balance as represented in CMIP6
climate models, Clim Dyn, 55, 553–577,
https://doi.org/10.1007/s00382-020-05282-7
Woodgate, R. A. (2018), Increases in the Pacific inflow to the Arctic
from 1990 to 2015, and insights into seasonal trends and driving
mechanisms from year-round Bering Strait mooring data, Progress in
Oceanography , 160 , 124-154
Zampieri, L., and H. F. Goessling (2019), Sea ice targeted
geoengineering can delay Arctic sea ice decline but not global warming,Earth’s Future, 7, https://doi.org/10.1029/2019EF001230
Zappa, G., L. C. Shaffrey, and K. I. Hodges (2013), The ability of CMIP5
models to simulate North Atlantic extratropical cyclones, Journal
of Climate, 26, 5379-5396,
https://doi.org/10.1175/JCLID1200501.1
Zappa, G., and T. G. Shepherd (2017), Storylines of Atmospheric
Circulation Change for European Regional Climate Impact Assessment,Journal of Climate, 30, 6561-6577,
https://doi.org/10.1175/JCLI-D-16-0807.1