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Abstract. We here present details of some of the factors used in the main publication and give 

polynomial fits that are used in the production of the modelled 𝐹-𝑈𝑇 patterns of geomagnetic 

activity indices presented. 
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(i). Estimation of Power input into the magnetosphere 

We use 1-minute data on the solar wind and interplanetary magnetic field, available from 

1980 onwards as the Omni2 dataset from the Space Physics Data Facility (SPDF) at NASA’s 

Goddard Space Flight Center:  https://omniweb.gsfc.nasa.gov/ow_min.html,  to estimate the 

power input into the magnetosphere using the equation (see Lockwood, 2019 and references 

therein:  
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where  𝑘1 and 𝑘2 are constants; 𝑀𝐸 is the magnetic moment of the Earth which can be 

computed for a given time using the IGRF-15 Model (Thébault et al., 2015), 𝜇0
  is the 

permeability of free space (the magnetic constant);  𝑚𝑠𝑤
  is the mean ion mass, 𝑁𝑠𝑤

  the 

number density and 𝑉𝑠𝑤
  is the speed of the solar wind at Earth;  𝐵 is the near-Earth 

Interplanetary Magnetic Field (IMF) and  𝜃 is the clock angle the  IMF makes with the Z-

https://omniweb.gsfc.nasa.gov/ow_min.html


direction of the Geocentric Solar Magnetospheric frame of reference;   is called the 

coupling exponent and is the one free fit parameter. We use the optimum value of   = 0.44 

that yields the maximum correlations with the 𝑎𝑚 index: Lockwood (2019) shows that these 

are 0.79 for the 3-hourly basic resolution of the 𝑎𝑚 data, 0.91 for daily means, 0.93 for 

Carrington rotation means and 0.98 for annual means (all of which are highly statistically 

significant giving p values for the null hypothesis of less than 0.0001). The mean ion mass 

𝑚𝑆𝑊 generally only available at hourly or 15 second resolution and are linearly interpolated 

to the 1-minute resolution, a procedure that readily meets the 5% error limit adopted in tests 

using the available 15-second resolution data.  The 1-minute 𝑃 data are then averaged into 

hourly intervals. Data gaps are handled using the criteria for the required number of samples 

for each parameter that ensures that the error in hourly 𝑃 value is below 5%. These criteria 

were established by Lockwood et al (2018) by introducing synthetic data gaps into continuous 

data.  Hourly intervals not meeting these criteria in all parameters were treated as data gaps in 

the 𝑃 data series.  

 (ii). Time-of-day/time-of-year pattern plots 

The patterns with fraction of a calendar year (𝐹) and Universal Time (𝑈𝑇) are generated by 

averaging the hourly data for each 𝑈𝑇 in 36 equal width bins of 𝐹 (each just over 10 days in 

width). This yields 864 bins and we applying a 2-dimensonal 1-3-1 triangular weighting 

smooth in both the 𝐹 and 𝑈𝑇 dimensions.   For the observations the 𝑎𝑚, 𝑎𝑛, and 𝑎𝑠 data are 

linearly interpolated to hourly values from the 3-hourly indices using linear interpolation. 

(iii). Calculation of the hemispheric conductivity factors, 𝑷𝑵 and 𝑷𝑺   

In theory, conductivities could be evaluated for every location in the polar regions using 

empirical relationships for a given solar zenith angle, . However this leaves the problem as 

to which locations most influence the 𝑎𝑛 and 𝑎𝑠 hemispheric sub-indices (and hence 𝑎𝑚 =
(𝑎𝑛 + 𝑎𝑠)/2 ): for example, what is the dependence on conductivity in the auroral oval 

compared to that over the observing magnetometer?   Hence we take an empirical approach 

using means over several days of the deviations of 𝑎𝑛 and 𝑎𝑠 from 𝑎𝑚 that average out the 

𝑈𝑇 variations and studying the dependence of 𝑎𝑛 = (𝑎𝑛 − 𝑎𝑚) and 𝑎𝑠 = (𝑎𝑠 − 𝑎𝑚) with 

𝐹 and compare with the corresponding variations of the mean dipole tilt angle, .  Figure S1 

shows the results. 

The best 4th-order polynomial fit for the northern hemisphere index 𝑎𝑛 is 

𝑎𝑛 𝑎𝑛⁄  =  1.06410−8(𝐹)4 + 2.84010−6(𝐹)3  

+ 1.91010−5(𝐹)2+1.69510−3(𝐹) − 0.88410−2 

The factor 𝑃𝑁 converts an ideal value of 𝑎𝑛 (𝑎𝑛𝑐𝑐) into what we actually observe (𝑎𝑛), such 

that  

𝑎𝑛 =  𝑃𝑁  𝑎𝑛𝑐𝑐 

If, for a first order correction we take 𝑎𝑚 to be a good estimate of 𝑎𝑛𝑐𝑐 on the approximately 

10-day timescales considered in Figure S1, then 𝑎𝑛𝑐𝑐 = 𝑎𝑛 − 𝑎𝑛 =  𝑎𝑛 𝑃𝑁⁄  

hence the northern hemisphere conductivity factor is 𝑃𝑁 = (1 − 𝑎𝑛 𝑎𝑛⁄ )−1 and likewise 

that for the southern hemisphere, 𝑃𝑆 = (1 − 𝑎𝑠 𝑎𝑠⁄ )−1.   



The best 4th-order polynomial fit for the southern hemisphere index 𝑎𝑠 is 

𝑎𝑠 𝑎𝑠⁄  =  −0.94810−8(𝐹)4 − 3.13710−6(𝐹)3  

−2.23810−5(𝐹)2 − 1.13810−3(𝐹) − 0.98810−2 

The corrected indices, 𝑎𝑛𝑐𝑐 = 𝑎𝑛 𝑃𝑁⁄ ,  𝑎𝑠𝑐𝑐 = 𝑎𝑠 𝑃𝑆⁄  and 𝑎𝑚𝑐𝑐 = (𝑎𝑛𝑐𝑐 + 𝑎𝑠𝑐𝑐) 2⁄  are 

shown in Figure S1b.  Note that the corrections make  𝑎𝑛𝑐𝑐 and 𝑎𝑠𝑐𝑐 very similar indeed. 

Note also that the resulting 𝑎𝑚𝑐𝑐 is not exactly the same as 𝑎𝑚: the semi-annual variation in 

𝑎𝑚𝑐𝑐 is slightly larger in amplitude and there is different structure around the peaks (which is 

also seen in both 𝑎𝑛𝑐𝑐 and 𝑎𝑠𝑐𝑐).  This indicates that  the conductivity effects in the two 

hemisphere do not exactly cancel in 𝑎𝑚.  The residuals for the polynomial fits give a 

percentage root mean square (r.m.s.) error in 𝑃𝑁 and 𝑃𝑆 of just 0.21%.   

 

Figure S1. (a) The observed variations of the geomagnetic indices with fraction of year, 

shown as a fraction of their overall mean: (red) 𝑎𝑛(𝐹) < 𝑎𝑛 >𝑎𝑙𝑙⁄ ; (blue) 𝑎𝑠(𝐹) < 𝑎𝑠 >𝑎𝑙𝑙⁄ ; 

and (black) 𝑎𝑚(𝐹) < 𝑎𝑚 >𝑎𝑙𝑙⁄ . (b) The variations after correction for conductivity effects 

(using the factors derived): (red) 𝑎𝑛𝑐𝑐(𝐹) < 𝑎𝑛𝑐𝑐 >𝑎𝑙𝑙⁄ ; (blue) 𝑎𝑠𝑐𝑐(𝐹) < 𝑎𝑠𝑐𝑐 >𝑎𝑙𝑙⁄ ; and 

(black) 𝑎𝑚𝑐𝑐(𝐹) < 𝑎𝑚𝑐𝑐 >𝑎𝑙𝑙⁄ . The deviations of 𝑎𝑛 and 𝑎𝑠 from 𝑎𝑚, (red) 𝑎𝑛 =  𝑎𝑛 −
𝑎𝑚, (blue) 𝑎𝑠 =  𝑎𝑠 − 𝑎𝑚, which for the 36 bins in 𝐹 (10-day timescale) are taken to be 

due to conductivity effects alone. (d) The variations of (red points) 𝑎𝑛 and (blue points) 

𝑎𝑠 as a function of the mean dipole tilt angle,  for the same 𝐹-𝑈𝑇. The black lines are 4th-

order polynomial fits to the points.  



 (iv). Eccentric dipole axial pole locations and velocities in the GSEQ frame 

The eccentric dipole axis 𝑀⃗⃗  (a dipole axis not constrained to pass through the Earth’s centre) 

was taken from the work of Koochak and Fraser-Smith (2017) using the coefficients for the 

two axial pole locations that were linearly interpolated from their tabulated values to the 

middle date of the 𝑎𝑚 data interval under consideration. The location and motion of the 

eccentric axial poles in geographic coordinates into the GSEQ frame using the CXFORM 

Coordinate transformation package originally written by Ed Santiago of Los Alamos National 

Laboratory and Ryan Boller of NASA’s Goddard Space Flight Centre and re-programmed for 

Matlab by Patrik Forssén (SatStar Ltd & Karlstad University) in 2017, available from 

https://spdf.sci.gsfc.nasa.gov/pub/software/old/selected_software_from_nssdc/coordinate_tra

nsform/#Mi. This software package is based on the equations by Mike Hapgood of RAL 

Space, Rutherford Appleton Laboratory (Hapgood, 1992). 

GSEQ locations of the poles at an altitude of 800 km (in the topside ionosphere) were 

computed at the 36 values of 𝐹 and for three times around the 24 hourly 𝑈𝑇 values, these 

times being shifted by 1min, 0 and +1min from each 𝑈𝑇 value and the velocities [𝑉𝑋]𝑁𝑃 and 

[𝑉𝑋]𝑆𝑃 computed from the difference in the 𝑋 coordinates for the 1min, and +1min cases.  

(v). The pole motion factors 𝑷𝑷𝑴 

The sunward motion (in the +𝑋 direction) in the GSEQ frame of the northern axial pole at 

speed [𝑉𝑋]𝑁𝑃 generates a modulation to the northern ionospheric cap transpolar voltage in 

that frame of  

𝑐𝑓𝑁 =  𝑑 < 𝐵𝑖𝑌𝑍 >  [𝑉𝑋]𝑁𝑃  

where 𝑑 is the polar cap diameter and < 𝐵𝑖𝑌𝑍 > is the ionospheric magnetic field normal to 

the 𝑋 direction. The average effect for the two polar caps is then 

𝑐𝑓 =
𝑐𝑓𝑁+𝑐𝑓𝑆

2
= 𝑑 < 𝐵𝑖𝑌𝑍 >  

([𝑉𝑋]𝑁𝑃+[𝑉𝑋]𝑆𝑃)
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and 𝑃𝑃𝑀(𝑈𝑇) =  𝑐𝑓/ 𝑐𝑓   

where we compute 𝑐𝑓  for a given 𝑎𝑚 from the regression equation given by equation (A4) 

in Appendix A of Lockwood et al. (2020b). 

𝑐𝑓 = ( 6.6810−5)𝑎𝑚3 − ( 1.6610−2)𝑎𝑚2 + 1.89𝑎𝑚 + 6.17          

(vi). Russell-McPherron factor 𝑷𝑹𝑴  

The CXFORM Coordinate transformation package was also used to compute the GSEQ to 

GSM transformation of unit IMF vectors in the +𝑌 and –𝑌 directions of GSEQ and give the 

IMF clock angle  and hence the Russell-McPherron predictions of the 𝑠𝑖𝑛4( 2⁄ ) IMF 

orientation factor in 𝑃 and hence the factor 𝑃𝑅𝑀(𝐹, 𝑈𝑇).  Note that in the original paper, 

Russell and McPherron (1973) used a half-wave rectified southward component IMF 

orientation factor (𝐵𝑆 𝐵⁄ ) whereas we employ 𝑠𝑖𝑛4( 2⁄ ): these two have been compared and 

discussed by Lockwood et al. (2020b). 

https://spdf.sci.gsfc.nasa.gov/pub/software/old/selected_software_from_nssdc/coordinate_transform/#Mi
https://spdf.sci.gsfc.nasa.gov/pub/software/old/selected_software_from_nssdc/coordinate_transform/#Mi


(vii). Dipole tilt angle,  

The dipole tilt angle was computed as a function of 𝐹 and 𝑈𝑇, being the angle between 𝑀⃗⃗  

and the 𝑆 , the geocentric position vector of the subsolar point, computed using the SUBSOL 

routine of the LOWTRAN7 Sun and Moon Models Matlab package generated by Noah of the 

US Air Force Geophysics Laboratory in 2019 and available from 

https://www.mathworks.com/matlabcentral/fileexchange/71203-lowtran7-sun-and-moon-

models?s_tid=FX_rc1_behav .  

(viii). The tail squeezing factor 𝑷()   

This factor was modelled by Lockwood et al. (2020b;c) using the asymmetric magnetopause 

location model of Lin et al. (2017) by assuming that the tail is in equilibrium with a solar 

wind of dynamic pressure 𝑝𝑠𝑤. Figure S2. shows the variations with tilt angle derived. 

Figure S2. (Top panels) The modelled maximum lobe field along the bisector of the tail 

hinge angle, evaluated from the magnetopause location and magnetosheath pressure for the 

Newtonian approximation by assuming the tail is in equilibrium, and shown as a function of 

the dipole tilt angle   for various values of the IMF Bz and the mode values of the 

distributions of solar wind static and dynamic pressures for 1980-2018 of 𝑝𝑠𝑡 = 0.015 nPa and 

𝑝𝑆𝑊 = 1.50 nPa.   (a) shows the field in the northern lobe, BN, (b) shows that in the southern 

lobe, BS, both as a ratio of their values for   =0. The fall in BN with increasing   is mirrored 

by a rise in BS, but not quite exactly: this can be seen in part (c) that shows the magnetic 

shear across the hinge in the current sheet B = |BN|+|BS| which is proportional to the current 

per unit length in the cross-tail current sheet (again plotted values are normalized to the value 

for   =0, [B] =0.  In all panels the various colors are for different IMF [𝐵𝑍]𝐺𝑆𝑀 inputs to 

the magnetopause model that vary from +4nT (red) to 12nT (black).  It can be see that B is 
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largest for   = 0 but is also larger for large positive   than large negative .  This is a 

consequence of the hemispheric asymmetry in the magnetopause model.   

A 4th order polynomial that fits (with scaling) all the variations of B in Figure S2c that is 

accurate to within an r.m.s. error of 0.02% is 

𝑃𝐵() =  3.64510−84 − 1.05910−73 − 1.11510−42 + 4.76810−4+ 1 

Lockwood et al. (2020b) show that the equinoctial pattern in the 𝑎𝑚 index increases linearly 

in amplitude with solar wind dynamic pressure and fitting the above functional form 𝑃𝐵() 

to the pattern amplitude the find for 𝑎𝑚 observations for the mode value of  𝑝𝑆𝑊 of 1.50 nPa 

yields  

𝑃() = 1 + 3.80 {𝑃𝐵() − 1} 


