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Figure S1. Budget analysis for the ocean Fe cycling along the Northern US West Coast
(from Cape Mendocino to Vancouver Island) over a 9-year period from 2008-2016. Dark cyan
arrows are biogeochemical fluxes; black curly arrow is vertical advection and diffusion; and black
arrow is divergence of lateral advection. The boundary between coastal and open ocean areas
is defined as the 200m isobath. In this figure, physical and biogeochemical terms are vertically
integrated over a surface layer (0-200m) and a deep layer (200-1500m). All terms are expressed
per unit area ( 10~* mmol/m2/day) to facilitate the comparison of Fe cycling and transport terms
between different regions of the domain. The transport terms are calculated as the divergence of
horizontal and vertical fluxes, which, for vertical transport, include turbulent diffusion processes.
Note that sedimentary dFe release in the offshore region occurs on the continental slope, where
the average value is 727 10~* mmol/m2/d. However, in order to represent a “closed” dFe budget
(where sources and sinks balance), this figure reports the average terms normalized by the oceanic
area extending up to 400 km offshore, thus much larger than the area of the continental slope,

resulting in a lower average value.
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Table S1. Sources of our dFe data compilation along with information on the type of Fe being

measured
Data Sources Iron Measurement Type
Landing and Bruland (1987) dFe (0.3um filter) and particulate Fe
Martin and Michael Gordon (1988) dFe (0.4um filter) and particulate Fe
Johnson et al. (2001) dFe (0.45pm filter)
Johnson et al. (2003) dFe (0.45pm filter)
Chase, van Geen, Kosro, Marra, and Wheeler (2002) dFe (unfiltered, non acidified sample stream)
Fitzwater et al. (2003) Dissolvable (Fe(III) detected after seawater
is held at pH ~ 3 for 1 min.) and particulate Fe
Firme, Rue, Weeks, Bruland, and Hutchins (2003) dFe (0.2pm filter)
Chase et al. (2005) Dissolvable Fe: Fe species
passed through a 20pum filter
and were acidified inline to pH 3.4 for
1 minute prior to analysis
Lohan and Bruland (2008) dFe (0.4pm filter)
Elrod, Johnson, Fitzwater, and Plant (2008) dFe (0.5um filter).
Dissolvable Fe is defined as Fe leached from
particles at pH 3.2
Severmann, McManus, Berelson, and Hammond (2010) dFe (0.45pm filter)
King and Barbeau (2011) dFe (0.4um filter)
John, Mendez, Moffett, and Adkins (2012) dFe (0.45um filter)
Biller, Coale, Till, Smith, and Bruland (2013) dFe (0.2pm filter)
Bundy, Biller, Buck, Bruland, and Barbeau (2014) dFe (0.2pm filter)
Bundy et al. (2015) dFe (0.45pm filter)
Bundy, Barbeau, Carter, and Jiang (2016) dFe (0.2um filter)
Hogle et al. (2018) dFe (0.4pm filter)
Boiteau et al. (2019) dFe (0.2pm filter)
Till et al. (2019) Fe (0.2um filter)
Kelly et al. (2021) dFe (0.2pm filter)
Wong, Nishioka, Kim, and Obata (2022) dFe (0.2um filter)
Abdala et al. (2022) dFe (0.2pm filter)
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1.2. Model validation: Oxygen
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Figure S2. Maps of mean oxygen at 50m retrieved from (left) in-situ observations and (right)
ROMS solutions from December 1999 to November 2017. Observations were collected from
various sources and gridded at 1/3 degree resolution. For the rigth panel, the (dashed line) 50 m
isobath is superimposed and, for waters shallower than 50 m, the mean oxygen field at bottom is
shown. Taking into account that the lower mean oxygen concentration observed on the shelf is
partially due to the larger amount of oxygen measurement during summer, the mean distribution

of the modeled oxygen in ROMS is overall in good agreement with observed concentration.
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Figure S3. (Left panel) Location of the 2 geographical points selected for time-series compar-
isons in central and left panels. Red contours represents the 100 and 200m isobath that define
the shelf and the grey contours are the 1000 and 2000 m isobath. (Central panels) Simulated
(lines) and observed (dots) oxygen concentration time series at (upper) Newport and (lower)
Brookings. The surface time series is displayed in blue and the 50m time series in red. For
observations, each marker shape corresponds to a dataset source. We collected, compiled and
merged data from the West Coast Ocean Acidification Cruises (WCOA) (Feely et al., 2016), the
World Ocean Database (WOD) (Garcia et al., 2009), and the Newport hydrographic line (Risien
et al., 2023). (right panels) Corresponding seasonal cycles with the (full line) mean, the (dashed
line) daily rms and the (dots line) 5th and 95th percentiles of the monthly distribution. Despite
an underestimation of the temporal variability evidenced by the wider spread of observations

measurements, the seasonal oxygen variability is overall well reproduced.
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1.3. Model validation: California Undercurrent
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Figure S4. (a) Depth-averaged subsurface flow between 100 and 300 m in m/s. (b) Spatial
mean section of alongshore flow between 38.7 and 49.1 °N, shown in an isobath/depth coordinate
system. Positive verlocity are in the poleward direction. Black lines evidence velocity contours in
steps of 0.05 m/s, the dashed line stand for negative alongshore velocity (or in the equatorward
direction). (c) Selected sections of the alongshore flow. This figure compares the modeled CUC
with the ADCP observations reported in Pierce et al. (2000). Panel a compares with figure 1,
panel b with figure 3 and panel ¢ with figure 2. Despite some differences likely related to the
interannual variability of the CUC, the model velocity and position are overall within the range

of the observations. Thus, the model produces a realistic CUC.
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2. Seasonal variability of the California Undercurrent
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Seasonal variability of the nearshore flow shown in an isobath/depth coordinate

system. Velocity were projected into the alongshore (positive directed poleward), crossshore

(positive directed offshore), and vertical (positive directed upward) directions. Black line evidence

the zero seasonal mean motion. The CUC is evienced by the subsurface alongshore velocity

maximum (right panel). It is present throughout the whole year but intensified in Autumn.

The CUC-topographic interaction produces an Ekman flow in the bottom mixed layer directed

offshore (central panels) and downwrad (right panel). Similar to the CUC, this bottom-confined

downhill flow is active during the whole year but intensified in Autumn.
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3. Spatial variability of iron concentration offshore
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Figure S6. (a) Snapshot of the iron concentration at 200m depth in September. The black
line highlights the 200m isobath and the bottom concentration is shown for depth shallower than

200m. Offshore, a significant amount of the iron released from the shelf is found in lenslike
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eddies characterized by a large positive iron anomaly. A crosssection (black transect on figure

1) of (b) iron and (c) velocity across one eddy evidences a subthermocline, low-stratified, and

anticyclonic structure characteristic of the ”Cuddies” described in Pelland et al. (2013). The

large iron concentration in cuddies evidence the shelf origin of the water trapped in their cores
where it undergoes mixing and stirring rates much lower than the background flow. This suggest

Cuddies as a significant and effective mechanism for the iron shuttle from the shelf to remote

offshore regions. This requires a closer inspection in future studies.
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