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Abstract 28 

Optical space-based lightning sensors such as the Geostationary Lightning Mapper 29 

(GLM) detect and geolocate lightning by recording rapid changes in cloud-top illumination. 30 

While lightning locations can be determined to within a pixel on the GLM imaging array, these 31 

instruments are not individually able to natively report lightning altitude. It has previously been 32 

shown that thunderclouds are illuminated differently based on the altitude of the optical source. 33 

In this study, we examine how altitude information can be extracted from the spatial distributions 34 

of GLM energy recorded from each optical pulse. We match GLM “groups” with LMA source 35 

data that accurately report the 3-D positions of coincident Radio-Frequency (RF) emitters. We 36 

then use machine learning methods to predict the mean LMA source altitudes matched to GLM 37 

groups using metrics from the optical data that describe the amplitude, breadth, and texture of the 38 

group spatial energy distribution. The resulting model can predict the LMA mean source altitude 39 

from GLM group data with a median absolute error of < 1.5 km, which is sufficient to determine 40 

the location of the charge layer where the optical energy originated. This model is able to capture 41 

changes to the source altitude distribution following convective invigoration or maturation, and 42 

the GLM predictions can reveal the vertical structure of individual flashes - enabling 3-D flash 43 

geolocation with GLM for the first time. Additional work is required to account for differences 44 

in thunderstorm charge / precipitation structures and viewing angle across the GLM Field of 45 

View. 46 
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 47 

Plain Language Summary 48 

Lightning is detected from space by monitoring the Earth for rapid changes in clou-top 49 

illumination. We can determine where the lightning occurred from the location of the pixel that 50 

was triggered. However, since we’re looking down at the Earth from above the cloud tops, there 51 

is no simple way to determine the altitude of the lightning flash with this kind of instrument, and 52 

this is a significant limitation of sensors like the Geostationary Lightning Mapper (GLM). 53 

This study uses machine learning methods to attempt to predict lightning altitude from 54 

the spatial distribution of energy across the cloud illuminated by each optical pulse.  We find that 55 

it is possible to predict source altitude well enough to determine which charge layer an optical 56 

pulse originated from, and also identify changes in storm structure over time and the vertical 57 

development of individual flashes. While these results are still preliminary and come from a 58 

single thunderstorm, they demonstrate that altitude prediction is possible with GLM and 59 

additional work could result in a general prediction model for all observations by GLM and 60 

legacy instruments.  61 
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1 Introduction 62 

The optical lightning imagers that have been operated in Low Earth Orbit (LEO) by 63 

NASA and geostationary orbit (GEO) by NOAA record rapid changes in cloud-top illumination 64 

caused by lightning within the cloud medium (Christian et al., 2000). As these instruments are 65 

pixelated, the horizontal extent of lightning can be determined by projecting the footprint of each 66 

pixel on the imaging array to an ellipsoid above the Earth’s surface. The chosen ellipsoid should 67 

correspond to the upper boundary of the cloud that the optical emissions transmit through, 68 

otherwise parallax will be introduced into the GLM measurements (Virts and Koshak, 2020). 69 

However, these optical measurements are only a composite two-dimensional view of lightning 70 

that describes its geospatial distribution across the Earth (Christian et al., 2003; Cecil et al., 71 

2014; Albrecht et al., 2016) and the horizontal extent of individual flashes (Peterson et al., 2018; 72 

Lyons et al., 2020; Peterson et al., 2020). The third dimension – source altitude – is not resolved 73 

natively by these instruments, and this is considered one of their primary shortcomings compared 74 

to certain ground-based lightning measurements. 75 

Lightning source altitude is an important parameter because it provides unique insights 76 

into the intensity of convective systems and how thunderstorm kinematics organize charge 77 

regions within the thunderstorm (Williams, 1989; Smith et al., 2004; Carey et al., 2005; Ely et 78 

al., 2008; Stolzenburg and Marshall, 2008; Bruning et al., 2010;). Non-Inductive Charging (NIC: 79 

Reynolds et al., 1957; Takahashi, 1978; Jayaratne et al., 1983; Saunders et al., 1991; Saunders 80 

and Peck, 1998; Takahashi and Miyawaki, 2002; Mansell et al., 2005; Bruning et al., 2014) is 81 

considered to be a primary mechanism for creating the charge separation in thunderstorms that 82 

leads to lightning activity. Under the NIC model, collisions between different species of ice 83 

particles within the updraft cause a net transfer of charge (usually from small ice particles 84 
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depositing electrons on larger graupel pellets rimed with supercooled liquid water). These ice 85 

particles are then sorted according to their masses with the smaller ice particles lofted by the 86 

updraft towards the cloud top while the heavier graupel remains in the mid-levels of the storm. 87 

Over time, accumulation of charged ice particles at different altitudes produces a strong electric 88 

field that can overcome the electrical impedance of the air to generate a lightning discharge. 89 

If we can resolve the vertical profile of lightning sources, then we can determine the 90 

altitudes of these charge regions and track how they change over time. Presently, lightning is 91 

related to convective intensity and thunderstorm microphysics through lightning rates (Blyth et 92 

al., 2001; Cecil et al., 2005; Prigent at al., 2005; Takayabu et al. 2006; Xu et al. 2010; Liu et al. 93 

2011; Peterson and Liu, 2011; Liu et al. 2012) because this information is widely available 94 

across broad geospatial domains. Altitude information is only reported on local or regional scales 95 

by dense networks of ground-based instruments that detect Radio-Frequency (RF) lightning 96 

emissions. The most accurate three-dimensional source information is provided by Lightning 97 

Mapping Arrays (LMAs: Rison et al., 1999) whose effective range is limited to just a few 98 

hundred kilometers. The only truly global lightning network that attempts to resolve altitude is 99 

the Earth Networks Global Lightning Network (ENGLN: Zhu et al., 2017), but their intracloud 100 

(IC) altitude parameter is not well refined, leading to highly-inaccurate results (Peterson et al., 101 

2021a).  102 

If accurate lightning altitudes could be provided across large swaths of the Earth, it would 103 

add a new dimension to discussions of the connection between lightning and impactful weather. 104 

Convective invigoration has been linked to the onset of severe weather (such as hail, tornadoes, 105 

derechos) (Schultz et al., 2009; Gatlin and Goodman, 2010), and is also considered important for 106 

hurricane Rapid Intensification (RI) (DeMaria et al., 2012; Jiang and Ramirez, 2013; Fierro et 107 
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al., 2018). These studies look for convective invigoration by tracking how flash rates change as 108 

the storm develops over time. Rapid increases in source altitude would provide an alternate 109 

means to identify strengthening updrafts that could either confirm the flash rate trend or 110 

potentially catch events that are missed due to poor instrument performance. Geostationary 111 

Lightning Mapper (GLM: Goodman et al., 2013; Rudlosky et al,. 2019) total flash rates are 112 

adversely affected by attenuation from optical sources transmitting through thick cloud layers, 113 

over-clustering in high flash rate compact thunderstorms, and artificial flash splitting in non-114 

convective flashes. The first and third issues can also be amplified by a high instrument threshold 115 

, as we saw in Part 2 of this series (Peterson et al., 2021b). However, none of these issues would 116 

prevent the highest-altitude sources from being resolved from space.  117 

We propose that altitude information can be extracted from GLM measurements of how 118 

the surrounding thunderclouds are illuminated by lightning. Our previous modelling work 119 

(Peterson, 2020a) demonstrated that low-altitude sources result in different spatial radiance 120 

patterns than high-altitude sources regardless of cloud geometry, and this was confirmed with 121 

GLM observations in and Part 1 of this series (Peterson et al., 2021a). Our discussion of “optical 122 

repeater” flashes in  Peterson et al., 2021a and previous analyses of groups with complex spatial 123 

radiance distributions (Peterson 2020b) further showed that radiance patterns were consistent 124 

between subsequent illuminations of the same cloud layer. However, these pictures of cloud 125 

illumination would change if the flash moved into a different layer – for example, cases in 126 

Peterson et al., 2021a where the LMA sources developed vertically. 127 

In this third part of our thundercloud illumination study, we investigate whether the link 128 

between source altitude and the spatial radiance patterns recorded by GLM is sufficiently robust 129 

that we might predict the altitudes of the optical sources responsible for arbitrary GLM groups 130 
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that consist of more than one event. To accomplish this, we will construct a new set of group 131 

metrics that describe the spatial distribution of GLM-recorded energy and then use a random 132 

forest generator to construct a machine learning model to predict the mean altitude of coincident 133 

LMA sources associated with each group. These predictions will be analyzed to determine 134 

whether GLM-retrieved altitudes can resolve the major features of the LMA source altitude 135 

distribution from the thunderstorm and the vertical development of individual flashes mapped by 136 

both GLM and the LMA. We limit our analysis to a single thunderstorm case (the Colombia case 137 

from Peterson et al., 2021a and Peterson et al., 2021b) to demonstrate the feasibility of this 138 

approach, and leave validation across multiple storm types for future work. 139 

 140 
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2 Data and Methodology 141 

This third part of our thundercloud illumination study will leverage the combined 142 

Geostationary Operational Environmental Satellites (GOES)-16 GLM and ground-based 143 

Colombia LMA (COLLMA: Lopez et al., 2016; Aranguren et al., 2018) data generated in Part 1 144 

(Peterson et al., 2021a) and the random forest regressor in the Python scikit-learn machine 145 

learning module (Pedregosa et al., 2011) to generate a random forest model for predicting the 146 

mean LMA source altitude associated with each GLM group from a thunderstorm of interest. 147 

Section 2.1 discusses the lightning measurements that we will consider. Section 2.2 describes 148 

how the feature and label data that will be input into the machine learning model are generated. 149 

Finally, Section 2.3 documents the random forest regression.  150 

2.1 Combined LMA / GOES Measurements of a Colombia Thunderstorm 151 

In the first two parts of this study (Peterson et al., 2021a,b), we examined a thunderstorm 152 

on 01 November 2019 that occurred in the vicinity of Barrancabermeja in central Colombia that 153 

was measured by both the COLLMA and GLM. This storm is noteworthy because it contained a 154 

diverse collection of convective and non-convective lightning, was located near the GOES-16 155 

satellite subpoint, and was subject to particularly-low GLM instrument thresholds (~0.7 fJ) that 156 

allowed GLM to resolve more detail from its flashes and their illumination of the surrounding 157 

clouds than thunderstorms elsewhere in the GLM Field of View (FOV). 158 

2.1.1 Colombia Lightning Mapping Array (COLLMA) Data 159 

COLLMA is a 6-sensor LMA network that was moved to Barrancabermeja from Santa 160 

Marta in 2018. LMA sources collected by the COLLMA on 01 November 2019 were provided 161 
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by Lopez (2020, personal communication) over a 1.7º longitude (74.5º W – 72.8º W) by 1º 162 

degree latitude (6.5 º N – 7.5º N) box within the LMA domain for comparison with GLM. The 163 

source data were first processed by Lopez (2020, personal communication) using the flash 164 

clustering and noise reduction algorithms developed by van der Velde and Montanyà (2013). 165 

These algorithms identify noise sources based on their density in 3D space-time boxes with sides 166 

corresponding to the horizontal distance (XY), vertical distance (Z), and time difference (T). 167 

Source densities that do not meet their empirically-derived thresholds are not clustered into 168 

flashes and we only consider those LMA sources that meet the threshold values. 169 

2.1.2 Earth Networks Global Lightning Network (ENGLN) Data 170 

The COLLMA source data is augmented with ENGLN detections of CG strokes during 171 

the thunderstorm of interest. ENGLN combines observations from the Earth Networks Total 172 

Lightning Network (ENTLN: Zhu et al., 2017) and the World-Wide Lightning Location Network 173 

(WWLLN: Lay et al., 2004; Rodger et al., 2006; Jacobson et al., 2006; Hutchins et al., 2012) to 174 

detect and geolocate both CG and IC lightning. However, since we have the LMA for IC 175 

sources, we do not consider ENGLN ICs.   176 

2.1.3 Geostationary Lightning Mapper (GLM) Data 177 

GLM is the first lightning imager to be operated from geostationary orbit. It builds on the 178 

legacy of NASA’s Optical Transient Detector (OTD: Christian et al., 2003) and Lightning 179 

Imaging Sensor (LIS: Christian et al., 2000; Blakeslee et al., 2020) imagers that have been flown 180 

in LEO over the past 25 years. These instruments consist of a Charge Coupled Device (CCD) 181 

imaging array behind the instrument optics, which includes a narrowband filter centered on the 182 

777.4 nm Oxygen emission line triplet. The dissociation, excitation, and recombination 183 
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experienced by the atmospheric constituent gasses in response to the intense heating of the 184 

lightning channels cause strong emissions at these atomic lines, which permits lightning to be 185 

detected at all times of day, albeit with decreased sensitivity under sunlit conditions. 186 

The basic unit of OTD / LIS / GLM detection is the “event,” which is defined as a single 187 

pixel on the imaging array that exceeds the instrument threshold during a single integration 188 

frame. Events are clustered by the GLM Lightning Cluster Filter Algorithm (LCFA: Goodman et 189 

al., 2010) into “group” features that describe simultaneous emission over a contiguous area on 190 

the imaging array, and “flash” features that use close spatial and temporal group proximity to 191 

approximate complete and distinct single lightning flashes. We further define a feature level 192 

between groups and flashes to document persistent illumination over multiple quasi-sequential 193 

integration frames called “series” features (Peterson and Rudlosky, 2019). Our reprocessed data 194 

that includes these features and other improvements are available at Peterson (2021a). 195 

2.1.3 Matching RF data to GLM Groups and Flashes 196 

The matching scheme that we employ in this study is based on the GLM / ENGLN 197 

matching algorithm used in Peterson and Lay (2020). It works under the assumption that all RF 198 

emissions within the footprint of a GLM group contribute optical energy to that group. Thus, 199 

these RF sources can be considered “events” in the GLM sense and clustered into the GLM data 200 

hierarchy as children of groups. Groups are nominally assigned the contemporary LMA sources 201 

or ENGLN CG strokes that occur within their footprint. However, this approach is subject to the 202 

three important caveats discussed below.  203 

The first caveat is due to what groups actually represent. While groups are intended 204 

describe individual optical pulses, this association is far from perfect. Optical pulses are 205 
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generally quick and localized – with durations shorter than a millisecond and extents smaller 206 

than an 8-km GLM pixel. In Peterson et al. (2021a), we saw that the active portions of the 207 

lightning channel as mapped by the LMA were typically around 2 km in lateral extent. Yet, 208 

multi-event groups are common, with the largest groups even illuminating cloud areas exceeding 209 

10,000 km2 (Peterson et al., 2017). Sources located near pixel boundaries (Appendix B in Zhang 210 

et al., 2020) explains how GLM groups are larger than LMA source extents in certain scenarios, 211 

but it does not explain how GLM flash footprints can exceed the LMA flash extent or 212 

encapsulate cloud regions that do not appear to be electrified. These oddities in the GLM data 213 

result from scattering in the cloud medium. Multiple scattering causes the optical emissions – 214 

even from a point source - to be spread laterally throughout the surrounding thunderclouds 215 

(Peterson, 2020a), causing the resulting GLM group footprints to overestimate the physical 216 

extent of the source. At the same time, radiative transfer effects can also cause groups to 217 

underestimate the scale of the lightning source if the cloud is able to block radiant energy from 218 

reaching orbit. In extreme cases, particularly opaque clouds generate “holes” in the group 219 

footprint where the cloud regions surrounding the poorly-transmissive cloud are illuminated 220 

while its center remains dark and free of events (Peterson, 2020b).   221 

Of these two possibilities, groups underestimating the extent of the optical sources 222 

involved is the primary concern for this work. In these cases, we might not have a full picture of 223 

the altitudes of the charge layers that contributed optical energy to the group. We saw in Peterson 224 

et al. (2021a) that even in the larger groups, the extent of LMA sources within their footprints 225 

were either of comparable size to a GLM pixel or smaller. To include RF sources in the vicinity 226 

of GLM groups that do not occur within their footprints, we add a 10-km buffer to the group 227 



Manuscript submitted to Journal of Geophysical Research 

LA-UR-21-23257 
 

assignment criteria. RF events are assigned to a GLM group if they occur within 10 km of any 228 

event that comprised that group. 229 

The second caveat is that the RF sources might not be precisely aligned in time with the 230 

parent GLM groups. This can happen if the source occurs at the end of a 2-ms GLM integration 231 

frame, causing the optical energy to be split between two adjacent frames, or in long-lasting 232 

processes such as return stroke Continuing Current (CC) or in-cloud K-changes (Bitzer, 2017). 233 

The LMA might not even register impulsive sources if the channel remains ionized during one of 234 

these long-duration processes since RF emissions describe changes in current rather than current. 235 

Thus, the reported time of the RF event might be separated from the time of peak optical 236 

emission by a few milliseconds. Moreover, in these cases, there could be multiple GLM groups 237 

that the RF events could be assigned to. In these scenarios, we attempt to assign RF events to the 238 

peak of the light curve recorded by GLM. All GLM groups that meet the spatial matching 239 

criteria for the RF event and occur within 10 ms of the event are identified, and the brightest 240 

GLM group is selected for assignment.  241 

The third and final caveat is related to the limited domain of the available LMA data. 242 

Because the LMA data were provided over a latitude / longitude box, there are cases of GLM 243 

flashes along the edges of the LMA box where some groups contain LMA matches while others 244 

do not. As in the previous parts of this study, we limit our analyses to flashes whose groups were 245 

entirely within the LMA box to mitigate biases from partial matches at the edges of the LMA 246 

domain. The end result is a combined GLM / RF dataset consisting of 2154 GLM flashes and 247 

56,399 groups. Of these flashes, 471 (21.9%) contained ENGLN strokes and 90.1% matched 248 

with LMA sources. Of these groups, 631 (1.1%) matched with ENGLN strokes and 22,681 249 
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(40.2%) matched with LMA sources. See Table 1 in Peterson et al., 2021a for additional 250 

GLM/RF matching statistics.  251 

2.2 Generating Machine Learning Feature (Input) and Label (Prediction) Data 252 

We propose that the first GLM caveat listed above - of groups primarily describing 253 

thundercloud illumination rather than the geometry of the optical source - is key to retrieving 254 

altitude information optically. As optical signals traverse the cloud medium to the satellite, they 255 

become modified through absorption and scattering in the cloud. Even the same optical sources 256 

located at different altitudes would take on a different appearance to GLM based on the optical 257 

characteristics of the cloud medium along the paths their emissions traveled to the instrument. 258 

By interpreting the spatial energy distributions of GLM groups (termed “radiance patterns”), we 259 

are attempting to decode the cloud attributes contained within the optical lightning signals.  260 

2.2.1 Radiance Patterns from High-Altitude and Low-Altitude Sources 261 

The key mechanism behind the differences in appearance between low-altitude sources 262 

and high-altitude sources is the number of scattering interactions that the optical emissions 263 

encounter before reaching the satellite. The emissions from low-altitude sources experience more 264 

scattering events than high-altitude sources, which permit the optical energy to be spread over a 265 

larger area. As a result, the radiance patterns from modeled sources (Peterson, 2020a) are 266 

broader with a lower amplitude for low-altitude cases, and brighter and more concentrated when 267 

the source is placed near the cloud top. 268 

We can see these trends in groups observed by GLM. Figures 1 and 2 show two examples 269 

of GLM groups from the Colombia thunderstorm that the COLLMA determined to be comprised 270 
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of primarily low-altitude sources between 5 and 10 km (Figure 1), and high-altitude sources 271 

around 15 km (Figure 2). Both figures are formatted following the convention of Figures 10-12 272 

in Peterson et al., 2021a with a central panel (d) showing the normalized group radiance pattern 273 

(dark indicating low energy, light indicating high energy) with LMA sources (green boxes) and 274 

ENGLN strokes (asterisks where blue denotes -CGs and red denotes +CGs) overlaid. Plus 275 

symbols (+) also indicate the locations of events to clarify which pixels are illuminated. The 276 

upper panels show the longitude-altitude LMA / ENGLN source profiles in (c) and GLM energy 277 

distribution by longitude in (a). The bars in (a) denote totals, while plus symbols describe 278 

individual events. The panels to the right of the plan view in (d) repeat these two plots for 279 

latitude. The bottom two plots show timeseries of LMA / ENGLN altitude (g) and GLM group 280 

energy (i) along with a LMA altitude distribution for the full 15-minute period that contained the 281 

flash (h). Finally, the upper right panel (b) shows the GLM group area / group maximum event 282 

energy distribution for the flash with a polynomial fit overlaid and its reduced chi2 value listed. 283 

Groups are color coded in (i) and (b) according to their order in the flash (dark: early, light: late) 284 

and the current group is indicated with a dashed line in the timeseries and as a red symbol in the 285 

energy / area distribution. 286 

The group shown in Figure 1 corresponded to the second ENGN -CG from the flash. The 287 

GLM radiance pattern was broad – with events exceeding 10% of the maximum event energy 288 

occurring in 7 of the 8 columns and 6 of the 7 rows on the GLM CCD array spanned by the 289 

group footprint. The group area / max. energy curve in Figure 1b also shows that subsequent 290 

groups illuminated the surrounding cloud in the same way, such that group area could be 291 

predicted from maximum event energy following the polynomial fit. By comparison, the energy 292 

from the group in Figure 2 is highly-concentrated in the single brightest event. Despite being half 293 
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the size of the group in Figure 1, the peak energy of the high-altitude group in Figure 2 reached 294 

200 fJ (compared to 30 fJ in Figure 1) and only two other events in the group (immediately to the 295 

north and west of the brightest group) exceeded 10% of the maximum event energy. This is the 296 

same behavior that we saw previously during GLM flashes that produced Gigantic Jets (GJ), 297 

(Boggs et al., 2019), which extend upward from the cloud top. The GLM energy was not only 298 

concentrated in a single pixel co-located with the GJ, but this pixel remained illuminated over 299 

many frames during the GJ.  300 

2.2.2 Selecting the Prediction Altitude 301 

 The flash case in Figure 1 demonstrates a key challenge for predicting the source altitude: 302 

even through the flash acts like a confined feature in how it illuminates the cloud (Figure 1b), the 303 

LMA source altitudes associated with individual groups range from 5 km to 10 km (or from the 304 

ground in the case of the -CGs). Assigning a single altitude to optical sources that have a finite 305 

vertical dimension is a difficult proposition. Any altitude that we select for this type of optical 306 

source will be subject to biases from our assumptions of where the peak currents are located and 307 

how we quantify GLM’s detection advantage for higher-altitude sources. For example, we might 308 

assume that peak emission occurs where the branches come together near the ground in this -CG 309 

case – and thus the minimum LMA altitude would be the best choice. Or we might assume that 310 

low-altitude sources are severely attenuated based on the previous modeling work in Peterson 311 

(2020a), so the in-cloud emissions described by either the mean or maximum LMA source 312 

altitude better represent the optical source altitude. We know from Peterson et al., 2021a that 313 

GLM favors detecting sources near the cloud-top in the Colombia thunderstorm, and this can be 314 

verified by comparing the vertical distributions of all LMA sources in Figure 3a to the 315 

distribution of mean LMA altitude for all sources matched to a GLM group in Figure 3b over the 316 
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thunderstorm duration. These two panels show that GLM has difficulty detecting optical 317 

emissions from low-altitude sources (< 7 km) – particularly around 09:00 UTC and in the 10:00 318 

UTC hour. If GLM does not detect these low-altitude sources, then we will not be able to include 319 

them in the retrieved GLM altitude distributions. Even if the algorithm performs very well, there 320 

will still be biases in the GLM-derived vertical altitude distributions from these missed events. 321 

As this is a particularly-complex issue that requires further investigation, we will choose to 322 

predict the LMA mean altitude for the groups that were detected here and accept biases from 323 

poor characterization of low-altitude sources as a potential source of error. A different method to 324 

derived the prediction altitude or normalization strategies to account for missed events can 325 

always be considered in future studies to mitigate this issue.  326 

 The other key challenge for predicting source altitude with GLM is that these altitudes 327 

are determined by top-down measurements of cloud illumination rather from the ground-up view 328 

provided by the LMA. Thus, the appearance of the group will depend on the cloud layers 329 

between the optical source and the local cloud-top height. This is not a new issue for GLM, 330 

whose observations are commonly interpreted under the assumption that the optical illumination 331 

is contained within the boundaries of the thunderstorm core where the local cloud-tops 332 

approximately reach the height of the tropopause (Virts et al., 2020). The true “detection 333 

altitude” where the light leaves the cloud might be taller or shallower than the prescribed 334 

ellipsoid altitude, and this results in parallax errors in GLM geolocations (Virts et al., 2020). 335 

Thundercloud illumination as viewed from space depends on the depth of cloud between the 336 

source altitude and the detection altitude. If we attempted to directly predict the altitude of the 337 

LMA measurements or predict an altitude normalized to the GLM ellipsoid, the resulting 338 

predictions would be subject to similar biases. These predictions might be reasonable for the 339 
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most active period of the storm in question, but performance is expected to suffer outside of this 340 

period or outside of the convective core.  341 

This issue might be addressed by normalizing the LMA source altitudes to the local 342 

cloud-top height. The Advanced Baseline Imager (ABI) Cloud Top Height (CTH) product is an 343 

attractive choice because ABI is on the same satellite as GLM and has a similar FOV. However, 344 

relying on ABI CTH data introduces a number of additional caveats. The ABI Cloud Height 345 

Algorithm (ACHA) is an operational algorithm based on joint measurements from the ABI 346 

infrared bands (CH14: 11.2 µm, CH15: 12.3 µm, and CH16: 13.3 µm), and its CTH estimates 347 

are subject to the uncertainties described in its Algorithm Theoretical Basis Document (ATBD) 348 

(Heidinger, 2012) and the less frequent sampling interval of ABI (10 minutes) relative to GLM 349 

(20 seconds). Perhaps the largest uncertainty for our application is its reliance on linear 350 

interpolations of temperature profiles supplied by Numerical Weather Prediction (NWP) models. 351 

These errors are then compounded by any parallax or location uncertainty in the LMA data being 352 

normalized (i.e., from lingering noise sources) where large CTH gradients exist. 353 

The effect of these uncertainties on the LMA CTH normalization is shown in the 354 

timeseries of GLM-matched mean LMA source altitude in Figure 3b-e that span the duration of 355 

the Colombia thunderstorm. Figure 3b and d show the LMA measured altitudes, while Figure 3c 356 

and e show the CTH normalizations. Figure 3b and c contain all matched GLM groups while 357 

Figure 3d and e examine only the larger groups that consist of >5 GLM events. Both normalized 358 

timeseries contain activity above the ABI CTH (100%), and this activity is particularly common 359 

early in the storm (02:15 UTC - 07:30 UTC). As we showed in Peterson et al., 2021a (i.e., Figure 360 

1), this time period corresponded to the thunderstorm moving into the area. As a result, much of 361 
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the activity contained within the LMA data domain occurred at the edge of the encroaching ABI 362 

cold cloud feature (CH14 < 234 K) where strong gradients in ABI CTH exist. 363 

If the optical emissions are able to more easily illuminate the storm edge than the dense 364 

convective core, the group centroids in these edge cases can be located within the CTH gradient 365 

region. While the LMA sources within the thunderstorm core might still be below their local ABI 366 

CTH, the group centroid displaced towards the edge of the storm could be above its local ABI 367 

CTH. This effect is particularly important with the densest thunderstorms where only edge 368 

illumination is resolved by GLM (as in some cases noted in Peterson et al., 2021a from the 369 

Colorado thunderstorm). Thus, while these apparent “above-cloud” sources might not make 370 

intuitive sense, they are still a valuable inclusion in the dataset for describing this scenario that is 371 

frequently encountered with GLM measurements.  372 

2.2.3 Describing Radiance Patterns with Group-Level Metrics 373 

A key strength of machine learning is that it can help to determine which combinations of 374 

input parameters (features) best predict the parameters of interest (labels). In total, we have 375 

devised 16 parameters in Table 1 that could be important for predicting altitude – 14 metrics that 376 

describe the groups, and 2 series / flash level metrics that describe the context in which they 377 

occur. The example groups in Figure 1 and Figure 2 provide guidance on some of the ways that 378 

recorded radiance patterns from low-altitude sources and high-altitude sources differ, but these 379 

differences could be quantified in many ways. We could focus on the spatial concentration of 380 

energy or on the relationship between group area / energy (as discussed in Peterson et al., 381 

2021a). Alternatively, radiance anomalies including “holes” in GLM groups might provide better 382 

predictors of source altitude. 383 
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Intuition based on data is an important place to start determining which parameters 384 

should be used in the analysis. For example, Figure 4 compares the percent of the group energy 385 

in the brightest event (GROUP_MAX_EVENT_PCT) with the overall group energy 386 

(GROUP_ENERGY). A two-dimensional histogram of GLM/LMA matches is shown in (a), the 387 

mean LMA altitude is shown in (b), the number of matches that describe ENGLN strokes is 388 

shown in (c), and the percent of all matches that originate at high altitudes (> 10 km) is plotted in 389 

(d). These plots show a clear distinction in source altitude with low-altitude sources at 390 

GROUP_MAX_EVENT_PCT < 25% and source altitudes increasing with GROUP_ENERGY 391 

and GROUP_MAX_EVENT_PCT. Most of the ENGLN strokes that occur in the matched 392 

GLM/LMA groups are also located along the bottom of the 2-D histogram (i.e., the lowest 393 

GROUP_MAX_EVENT_PCT for each GROUP_ENERGY) due to their low altitudes. 394 

Machine learning provides an efficient framework for assessing how well different 395 

subsets of the parameters in Table 1 can predict the mean LMA altitudes associated with the 396 

diverse collection of GLM groups from the Colombia thunderstorm. We collect all of these GLM 397 

group metrics into a feature dataset and train random forest models from unique subsets of the 398 

parameters from Table 1 following the methods described in the next section. The top model 399 

from these tests will be used to analyze the Colombia thunderstorm in Section 3.  400 

2.3 Scikit-Learn Random Forest Regression 401 

Constructing machine learning models requires dividing the feature and label data into 402 

training and testing datasets. While we have 22,681 GLM groups matched to LMA sources, this 403 

sample of matches is not representative of generic GLM data for three reasons: 404 
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(1) The matching scheme prioritizes assigning LMA sources to the brightest groups in a 405 

series rather than the nearest group in time. 406 

(2) The LMA sources are not distributed uniformly through the cloud depth, but rather 407 

are concentrated in the primary charge layers of the Colombia thunderstorm. 408 

(3) The GLM groups were measured under a low instrument threshold that is not 409 

representative of thunderstorms elsewhere, particularly during the day. 410 

To account for these biases, we take a judicious approach towards constructing the testing and 411 

training datasets. We limit the effect of the group matching preference in (1) by only including 412 

the brightest group in each unique series in the testing / training data. We reduce charge layer 413 

bias  in (2) by adjusting the number of matches taken from each vertical level (LMA measured 414 

altitudes in 1-km bins) to ensure nearly-equal contributions from each CTH-normalized vertical 415 

layer (through, smaller numbers of sources near the top and bottom of the cloud are still 416 

allowed). Finally, we address the threshold concerns in (3) by recalculating the group parameters 417 

after imposing artificial thresholds between 1 and 10 fJ (as in Peterson et al., 2021b), and then 418 

adding the surviving groups at each threshold to the testing / training data. Thus, the random 419 

forest model is sensitive to how group characteristics change under varying instrument 420 

thresholds. 421 

 Once the feature and label data are compiled, we divide the matched groups into training 422 

(75%) and testing (25%) samples and begin the scikit-learn random forest regressor for various 423 

combinations of features. Note that in addition to the designated testing sample consisting of the 424 

brightest groups per series, we can also test the model with groups that had LMA matches but 425 

were not the brightest groups in their parent series, as this much larger dataset is not used for 426 
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training. We find that many of the 16 parameters that we devised in Table 1 were not useful for 427 

predicting altitude because they provided redundant information. For example, both the group 428 

energy Half Width of Half Max (GROUP_HWHM) and the percent of the group energy in the 429 

brightest event (GROUP_MAX_EVENT_PCT) describe the breadth of the spatial energy 430 

distribution of the group. While these parameters might provide some unique information in 431 

certain situations, the model assigns an importance score of 0 on a scale from 0 (not important) 432 

to 1 (the only important metric) to one of these parameters if the other is included as a feature. 433 

Moreover, these parameters have vastly different computational costs. While 434 

GROUP_MAX_EVENT_PCT is based on a simple sum of event energies, GROUP_HWHM 435 

requires modeling the radiance fall-off with distance from the brightest event in the group and 436 

then finding where this model falls below 50% of the maximum energy. As having both metrics 437 

does not improve the model, there is simply no benefit to using GROUP_HWHM. Other 438 

examples include group area / group event count, group area / convex hull area, and even group 439 

area / group energy.  440 

 This exercise revealed a set of five features that had considerable skill in predicting the 441 

LMA mean source altitude for the matched GLM groups: the maximum separation in the parent 442 

series (SERIES_GROUP_MAX_SEPARATION: importance: 0.39), which describes the 443 

horizontal extent of the lightning process that generated the group of interest; the percent of the 444 

group energy in the brightest event (GROUP_MAX_EVENT_PCT: importance: 0.23), which 445 

was shown in Figure 4; the distance between the group centroid and brightest event location 446 

(GROUP_MAX_LOC_DIS: importance: 0.16), which is sensitive to radiance anomalies in the 447 

group footprint; group footprint area (GROUP_AREA: importance 0.15); and the approximate 448 

GLM threshold for the parent flash (FLASH_THRESHOLD_APPROX: importance: 0.06). We 449 
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ran the random forest regressor with only these parameters included as features and then used the 450 

resulting machine learning model to predict the source altitudes for the GLM groups that were 451 

detected in the Colombia thunderstorm.    452 

 453 

3 Results  454 

 This section will evaluate the GLM source altitudes retrieved by the random forest 455 

model. We will first evaluate model performance using the testing sample of matched GLM 456 

groups / LMA sources in Section 3.1. Then, Section 3.2 will compare GLM and LMA altitude 457 

trends within individual flashes and at the storm level over the duration of the Colombia 458 

thunderstorm. 459 

3.1 GLM Source Altitude Model Performance with Testing Group Data 460 

Histograms of LMA mean altitude, GLM predicted altitude, and the altitude difference 461 

between the LMA measurements and GLM predictions for the matched groups in the testing 462 

dataset are shown in Figure 5. Note that we do not include single-event groups in these analyses 463 

because they lack sufficient unique information for sources at different altitudes to be 464 

distinguished. The model mostly assigns these single-event detections to  a single layer, which is 465 

not useful. 466 

The rows in Figure 5 correspond to two-or-more event groups with various artificial 467 

thresholds applied. No threshold is applied in Figure 5a-c, a 2 fJ threshold is imposed in Figure 468 

5d-f, a 4 fJ threshold is applied in Figure 5g-i, and a 6 fJ threshold is applied in Figure 5j-l. 469 

While the initial sample of LMA mean source altitudes in Figure 5a has a nearly equal number of 470 

sources between 40% and 100% of the ABI CTH, this near parity is not maintained at higher 471 
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thresholds (Figure 5d,g,j). The same sample group data from Figure 5a is used to generate these 472 

higher-threshold samples, but groups associated with LMA sources outside of the primary charge 473 

layer (~70% ABI CTH) preferentially fall below the higher imposed thresholds. 474 

Similar biases can be found in the GLM predictions in Figure 5e,h, and i. Despite 475 

matched groups being chosen to ensure the LMA mean source altitudes were evenly-distributed 476 

between vertical layers, the illumination of the surrounding clouds leads to group radiance 477 

patterns that the model suggests come from the primary charge layer at 70% ABI CTH rather 478 

than elsewhere in the vertical profile. This could be an indication that the input data is not 479 

sufficiently robust to account for some group radiance patterns, as the filters described in Section 480 

2 leave only on the order of 100 groups in each vertical level. If this is the case, then adding 481 

matched LMA-GLM data from additional thunderstorms might improve the model – particularly 482 

if the matched data is supplied from multiple LMAs across the GLM FOV and represent a 483 

diverse collection of thunderstorm charge structures. Another likely cause of this bias in the 484 

predictions is that our choice of estimating the optical source altitude from the mean LMA 485 

source altitude is not properly representing sources with a finite vertical extent (as we saw with 486 

the example flash in Figure 1).  Rather than taking the mean or maximum LMA source altitude, a 487 

normalization scheme to account for GLM’s detection advantage for high-altitude sources 488 

developed from Monte Carlo radiative transfer modeling could improve the agreement with 489 

observations.   490 

Despite this apparent bias, the model errors in Figure 5c,f, and i remain low. With no 491 

artificial threshold imposed, the median absolute error is 9.7% of the ABI CTH, or 1.33 km. 492 

Generating similar plots from LMA-matched groups that were not the brightest in their series 493 

yields similarly-low errors. Histograms for the groups not included in the training or testing data 494 
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are shown in Figure S1. The median absolute errors for these predictions range from 6.62% (0.95 495 

km) for >1 event groups to 4.18% (0.60 km) for >7 event groups.  496 

In most cases, therefore, we can at least correctly predict which charge layer within the 497 

Colombia thunderstorm the optical emissions originated. Interestingly, imposing a higher 498 

threshold actually improves these error statistics. This could be an effect of the increasing 499 

concentration of sources in the layer centered at 70% CTH, or it could signify that removing the 500 

fainter events along the periphery of the GLM groups by imposing a higher threshold improves 501 

the altitude estimate by limiting the cloud-edge illumination that results in CTH uncertainty. 502 

To test if these reduced errors under higher threshold are physical, we construct new 503 

altitude histograms based on event count under a 6 fJ threshold in Figure 6. As we saw in 504 

Peterson et al., 2021a, the altitude profiles depend on group size with single-pixel groups 505 

primarily originating from near the top of the cloud and large multi-pixel groups originating from 506 

low altitudes. These trends are expected to be amplified under a high threshold. Indeed, while the 507 

peak in the altitude distribution for all >1 event groups (Figure 6a-c) is at 70% ABI CTH, 508 

increasing the event count to >3 events in Figure 6d-f, >5 events in Figure 6g-i, and >7 events in 509 

Figure 6j-l causes the peak to descend in altitude. Meanwhile, the median absolute errors in 510 

Figure 6c,g,i, and l decrease from 4.56% (0.64 km) to 3.83% (0.54 km), 3.45% (0.51 km), and 511 

1.89% (0.3 km) as the groups increase in size and the peak becomes displaced vertically from the 512 

primary charge layer in the thunderstorm.  Thus, higher thresholds probably do improve the 513 

altitude estimates by reducing the influence of ABI CHT gradients on the predictions. However, 514 

these improvements come at the cost of limiting the number of predictions that can be made – as 515 

the abundant dim groups  most quickly fall below threshold.  516 

 517 
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3.2 GLM Source Altitude Model Predictions of Flash / Thunderstorm Trends 518 

The GLM source altitude prediction model is next applied to all GLM groups from the 519 

Colombia thunderstorm – regardless of whether they match any LMA sources or occur as part of 520 

a larger series. Applying the model generally will allow us to examine how well it captures 521 

major LMA altitude trends at the flash and thunderstorm level. 522 

We begin by using the LMA-matched data to reproduce the altitude timeseries from 523 

Figure 3b-e with GLM predictions in Figure 7. Figure 7a and c are identical to Figure 3, while 524 

Figure 7b and d replace the ABI CTH timeseries with GLM-retrieved altitude timeseries. Note 525 

that these GLM altitudes have been converted back to units of kilometers using the local ABI 526 

CTH at each group centroid for direct comparison with Figure 7a and c. As before, the first two 527 

panels consider all matched groups (including single-event groups) while the last two panels 528 

consider only groups with >5 constituent events. 529 

Despite the expected uncertainty from ABI CTH gradients and the use of LMA mean 530 

source altitudes as a measure of optical source altitude, the GLM predictions are able to 531 

reproduce the primary features in the LMA altitude distribution over the thunderstorm duration – 532 

including periods of intensification leading to increases in source altitude at 07:00 UTC, 09:00 533 

UTC, and 10:00 UTC and maturation causing source altitude to decrease after 11:00 UTC. Still, 534 

the GLM altitude timeseries for all groups (Figure 7b) and >5 event groups (Figure 7d) over-535 

estimate the peak source altitudes during periods of intensifications. This appears to be due to the 536 

ABI CTH normalization. The group radiance profile suggests that the source is above the local 537 

ABI CTH value, but the ABI CTH is high enough that the altitude retrieved from the GLM data 538 

is predicted to be between 17 km and 20 km. If we re-run the model without the normalization 539 

(not shown for brevity), these 17-20 km predicted altitudes disappear, but the model then over-540 
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estimates the altitudes of low-altitude sources that are embedded in low clouds. A 90th percentile 541 

altitude product or something similar applied to the ABI CTH normalized data might balance 542 

preserving these low sources while still permitting changes in source altitudes to be tracked.  543 

GLM-retrieved altitudes could also be used to generate new GLM gridded products 544 

(Bruning et al., 2019). Figure 8 examines the spatial distributions of these LMA measured and 545 

GLM predicted altitudes by computing a Mean Source Altitude (MSA) grid over a 1.5 hour 546 

interval between 07:30 UTC and 12:00 UTC. LMA measurements of MSA are shown in the left 547 

column (Figure 8a,e,i,m) and the LMA vertical profile is shown in the second column (Figure 548 

8b,f,j,n). These plots are then repeated for the GLM predicted altitudes in the right two columns. 549 

The MSA grid at 07:30 UTC contains a single concentrated feature with high source altitudes 550 

surrounded by a small number of matched groups around its edge. This MSA feature describes 551 

an isolated thunderstorm that was active during this period before the larger and more mature 552 

storm system moved into the LMA data domain. As we saw in Figure 7b, the GLM predictions 553 

overestimate the tallest LMA source altitudes at this point in time, though the peak in the altitude 554 

profile (Figure 8d) is nearly identical to the LMA (Figure 8b). The isolated matched groups 555 

around the storm edges are also at low altitudes (3-6 km) in both the LMA and GLM plots. 556 

Normalizing by ABI CTH allows the GLM predictions to pick up on these lower edge sources. 557 

The MSA grids are more complex by 09:00 UTC (Figure 8e-h) with multiple lightning 558 

centers containing flashes at different altitudes. By this point of the storm, the larger and more 559 

mature thunderstorm feature had moved into the LMA domain and was generating the low-560 

altitude propagating flashes. These horizontal flashes occur between 5 km and 9 km in the LMA 561 

data (Figure 8e) and the GLM predicted altitudes largely agree (Figure 8g). The key difference 562 

between the LMA measurements and GLM predictions here are in the quantity of low-altitude 563 
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sources (Figure 8f and h), not the average source altitudes.  564 

The previous trends for 07:30 UTC and 09:00 UTC persist to the 10:30 UTC time step 565 

(Figure 8i-l). The GLM predictions are occasionally higher than the LMA measurements, but the 566 

peak of the distribution is identical and both MSA grids show the same trends of higher sources 567 

in the eastern convective feature while low-altitude sources dominate the propagating flashes on 568 

the western flank of the storm. Finally, by 12:00 UTC (Figure 8m-p), the low-altitude 569 

propagating flashes overtake the higher-altitude convective flashes, causing both the LMA and 570 

GLM altitude profiles to peak at just 7 km altitude. 571 

To evaluate the performance of the GLM altitude prediction model at the flash level, we 572 

repeat the analyses in Figures 1 and 2 while adding a new overlay to represent the GLM 573 

predicted altitude for every multi-event group during the flash of interest. GLM altitude 574 

predictions for the low-altitude flash in Figure 1 are shown in Figure 9 while the predicted 575 

altitudes from the high-altitude flash in Figure 2 are shown in Figure 10. These new GLM 576 

altitude overlays are added to the longitude / altitude cross sections (Figure 9c, 10c), latitude / 577 

altitude cross sections (Figure 9e, 10e) and altitude timeseries (Figure 9g, 10g) in the same style 578 

as GLM groups in the plan view (Figure 9d, 10d) and area / energy distribution (Figure 9b, 10b). 579 

The GLM groups are depicted with larger box symbols whose color corresponds to the time-580 

ordered group index. GLM predicted altitude histograms are also added to Figure 9h and 10h. 581 

As with the previous thunderstorm trends, the GLM predicted altitudes from the low-582 

altitude flash in Figure 9 are largely consistent with the vertical range of LMA source altitudes 583 

(Figure 9h). While differences arise between GLM and the LMA for individual groups, much of 584 

this can be attributed to the vertical extent of LMA sources involved in each match. GLM 585 

likewise correctly predicts that the LMA sources in the high-altitude flash in Figure 10 occur 586 
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around 15 km altitude. However, GLM adds more detail to this flash case, as the LMA only 587 

recorded one source before 550 ms into the GLM flash (which could be noise due to its low 588 

altitude and horizontal separation from the other sources). All of the GLM predicted source 589 

altitudes are above 10 km in this case, which is consistent with the LMA flash in question. 590 

Figure 11 performs the same analysis as Figures 9 and 10 for the ascending flash 591 

discussed in Peterson et al., 2021a. This flash produced LMA sources primarily in the 5 km layer 592 

early on and generated two ENGLN -CGs before developing upward into the 10 km layer 593 

between 300 ms and 400 ms into the GLM flash. We see the same behavior in the GLM 594 

predictions in Figure 11g. There were 5 groups in the early portion of the flash (before 300 ms), 595 

and the model predicted that 4 were located in the 5 km layer. The later development into the 596 

upper layer was accompanied by sustained optical illumination, and the GLM-predicted source 597 

altitudes during this period likewise ascend into the upper layer. As discussed in Peterson et al., 598 

2021a, the upward development of the flash causes the group area / energy distribution to have a 599 

“forked” appearance due to the low-altitude source producing a different area / energy 600 

relationship than high-altitude sources. This can be seen in Figure 11b here. These differences in 601 

how clouds are illuminated by sources at different altitudes are key to being able to predict 602 

source altitude with GLM.  603 

The final flash that we examine in Figure 12 is the case of a long horizontal lightning 604 

flash that descended in altitude as it developed from the rear of the convective line into the 605 

stratiform region. This flash spawned a single ENGLN +CG and was unique from a GLM 606 

perspective for generating large, elongated groups that traced significant fractions of the existing 607 

lightning channel. Despite the limited quantities of stratiform flashes in the testing / training 608 

datasets, the GLM predictions are able to map the descent of the LMA flash from 14 km altitude 609 
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at its origin in the northwest down to 5 km as it traversed the electrified stratiform region. The 610 

longitude / altitude (Figure 12c), latitude / altitude (Figure 12 e) and timeseries (Figure 12g) all 611 

show reasonable matches between the LMA measurements and GLM predictions until the end of 612 

the flash (beyond 1500 ms). After this point, GLM predicts vertical development to high 613 

altitudes (10-15 KM). While LMA sources are not present at this point to confirm or refute these 614 

GLM altitudes, we do see this behavior with the LMA sources earlier in the flash around the time 615 

of the +CG. 616 

The storm-level analyses in Figure 7 and 8, and the flash-level analyses in Figures 9 to 12 617 

demonstrate that the GLM altitude prediction model is able to resolve the temporal and spatial 618 

variations in LMA altitude that respond to changes in the kinematics of the Colombia 619 

thunderstorm and are consistent with the physical structure of the flashes mapped by the LMA. 620 

The ability of the model to predict storm-scale and flash-scale trends in underlying LMA data 621 

that are not supplied as training data to the random forest regressor confirms that its skill does 622 

not come from overfitting the data, but instead that altitude information can be extracted from 623 

GLM measurements of thundercloud illumination.  624 

4 Conclusion 625 

In this third part of our thundercloud illumination study, we use machine learning 626 

methods to determine whether source altitude information can be retrieved from the spatial 627 

energy distributions of GLM groups. To do this, we find the LMA sources that match the GLM 628 

groups recorded from a thunderstorm in Colombia, construct group-level metrics to describe 629 

attributes of their radiance patterns that are relevant to thundercloud illumination, and then use 630 

the Python scikit-learn random forest regressor to construct a model for predicting mean LMA 631 

source altitude (normalized by ABI Cloud Top Height) from these group-level metrics. 632 
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We find that the machine learning model can retrieve source altitudes in the testing 633 

dataset (and data not used for testing or training) well enough to determine which charge layer 634 

the optical emissions originated from (median absolute error: 1.33 km). The model also has skill 635 

in capturing changes to the thunderstorm LMA source distributions in response to convective 636 

invigoration or maturation and resolving the vertical extent of individual lightning flashes – 637 

including cases where the flash ascends or descends in the cloud.  638 

Additional work is needed to expand these methods into a general source altitude 639 

retrieval algorithm that can work with arbitrary thunderstorms. Future work will expand our 640 

collection of matched GLM-LMA data to enable the construction of such a retrieval. The 641 

eventual goal is to be able to derive flash-level, storm-level, and climatological lightning altitude 642 

trends over the full 25-year global lightning dataset provided by OTD, LIS, GLM, and other 643 

similar instruments. Currently, these analyses are only possible with a reasonable accuracy over 644 

limited regional domains (for example, within ~300 km of an LMA). Adding this capability to 645 

all of the lightning imagers will provide an unparalleled view of the three-dimensional extent of 646 

global lightning and its response to a changing climate. 647 
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Table 1. GLM metrics that were considered as potential features for the machine learning model. 798 
Entries with an asterisk symbol were used in the final model. 799 
 800 
Parameter	Name	 Units	 Description	
GROUP_ENERGY	 fJ	 Group	total	energy	
GROUP_MAX_EVENT_PCT*	 %	 Percent	of	group	energy	in	brightest	

event	
GROUP_AREA*	 km2	 Group	footprint	area	
GROUP_CONVEX_AREA	 km2	 Area	of	convex	hull	around	all	

events	in	the	group	
GROUP_MAX_LOC_DIS*	 km	 Distance	between	group	centroid	

and	brightest	event	location	
GROUP_EVENT_MAX_SEPARATION	 km	 Maximum	great	circle	distance	

between	events	
GROUP_HWHM	 km	 Half	Width	of	Half	Maximum	of	

constituent	event	energy		
GROUP_ELONGATION	 ratio	 Group	elongation	factor	(major	axis	

length	/	minor	axis	length)	
GROUP_EVENT_COUNT	 #		 Number	of	events	in	the	group	
GROUP_N50	 #		 Min.	number	of	events	to	capture	

50%	of	the	group	energy	
GROUP_N75	 #		 Min.	number	of	events	to	capture	

75%	of	the	group	energy	
GROUP_N90	 #		 Min.	number	of	events	to	capture	

90%	of	the	group	energy	
GROUP_LOCAL_MAX_COUNT	 #	 Number	of	local	maxima	in	the	

group	footprint	
GROUP_HOLE_COUNT	 #	 Number	of	holes	(pixels	with	no	

events)	in	the	group	footprint	
SERIES_GROUP_MAX_SEPARATION*	 km	 Maximum	separation	of	groups	in	

the	parent	series	feature	
FLASH_THRESHOLD_APPROX*	 fJ	 Approximation	of	the	GLM	threshold	

for	the	parent	flash	
  801 
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 802 
Figure 1. The largest group in an example low-altitude GLM flash. The plan view (d) shows an 803 
image of the group (dark: low energy, light: high energy) with events indicated with a + symbol, 804 
LMA sources overlaid with small green boxes, and ENGLN -CG (blue) or +CG (red) strokes 805 
indicated with asterisk symbols. Panels (c) and (e) show LMA cross sections by altitude and 806 
either longitude (c) or latitude (e). Panels (a) and (f) show GLM longitude energy cross sections 807 
by longitude (a) or latitude (f). Plus (+) symbols in (a) and (f) indicate individual events while 808 
bars show column totals. Timeseries for LMA source altitude (g) and GLM group energy (i) are 809 
shown below the map. An LMA source altitude distribution is provided in (h), while the group 810 
energy / area distribution for the GLM flash is shown in (b). The groups in (i) and (b) are color 811 
coded by their time-ordered index number. A polynomial fit is also applied to the data in (b) and 812 
shown as a dashed line with its reduced chi2 value overlaid. 813 
  814 
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 815 
Figure 2. As in Figure 1, but for the largest group in an example high-altitude GLM flash. 816 
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 817 
 818 
Figure 3. Timeseries of LMA source altitude (a) and the mean altitudes of LMA sources 819 
matched to GLM groups (b-e). Measured LMA altitudes are shown for all matched GLM groups 820 
in (b) and for groups with >5 events in (d), while LMA altitudes normalized to the local ABI 821 
Cloud Top Height (CTH) are shown in (c) for all groups and (e) for groups with >5 events. 822 
  823 
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 824 
 825 
Figure 4. LMA / ENGLN attributes of matched GLM groups with varying group energy and 826 
brightest event percent of group energy values. (a) Two-dimensional histogram of LMA 827 
matches. (b) Average LMA source altitude contour plot. (c) Two-dimensional histogram of 828 
ENGLN CG matches. (d) Fraction of high-altitude (>10 km) matches in each bin. 829 
 830 
  831 
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 832 
Figure 5. Comparisons between LMA measured altitudes (a,d,g,j) and GLM predicted altitudes 833 
b,e,h,k) in the model testing dataset. Model errors are shown in (c,f,i,l). Each row corresponds to 834 
a different imposed threshold on the GLM groups: 0 fJ (a-c), 2 fJ (d-f), 4 fJ (g-i), or 6 fJ (j-l). 835 
  836 
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 837 
Figure 6. Comparisons between LMA measured altitudes (a,d,g,j) and GLM predicted altitudes 838 
b,e,h,k) for a 6 fJ threshold in the model testing dataset. Each row corresponds to a minimum 839 
number of events per group: >1 event (a-c), >3 events (d-f), >5 events (g-i), or >7 events (j-l). 840 
  841 
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 842 
 843 
Figure 7. Timeseries of the mean altitudes of LMA sources matched to GLM groups (a,c) and 844 
GLM predicted altitudes from matched groups (b,d). As in Figure 3, (a) and (c) include all 845 
matched groups while (b) and (d) only consider groups with >5 events. 846 
  847 
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 848 
 849 
Figure 8. Mean Source Altitude (MSA) grids (left) and source altitude profiles (right) 850 
constructed from LMA measured altitudes (a-b,e-f,i-j,m-n) and GLM predicted altitudes (c-d,g-851 
h,k-l,o-p). Each row corresponds to a unique time during the Colombia thunderstorm in 1.5 hour 852 
increments starting at 07:30 UTC (a-d). 853 
  854 
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 855 
Figure 9. As in Figure 1, but with GLM predicted source altitudes (greyscale boxes) added to 856 
(c), (e), and (g). Box colors are identical to (b), (d), or (i), but single-event groups are not shown. 857 
LMA source (green) and GLM group (grey) altitude profiles for the specific flash in question are 858 
added to (h). 859 
  860 
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 861 
Figure 10. As in Figure 9, but for the high-altitude GLM flash in Figure 2. 862 
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863 
Figure 11. As in Figure 9, but showing the GLM predicted altitudes following the ascent of 864 
LMA sources in the upward-developing GLM flash that was discussed in Peterson et al., 2021a.  865 
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 866 
Figure 12. As in Figure 9, but showing the GLM predicted altitudes resolving the descent of 867 
LMA sources in a long horizontal flash. 868 


