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ABSTRACT  

We developed a method for quantification of uncertainties on spatial data acquired at points with uncertain 
location coordinates. We applied it to well-log data from wells with uncertain trajectories. The method is 
fully probabilistic and requires few a priori assumptions on the Earth model and the wellbore geometry. We 
performed simulations of well trace and well-logging showing how the total uncertainty of well-log data vary 
according to the variability of subsurface properties, and how the reliability of well-log interpretations close 
to layer boundaries may be compromised.   

Keywords: subsurface imaging, uncertainty quantification, natural resources, computational modelling, 
applied geophysics.  

 

INTRODUCTION 

Quantification of uncertainties on model parameters 
derived from data acquired in the laboratory, in the 
field or in space, is well understood and well 
described in geophysics literature (Tarantola, 2005). 
However, with few exceptions (e.g., Winkler 1917), 
most applications of this theory to spatial data is 
based on the assumption that measurement locations 
are known exactly. I many cases this assumption is 
satisfactory, but under conditions where it is 
practically difficult to control where measurements 
are made, the situation is different. When measuring 
properties with large spatial variations over small 
length scales, uncertain measurement locations will 
be seen in the data as uncertainties in the measured 
properties, and in some cases the location uncer-
tainty may even overwhelm the uncertainty of the 
properties we wish to measure. 

Practical difficulties with determination of observa-
tion coordinates is seen in subsurface drilling opera-
tions as described here, but also in remote sensing 
from space- or aircrafts, and in remotely controlled 
measurements in planetary exploration. 

The uncertainties in these cases and the interference 
with interpretation and model accuracy have been 
subject of many investigations. In a study carried out 
by Hidalgo-Carrió et all (2017), Gaussian processes 
for odometry were used to estimate the errors in 
location of test rovers, built to explore geological 
data on Mars. In an environment such as this, 
deprived from the Global Positioning System,  
instead using an Inertial Navigation System, the 
precision of the location in data acquisition turns out 
to be an immense problem with direct impact on the 
feasibility of remote interpretations.  

Another important example where data is strongly 
influenced by location accuracy is satellite 
technologies used in Geographic Information 
System (GIS). Satellites in the Global Positioning 
System provide data for geological surveys, 
geospatial imagery data and machine learning for 
pattern recognition such as mineral mapping, 
forestry and agriculture cover, management of 
resources, natural disasters, among many others. As 
in Dixon (1991), the uncertainties in satellites orbits 
are one of the major obstacles in the capability of 
such technologies and have been a subject of study 
for the past few decades.  
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Similarly, surveying and mapping the subsurface 
offers great challenges. Horizontal wells are drilled 
by companies exploring natural resources, collecting 
well-log data at specific locations. These locations 
are recorded with a depth and horizontal position. As 
the drilling goes deeper and further, the uncertainties 
in these locations propagate, increasing the 
possibility of misinterpretations. The consequences 
are significant; from increasing the costs of the 
drilling operation itself, to making wrong decisions 
and interpretations of the geological structures.  

Several numerical modelling studies using well 
trajectories have been done, aiming to tackle the 
geosteering problem using a variety of different 
approaches. As in a study carried out by Eidsvik and 
Hokstad (2006), seismic data in the form of VSP 
travel times were used to estimate the trajectory of 
the well, the geological structures and the seismic 
velocities. Another work carried out by Kullawan et 
al. (2014) demonstrated how to measure the distance 
to bed boundaries near the drill-bit using deep-
directional resistivity logs. 

Unfortunately, most models do not include these 
uncertain locations as parameters, so there is a 
deficiency of knowledge in the quantification of 
errors in well-location data. Nonetheless, Winkler 
(2017) formulated a probabilistic inverse problem 
approach using Bayesian networks to include 
uncertain wellbore locations in the 2D geosteering 
case. He successfully analyzed the problem in a 
probabilistic context, thereby providing a 
quantification of the uncertainties involved when 
measuring uncertain log-data at an uncertain well 
trajectory. In his study, errors were considered to be 
perpendicular to the well trace, however, it is 
observed in field that the errors behave differently 
vertical and horizontally.  

To have a more complete approach for this problem, 
we formulated a 3D statistical model considering 
vertical and lateral errors in relation to the well 
trajectory, along with errors in well-log 
measurements. We based our approach on the 
general inverse problem theory given by Tarantola 
(1982, 2005). In our formulation, the observed data 
are the rock properties and their measured positions. 
The model parameters to be determined are the true 
well log recordings and their true observation 
coordinates.  

Errors were accounted for in both sets of 
measurements, well data and location data. Position 
errors are not treated as independent: a physical 
measurement will be recorded at a position with 3 
directional components and the next measured point 
will also include the previous error. In this model, 
each wellbore point has an error associated with 
depth and 2D horizontal location which is inherited 
by the next neighbouring point in the well. Hence, 
the error propagates throughout the well trace and 
we see how the observed well, which is believed to 
be crossing through a certain layer of interest of the 
subsurface, could potentially be in another. This 
mislocation effect introduces errors that can be 
accurately quantified. In our study, several wells 
were simulated, and the uncertainties of the 
measurements and locations were calculated. 

Winkler's assumption of parallel - but not 
necessarily plane - layering introduces a coupling 
between geology and well trajectory that adds to the 
posterior information about the system. We avoid 
the parallel layering assumption but, in that way, 
relinquish information about the geological structure 
around the well trajectory. On the other hand, it 
allows us to more accurately analyse how an 
uncertain well trajectory influences the uncertainty 
of well-log information. Our prior assumptions are, 
in general, more conservative than Winkler's: in 
addition to allowing any variation in geological 
structure and properties, we also avoid imposing 
strong prior information on the well trajectory. 
Winkler's choice was a reasonable one, namely, to 
use the planned well trajectory as part of the prior 
information. However, in order to avoid a too strong 
bias from this information, we have chosen to rely 
only on the measured well trajectory. 

In this paper we present a revised inverse problem 
formulation applied to a realistic subsurface property 
model, and with all sources of uncertainty included 
in the formulation. In our study, we have used a 
Monte Carlo approach to evaluate solutions and 
uncertainties. This is in contrast to Winkler (2017) 
where an exhaustive evaluation of probabilities was 
used. Winkler met the computational challenges of 
his method through an elegant, discrete Bayesian 
network formulation, but in our case, where a more 
general geological model is considered, an 
exhaustive analysis would be infeasible, if not 
impossible. The Monte Carlo approach is therefore 
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a natural choice, and our implementation is able to 
analyze real-size problems efficiently, even on 
present-time PCs. In the theory and methods section, 
we present the revised mathematical formulation and 
the numerical approach. In the results and discussion 
session we present the outcome of the simulations 
and their interpretations.    

 

THEORETICAL FORMULATION 

The theory used in this paper is based on Tarantola 
and Valette's formulation (1982) and Tarantola 
(2005).    

For unknown parameters 𝐱 the general solution of 
the inverse problem is given by the posterior 
probability distribution: 
 

 𝜎(𝐱) = 𝜌!(𝐱)𝐿"(𝐱) 
 
where 𝜌!(𝐱) is the prior probability distribution of 
the unknown model parameters 𝐱, and 𝐿#(𝐱) is the 
likelihood function describing the degree of fit 
between observed data 𝐛$%& and the computed data 
𝐛(𝐱). Since we have two sources of measured data 
in this problem: the physical properties (well-log 
data) 𝐝 collected at points in space, and their 
respective position coordinates 𝐜, the forward 
relation connecting model parameters and data, 𝐛 =
𝑔!(𝐱), becomes:  
 

,𝐝𝐜- ≡ 𝐛 = 𝑔!(𝐱) ≡ 𝑔',)(𝐦, 𝐫) 	= 	 3
𝐝(𝐦)
𝐜(𝐫) 4

= 	 ,𝐦𝐫 - 
 

where 𝐦 is the true physical parameters (noise-free 
well-log data to be estimated), and r are true 
measurement positions. 𝑔',) is the function that 
maps true parameters into the observed data.  
  
The likelihood function can be expressed as: 
 

𝐿#,*(𝐦, 𝐫) = 𝜌#,*(𝑔',)(𝐦, 𝐫)) 
 
(Tarantola and Valette, 1982). Assuming that the 
physical observation noise is independent of the 
measured positions and its uncertainty: 
 

𝜌#,*(𝐝, 𝐜) = 𝜌#(𝐝)𝜌*(𝐜) 

 
we obtain the joint posterior: 
 

𝜎',)(𝐦, 𝐫) = 𝜌',)(𝐦, 𝐫)𝐿#,*(𝐦, 𝐫)
= 𝜌',)(𝐦, 𝐫)𝐿#(𝐦)𝐿*(𝐫)	. 

 
For the joint positioning and observation problem 
we typically know the prior of the positions 𝜌)(𝐫), 
but the prior of the observations is only known 
conditioned on the position, 𝜌'|)(𝐦|𝐫),	and this 
leads to: 
 

𝜎',)(𝐦, 𝐫) = 𝐿#(𝐦)𝜌'|)(𝐦|𝐫)𝐿*(𝐫)𝜌)(𝐫)	. 
 
 

NUMERICAL METHOD 

We simulate a deviated well in an 7,2	𝑘𝑚	 × 	8	𝑘𝑚 
geographic area, with a maximum well depth of 2 
km (Figure 1). In our numerical experiments we 
consider 50 observation points in the well whose 
space coordinates have been observed during the 
drilling process. We assume that our final goal will 
be to correlate deviated wells and seismic data, so 
our geological structure model is an acoustic 
impedance cube, in this case taken from the North 
Sea F3 Demo 2016 training v6 dataset, Offshore 
Netherlands (https://terranubis.com/ datainfo/F3-
Demo-2016). In our drilling simulations we assume 
cumulative location errors where each increment 
(between successive observation points) introduces 
a Gaussian error.  
 

 
Figure 1 - Observed well positions 

 
The incremental errors are identical at all 
observation points and calibrated to give a specific 
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cumulative error at the bottom of the well. Standard 
deviations of the horizontal coordinates at the 
bottom point are 30 m, whereas the standard 
deviation of the depth coordinate is 3 m. For the sake 
of illustration, we have chosen relatively few 
observation points, and horizontal errors that are in 
the high end, compared to most practical cases. We 
assume that sonic- and density logs have been 
measured in the well, allowing us to compute the 
acoustic impedance at all observation points. The 
acoustic impedances thus calculated are assumed to 
have an uncertainty of 5%. 
 
Our task is to compute the a posteriori probability 
distributions for locations of the observation points, 
as well as for the acoustic impedances in the well 
observation points.  
 
The geosteering problem is a joint tracking and 
observation problem. This means that, if the 
measurement positions are written 
 

𝐜 = (𝐜, 	… , 𝐜-)		 
 
where 𝐜. is the position vector of the 𝑖'th 
measurement point, 𝑖 = 1 and 𝑖 = 𝐾 indicating the 
first and the last measurement points respectively. 
The prior uncertainty of 𝐜 then has the form: 
 

𝜌*(𝐜) =C𝜌*(𝐜./,|𝐜.)
-0,

.1,

 

 
expressing that the typical situation in tracking is 
that the position and uncertainty of the (𝑖 + 1)'th 
point depends on the position and uncertainty of the 
𝑖'th point. We can now write the tracking likelihood 
function as 
 

𝐿*(𝐫) =C𝜌*(𝐡./,(𝐫.))
-0,

.1,

 

 
where 𝐡 is the function mapping 𝐫. into 𝐫./,. 
 
In contrast to Winkler (2017) who used a prior 𝜌)(𝐫) 
centred at the observed well positions, we use a 
constant prior for 𝐫. In this study we also refrain 
from injecting any prior information about the well-
log parameters, based on their measurement 

coordinates. This means that 𝜌'|)(𝐦|𝐫) is also 
assumed constant in our calculations. 
 
Since the well-log data can be expressed 𝐝	 = 𝐦+
𝐧	, where 𝐧 is Gaussian noise, the likelihood 
function 𝐿#(𝐦) is equal to the distribution of 𝐝, 
centred at 𝐦 with the same standard deviation as the 
noise 𝐧. 
 
Our algorithm now proceeds by sampling the 
tracking posterior 𝜎',)(𝐦, 𝐫) through simulation of 
100 well traces with cumulative errors, growing 
along the wells (figure 2) and assuming zero error at 
the surface. Samples of the posterior distribution 
𝜎',)(𝐦, 𝐫) of acoustic impedances and true 
observation coordinates 𝐫 are now found by Monte 
Carlo sampling: 
 

1. Generate well trajectories randomly 
according to the product distribution 
𝐿*(𝐫)𝜌)(𝐫). Since 𝜌)(𝐫) is assumed 
constant, this amounts to producing samples 
from 𝐿*(𝐫) through a simple, sequential 
generation of well points where each 
increment of the well trajectory introduces 
an error (here Gaussian). 

2. Conditioned on the location coordinate 
samples 𝐫,  generate well-log data randomly 
according to the product distribution.   
𝐿#(𝐦)𝜌'|)(𝐦|𝐫). The combined samples 
(𝐦, 𝐫) generated in this way are samples 
from the posterior 𝜎',)(𝐦, 𝐫). 

 
 

 
Figure 2 - Simulations of 100 wells with cumulative errors. 
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RESULTS 

On figure 1, the observed well is shown in a cross 
section of the acoustic impedance model. In each of 
the drilled observation points well data have been 
measured, along with their positions.  

 

 

We simulated 100 well trajectories with cumulative 
errors growing along the well (figure 2). The errors 
were zero at the top of the well, and it was assumed 
that the depth errors were 10 times smaller than the 
horizontal errors.   

On figure 3 is shown the cloud of points representing 
the possible positions of 3 points at from the 100 
simulated well traces, and figure 4 shows how the 
errors in depths of the well points grow along the 
well. In figure 3 it is observed that, because the 
locations become more uncertain at the bottom of the 
well, they coincide with different layers of the 
acoustic impedance model.  

 

 

 
 

 

Figure 3 - Observed well with the simulated positions showing cumulative errors. 

Figure 4 - Histograms of the sampled 
depths of the 50 well points. 
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The uncertainty of positions adds to the total 
uncertainty on measured rock properties. Figure 5 
shows the distribution of the x-coordinate of 
measurement locations collected at the cloud of 
points represented on figure 3. The general trend is 
that the measured coordinates vary significantly with 
depth. 

 

 
Figure 5 - Histograms of the measured positions on x 

direction at three different locations. 

 

This is also seen in the growth of the standard 
deviation of the well depth coordinate in figure 6. 
This curve shows that the error grows as the square 
root of the depth (as expected from cumulated 
Gaussian errors). 

 
Figure 6 - Standard deviation of the positions in x, y and z 

directions growing with the depth. 

 

 

However, a practically very significant effect of well 
location uncertainties is seen in figure 7. This figure 
shows the posterior distribution of rock properties at 
each well point. It is seen that the total uncertainties 
of these parameters are, in general, significantly 
higher at locations with large spatial variations in 
rock properties. The total error in this example is up 
to 2.5 times larger than the error associated with the 
well-log measurement itself. The errors are locally 
so large that correlation with seismic data may be 
compromised.  
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DISCUSSION 

Knowing measurements in a well, together with the 
associated instrumental errors, is not sufficient to 
quantify the total error in the measurements. In this 
paper we have shown that measurement location 
errors together with large variations in rock 
properties can generate significant total errors. The 
amount of error will be highly dependent on the 
specific conditions, including drilling technique and 
geological structure and properties. For clarity of 
presentation we have looked at drilling errors in the 
high range, but our rock property model is, on the 
other hand rather smooth (an acoustic impedance 
model produced by seismic inversion). For highly 
varying rock properties, the effect may be stronger 
than seen in this study.  

The theory developed in this paper is fully 
Bayesian/probabilistic, allowing all uncertainties to 
be considered in the analysis. We made a conser-
vative choice in the selection of a priori information 
about the location of the well trajectory, assuming a 
'non-informative', constant prior distribution. The 
same strategy was followed in the selection of prior 
distribution of the dependence of rock properties on 
spatial position. Also, here we chose a constant 
distribution, but in some cases, it could be meaning-
ful to use this conditional prior to express previous 
experience about the spatial distribution of rock 
properties in a given area. 

 

CONCLUSION 

We have presented a method to quantify how errors 
in geosteering influences analysis of well log data. 
We showed that the total uncertainties on rock 

Figure 7 – Left: Simulated well-log measurements with instrumental errors. Right: Posterior distribution of the measured rock 
property. The total (location + measurement) is locally large compared to the measurement error itself. 
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properties measured in well logs may be 
significantly higher than the basic instrumental 
errors, when uncertainties in measuring positions are 
taken into account. In some cases, the errors may be 
so large that correlation with seismic data may be 
compromised. 
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