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Plain Language Summary  26 

Active fault zones worldwide are 3D features made of a parent fault and secondary 27 

faults and fractures that damaged the surrounding medium. During and soon after a 28 

large earthquake, these structures are reactivated, highlighted by numerous smaller 29 

events, also called aftershocks. Their distribution allows us to characterize the zone of 30 

shear deformation around the fault plane. In this study, we show that the width of the 31 

shear deformation zone is narrower around mature faults than around immature faults. 32 

It decreases as a power law with cumulative fault displacement as the result of the 33 

smoothing of the fault with wear through geological times. Our study provides some 34 

relations to better understand and anticipate the size of off-fault deformation 35 

reactivated during and after an earthquake, based on geological fault parameters. 36 

 37 

Abstract 38 

We use high-resolution earthquake locations to characterize the three-dimensional 39 

structure of active faults and how it evolves with fault structural maturity. We 40 

investigate the distribution of aftershocks of several recent large earthquakes that 41 

occurred on crustal strike slip faults of various structural maturity (i.e. various 42 

cumulative fault displacement, length, initiation age and slip rate). Aftershocks define a 43 

tabular zone of shear deformation surrounding the mainshock rupture plane. 44 

Comparing this to geological observations, we conclude that this results from the re-45 

activation of secondary faults. We observe a rapid fall off of the number of aftershocks at 46 

a distance range of 0.06 – 0.25 km from the main fault surface of mature faults, and 0.7-47 

1.5 km from the fault surface of immature faults. The total width of the active shear 48 

deformation zone surrounding the main fault plane reaches ~1.5 km and 2.5-6 km for 49 

mature and immature faults, respectively. We find that the width of the shear 50 
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deformation zone decreases as a power law with cumulative fault displacement. 51 

Comparing with an existing dynamic rough fault model, we show that the narrowing of 52 

the shear deformation zone agrees quantitatively with earlier estimates of the 53 

smoothing of faults with displacement, both of which are aspects of fault wear. We 54 

compare this evolution of fault structure with several attributes of earthquakes, and find 55 

that earthquake stress drop decreases with fault displacement and hence with increased 56 

smoothness. 57 

 58 

1. Introduction 59 

A fault zone is a complex brittle-frictional system that wears as slip occurs on it. It is 60 

formed of three main features, that will evolve with fault growth (Fig. 1): (i) the 61 

cataclastic core contains the cataclastic detritus of wear of the slipping surfaces of the 62 

fault. Its width (WC in Fig. 1) increases linearly with fault displacement at a rate that 63 

depends on the strength of the wall rock (Scholz, 1987, 2019, pp 132). For 64 

displacements greater than a few hundred meters, growth of the fault core levels off at a 65 

thickness of a few tens of meters (Scholz, 2019, pp 132); (ii) Beyond the fault core lies a 66 

region of pervasive tensile fracturing which defines the “dilatant damage zone” (WD, Fig. 67 

1; e.g. Faulkner et al., 2011; Savage & Brodsky, 2011; Vermilye & Scholz, 1998). The 68 

fracture density in this zone dies off as a power law with distance from the fault (e.g., 69 

Ostermeijer et al., 2020 and references therein). The dilatant damage zone width 70 

increases linearly with fault displacement, and typically levels out at several hundred 71 

meters for fault displacements exceeding several hundred meters (Savage & Brodsky, 72 

2011); (iii) Including and extending beyond the dilatant damage zone is what we call the 73 

“shear deformation zone” (WS; Fig. 1) which is defined by a region of enhanced 74 

seismicity, first pointed out by Powers & Jordan, 2010. This zone shows a region of high 75 
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activity near the fault with a power law fall-off beyond a corner at WS1 to a full half-76 

width of WS2 (Fig. 1).  77 

 78 

The above definitions allow us to distinguish two types of damage zones: the “dilatant 79 

damage zone” dominated by volumetric strains, and the “shear deformation zone” 80 

dominated by shear strains. The tensile (Mode I) cracks in the dilatant damage zone are 81 

dilatant cracks that align parallel to the maximum compression direction and 82 

perpendicular to the minimum principal stress. Hence their orientation provides 83 

evidence for the several different mechanisms responsible for them (Wilson et al., 84 

2003). The shear deformation zone is characterized by secondary faults (Mode II and III 85 

cracks) and hence are oriented parallel to the maximum Coulomb stress. For example, in 86 

the case of a strike-slip fault, this zone is defined by a conjugate set of secondary faults 87 

(Little, 1995). 88 

 89 

The evolution of these three zones defines what is called fault maturity. The three zones 90 

can be viewed as regions controlled by wear processes, and the fault structural maturity 91 

can hence be measured by its degree of wear, which depends primarily on the net fault 92 

displacement. However, previous studies have shown that, in the absence of data on net 93 

fault displacement,  several other fault parameters such as the fault initiation age and 94 

the geological slip rate can be also used as a proxy of net displacement in evaluating the 95 

overall maturity of the fault (e.g. Choy et al., 2006; Choy & Kirby, 2004; Dolan & 96 

Haravitch, 2014; Hecker et al., 2010; Ikari et al., 2011; Manighetti et al., 2007; Niemeijer 97 

et al., 2010; Perrin et al., 2016a; Stirling et al., 1996; Wesnousky, 1988). As these 98 

parameters increase, the fault grows and becomes more “mature”. Prior studies have 99 

suggested that the structural maturity may have a strong impact on earthquake 100 
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behavior, such as magnitude,  stress drop, distribution of slip, ground motion amplitude, 101 

and number of ruptured segments (e.g., Cao & Aki, 1986; Dolan & Haravitch, 2014; 102 

Hecker et al., 2010; Malagnini et al., 2010; Manighetti et al., 2007; Perrin et al., 2016a; 103 

Radiguet et al., 2009; Stirling et al., 1996; Wesnousky, 1988). 104 

 105 

The widths of the fault core and dilatant damage zones saturate at fault lengths 106 

comparable to the seismogenic thickness, so that for large faults, the evolution of fault 107 

maturity involves only changes in the shear deformation zone. In this paper we are 108 

concerned with the scaling of large faults (i.e. which reach the brittle seismogenic depth) 109 

and their associated large earthquakes, so we are only concerned with the shear 110 

deformation zone. There is evidence that indicates that large faults become smoother 111 

with net displacement (Stirling et al., 1996; Wesnousky, 1988). This smoothing is 112 

probably the prime attribute of fault maturity. Here we show that the width of the shear 113 

deformation zone of large faults decreases with fault displacement, as a consequence of 114 

this smoothing. 115 

 116 

Precise earthquake locations can be used to image the internal structure of fault and the 117 

zone of brittle deformation, often at a resolution similar to field observations (e.g. 118 

Powers & Jordan, 2010; Hauksson, 2010; Valoroso et al., 2014). Powers & Jordan (2010) 119 

studied the association of small earthquakes with large faults in California. They found 120 

that the frequency of small earthquakes is highest in a narrow region surrounding faults 121 

and then falls off as a power law at greater distances. They modeled this behavior with a 122 

fault model with rough (fractal) topography (Dieterich & Smith, 2009), showing that 123 

such a rough fault model would produce high stresses near the fault that could account 124 

for the seismicity. The seismicity they used was from the interseismic period of the 125 
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faults. Although stacked profiles from many fault sections show the association with the 126 

faults, individual sections and map views, both in Powers & Jordan (2010) and Hauksson 127 

(2010) show that such a tight correlation with the fault is not typical of individual fault 128 

segments, for which a wide variety of distributions of seismicity can be observed. As 129 

Hauksson (2010) observed, this variability is likely due to many factors, such as 130 

heterogeneity in lithology, the effect of nearby faults both mapped and unmapped, and 131 

fault offsets and bends.  132 

 133 

As Hauksson (2010) observed further, aftershocks of large earthquakes, in contrast, 134 

always show a tight clustering around the main fault. The majority of aftershocks of 135 

large earthquakes occur close to the rupture surface, and are often used to delineate it. 136 

In an earthquake model with a smooth rupture surface, the near-fault area lies in a deep 137 

stress shadow (Kostrov & Das, 1984). Near-fault aftershocks therefore are an indication 138 

of a rough fault, as near-fault stresses are generated by dynamic slip on rough 139 

topography. They are greatest right after the mainshock, after which they are relaxed by 140 

aftershocks and other relaxation mechanisms. In this study, in order to estimate the 141 

roughness of active faults, and how they evolve with displacement, we use high-142 

precision aftershock locations of large earthquakes on faults with different net 143 

displacements. 144 

 145 

2. Data analysis 146 

2.1 High-resolution earthquake location 147 

We use high-resolution earthquake catalogs available in the literature to analyze the 148 

aftershock distribution of eight large (Mw≥6) continental strike slip earthquakes: the 149 

1984 Morgan Hill, 2004 Parkfield, and 2014 South Napa earthquakes in northern and 150 
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central California (Waldhauser, 2009; Waldhauser & Schaff, 2008), the 1987 151 

Superstition Hills, 1992 Landers, 1999 Hector Mine, and 2010 El Mayor Cucapah 152 

earthquakes in Southern California/Mexico (Hauksson et al., 2012), and the 2000 153 

Tottori earthquake in Japan (Fukuyama et al., 2003). These earthquakes were selected 154 

because high precision catalogues were available for their aftershocks and because they 155 

occurred on faults with a wide range of net displacement. In order to perform an 156 

appropriate and homogeneous analysis of all cases, we selected events of Mw>1 within 157 

2 months of each mainshock, all relocated by double difference techniques (Waldhauser 158 

& Ellsworth, 2000).  159 

 160 

For each aftershock sequence we determine the three-dimensional fault geometry by 161 

applying a principal component analysis (PCA) to all events within boxes that are 162 

between 3 and 10 km long along strike and between 3 and 20 km wide across strike (i.e. 163 

centered on the surface fault trace in map view), stepping at 1 km intervals along the 164 

fault trace (Perrin et al., 2019). For each box, we obtain a plane that best fits the 165 

locations of aftershocks. For simplicity, we assume, in each box, a constant dip of the 166 

calculated planes as a function of depth (see also Perrin et al., 2019). Then we deduce 167 

the orthogonal distance between each event and the calculated fault plane segment, and 168 

sum up the the number of aftershocks on each side of the fault within bins of 50 m from 169 

the fault plane (but 20 m for Parkfield) (gray curves in Fig. 2b, d, e, f, g and Supp. Fig. S1). 170 

These gray distributions are normalized by the total number of aftershocks in each box. 171 

We use the mean values of the normalized number of events in each bin (black curve in 172 

Fig. 2 and Supp. Fig. 1) to describe the smoothed distribution of aftershocks away from 173 

the fault plane. 174 

 175 
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We use two parameters to describe the smoothed near-fault aftershock distribution: the 176 

location where the number of events begins to fall off with distance from the fault (WS1), 177 

and the location where the background level of seismic activity is reached (WS2). In 178 

order to find these parameters we use a power law function to fit the mean normalized 179 

aftershock distribution (red fit in Fig. 3 and Supp. Fig. 2) and defined WS1 at the location 180 

where the function reaches a maximum in its  2nd derivative. WS2 corresponds to the 181 

distance where the mean distribution departs from the fit (see Fig. 3), as defined also in 182 

Powers and Jordan (2010). In a few cases (e.g., Hector Mine, Superstition Hills, Landers), 183 

WS2 cannot be determined because the background level cannot be estimated due to the 184 

presence of subparallel or sub-perpendicular fault sections that bias the number of 185 

events. In these cases, we use the WS2 values determined from other fault segments that 186 

broke during the same earthquake, hence assuming a similar background seismicity 187 

level away from the different fault sections. 188 

 189 

As an example of our approach, the analyses of the 2004 Parkfield and 1999 Hector Mine 190 

aftershocks are presented in figure 2 and 3 (see Supp. Fig. S1 and S2 for all earthquake 191 

cases). The near-fault aftershock distribution at Parkfield (black curve, Fig. 3a) describes 192 

a rapid fall off at ~0.06 km away from the fault plane (WS1) until they reach background 193 

seismicity levels at ~0.8 km from the fault plane (WS2). In cases with multiple rupture 194 

traces (i.e. Hector Mine, Landers, El Mayor Cucapah), we separately analyzed each main 195 

section that broke during the earthquake (Fig. 2c, d, e, f, g, 3b, c, d, e and Supp. Fig. S1 196 

and S2). In these cases, the aftershocks distributions were fairly similar for the different 197 

traces. Hence, we averaged WS1 and WS2, when possible, so that single values could be 198 

assigned to each earthquake sequence. Table 1 lists measurements for the eight 199 

earthquakes analyzed in this study.  200 
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 201 

Also listed in Table 1 are data from the Awatere fault. This right-lateral strike-slip fault 202 

is a first order splay of the Alpine fault of New Zealand. It crosses the coast at a sea-cliff 203 

that offers an almost complete exposure of the entire fault zone from the fault core 204 

through the shear deformation zone. This was mapped by Little (1995), who showed 205 

that the shear deformation zone consists of a set of conjugate strike-slip secondary 206 

faults that decreased in frequency with distance from the primary fault in the same 207 

manner as the aftershocks do in our study. The right-lateral set of the secondary faults is 208 

nearly sub-parallel to the main fault and the left-lateral set about 60° from that. Values 209 

of WS1 and WS2 obtained from that data are indicated in Table 1. An exposure at mid-210 

crustal depths of a strike-slip fault in Austria shows just the same orientation of 211 

secondary faults (Frost et al., 2009). These observations provide the ‘ground truth’ for 212 

the structures upon which the near-fault aftershocks occur.  213 

 214 

2.2 Fault parameters  215 

We collect key parameters describing the degree of evolution of the faults that broke 216 

during the selected earthquakes. Since faults propagate laterally through time, their 217 

structural maturity varies also along strike (Perrin et al., 2016a; 2016b). Thus, it is 218 

necessary to use fault parameters that describe the local fault maturity where the 219 

rupture occurred. This is particularly true for long faults, such as the San Andreas Fault, 220 

for which fault initiation age varies greatly along the fault, from ancient fault sections in 221 

Central California (24 to 29 Ma at Parkfield; e.g. Atwater & Stock, 1998; Liu et al., 2010) 222 

to younger fault sections in Southern California (<12Ma, e.g. Powell & Weldon, 1992; 223 

Sims, 1993), and therefore have different local net displacements. Table 1 presents the 224 

fault parameters used in this study. The eight fault sections span a wide range of 225 
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structural maturity, with various initiation ages (1.1 to 29 Ma), cumulative 226 

displacements (1 to 315 km) and geological slip rates (0.1 to 26 mm/yr).  227 

 228 

In the case of the Tottori earthquake the cumulative displacement of the Komachi-Odani 229 

fault is not known. We estimated it based on the empirical relation from Schlische et al. 230 

(1996) that shows that crustal fault displacement scales with their length as 2x10-2 to 231 

8x10-2. If we take the fault length from the aftershocks distribution (Fukuyama et al., 232 

2003) to be 35 km, this would give a cumulative displacement in the range 0.7 to 2.8 km 233 

(Table 1). In the case of the Awatere fault we do not have aftershock locations, but  234 

indstead use the width of the shear deformation zone as inferred from field data 235 

measured by Little (1995) across an immature section of the Awatere fault zone, in New 236 

Zealand (cumulative slip : < 2±1 km, initiation age : < 4±1 My, long-term slip rate : 5±1 237 

mm/yr near its northeastern tip; Little, 1995 and references therein).  238 

 239 

3. Results  240 

We investigate the relationship between the two independent datasets: the aftershock 241 

distributions and the fault parameters (Table 1). Our first observation is that WS1 (i.e. 242 

the half distance from the calculated fault plane where the aftershock rate saturates) 243 

and WS2 (i.e. the full half-width of the shear deformation zone) correlate with each other 244 

(Fig. 4), indicating that these two parameters are not independent and that the shape of 245 

the shear deformation zone grows in a self-similar way (although there is an indication 246 

that WS1 becomes relatively narrower for more mature faults). Figure 5 represents the 247 

evolution of the width of the shear deformation zone (i.e. WS1 and WS2) as a function of 248 

the cumulative fault slip (Fig. 5a and 5b, respectively). Both plots show the same trend: 249 

the width of the shear deformation zone, measured with both parameters, decreases 250 
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with net displacement as a power law with an exponent of -0.55 and -0.35 for WS1 and 251 

WS2, respectively. These results indicate that the two parameters WS1 and WS2 scale 252 

similarly with displacement.  253 

Note that the field measurements across the Awatere fault (red symbol in Fig. 5) are in 254 

good agreement with the trends highlighted from seismological data. This supports the 255 

interpretation that the shear deformation zone defined by the width of the aftershock 256 

zone corresponds to the width of the zone of active secondary faulting.  257 

 258 

As WS1 and WS2 are found to decrease with cumulative displacement, we observe a 259 

similar decrease of these parameters with fault initiation age and slip rate, showing a 260 

wider shear deformation zone for younger fault sections (Supp. Fig. S3) and smaller 261 

geological slip rates (Supp. Fig. S4), also in good agreement with geological observations 262 

across the Awatere fault.  263 

 264 

Figure 6a shows the near-fault aftershock distribution as a function of fault 265 

perpendicular distance for the eight earthquake sequences considered in this study (see 266 

also black curves in Fig. 2 and Supp. Fig. S1). These distributions show a clear pattern: 267 

mature fault sections (warm colors in fig. 6a, b and c) are characterized by aftershocks 268 

concentrated mainly close to the fault plane. The rapid fall-off in activity away from the 269 

fault plane describes a narrow deformation zone at the scale of hundreds of meters. In 270 

contrast, immature faults (cold colors in fig. 6a, b and c) exhibit a wider deformation 271 

zone at the kilometer scale where events are more widely distributed within the 272 

surrounding medium (i.e. lower maximum number of events in the near-field of 273 

immature faults than of mature fault sections; fig. 6a and b). The distributions remain 274 

proportional to one another, indicating the shape of the shear deformation zone remains 275 
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constant. Here again, field measurements of cumulative number of faults across the 276 

Awatere fault (black squares, fig. 6a; Little, 1995) show a similar trend and corroborate 277 

our seismological observations.  278 

 279 

 280 

4. Discussion 281 

4.1. The Nature of the Shear Deformation Zone and the Smoothing of Faults 282 

In this study we show that for fault displacements greater than 1 km the width of the 283 

shear deformation zone, defined by WS1 and WS2, decreases with fault displacement. So, 284 

what determines the width of the zone of near-fault aftershocks? Models of a mainshock 285 

employing smooth faults would indicate a deep stress shadow in this area, precluding 286 

the presence of such near-fault aftershocks (Kostrov & Das, 1984). On the other hand, 287 

models with rough faults predict high stresses within a well-defined region close to the 288 

fault, which corresponds to the shear deformation zone. Powers & Jordan (2010) 289 

interpreted their data in just that way, using a rough static fault model of Dieterich & 290 

Smith (2009). 291 

 292 

Here we consider the model of Aslam & Daub (2018) which calculates the stresses 293 

resulting from dynamic ruptures propagating on a rough surface. They characterized the 294 

fault as a self-affine fractal with Hurst exponent H and roughness measured by the RMS 295 

height to wavelength ratio. This is a fairly realistic rendition of the observed topography 296 

of faults (e.g. Candela et al., 2012). Their model predicts large changes in the Coulomb 297 

Failure Function (CFF= within a well-defined narrow region close to the fault. 298 

The receiver faults they assumed are parallel to the primary fault: this would be 299 

consistent with the orientation of the secondary faults observed by Little (1995) and 300 
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Frost et al. (2009). They find that the width of this near-fault region of high stresses is 301 

insensitive to H but decreases as the RMS roughness decreases. If we identify our 302 

observed shear deformation zone with that near-fault region of high stresses, this 303 

indicates that the observed decrease of WS2 with fault displacement is the result of 304 

smoothing of the fault with slip. 305 

 306 

Aslam & Daub (2018) found that the half width of the near fault zone is ~ 2.7 and ~ 0.9 307 

km for fault profiles with RMS height to wavelength ratios of 0.01 and 0.001, 308 

respectively. Comparing these results with the range of WS2 in figure 5 indicates that 309 

more than an order of magnitude of roughness change will be required to explain these 310 

observations. This indicates a wear rate far greater than that which occurs for the 311 

roughness of individual fault segments (Brodsky et al., 2011). However, faults are 312 

composed of many segments or sub-faults at many scales (Ferrill et al., 1999; Klinger, 313 

2010; Manighetti et al., 2015; Scholz, 1998) and of nested sub-faults offset from one 314 

another (Ben-Zion & Sammis, 2003; de Joussineau & Aydin, 2009; Segall & Pollard, 315 

1980). The length distribution of sub-faults follows a power law (Scholz, 1998) and they 316 

are offset by jogs that are self-similar (de Joussineau & Aydin, 2009). It therefore would 317 

be possible that this combination would produce a fractal topography at a hierarchy 318 

higher than that of the roughness of the individual sub-fault.  319 

 320 

Geological observations indicate that fault roughness, as measured by segment offsets, 321 

decreases with fault slip (de Joussineau & Aydin, 2009; Stirling et al., 1996; Wesnousky, 322 

1988). Stirling et al. (1996) show an approximately linear reduction of fault roughness, 323 

measured as segments per unit of fault length, with fault displacement. If we make the 324 

reasonable assumption that the fault jog offsets identified by Stirling et al are of order 1 325 
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km then the height to wavelength ratios of 0.001 and 0.01 correspond to fault 326 

displacements of 100 and 10 km, respectively. Combining these with the corresponding 327 

deformation zone widths of Aslam & Daub (2018) give the two data points in Figure 7. 328 

The solid black line there is the best fit of the data for WS2 from Figure 5b. The excellent 329 

agreement confirms the hypothesis that narrowing of the shear deformation zone with 330 

fault displacement is the consequence of the smoothing of the fault with wear. 331 

 332 

4.2. Relations of Earthquake Parameters with Fault Maturity 333 

The primary feature of the maturation of faults is that their surfaces become smoother 334 

with displacement through the process of frictional wear. It might also be supposed that 335 

the characteristics of earthquakes may differ according to the maturity of the fault upon 336 

which they occur. It has been suggested, for example, that earthquake stress drop, 337 

apparent stress, and radiation efficiency vary with fault maturity (Choy et al., 2006; 338 

Hecker et al., 2010; Ross et al., 2018). These are not entirely independent parameters. 339 

The radiation efficiency, R, is given by: 340 

(1)   𝜂𝑅  =  
𝐸𝑅

𝐸𝑅+𝐸𝐺
 =  

2𝜇𝐸𝑅

Δ𝜎𝑀0
=

2𝜎𝑎

Δ𝜎
  341 

where 𝐸𝑅 is radiated energy, 𝐸𝐺  is the energy dissipated in damage of various types, Δ𝜎 342 

is stress drop, 𝜎𝑎 is apparent stress, 𝑀0 is seismic moment, and 𝜇 is the shear modulus. 343 

Table 2 gathers these parameters for four earthquakes we have studied and for which 344 

this information was available in the literature. Although this list is short, it is expansive, 345 

in the sense that it covers four orders of magnitude in fault displacement, which give us 346 

the opportunity to test the different hypothesis.  347 

 348 
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The idea that radiation efficiency increases with fault maturity was based entirely on a 349 

comparison of the Tottori and Parkfield earthquakes (Ross et al., 2018). The other two 350 

earthquakes in our collection do not support that contention. Our data also do not 351 

support the claim of Choy et al. (2006) that apparent stress decreases with fault 352 

maturity (Table 2). Their definition of maturity was qualitative and compared faults in 353 

different tectonic settings and lithologies. For example, their highest apparent stress 354 

was for intraplate oceanic strike-slip faults, and the lowest for subduction zone thrusts. 355 

The latter must have a much greater net displacement than the former and hence must 356 

be much more mature. However, McGarr (1999) and Choy & McGarr (2002) argue that 357 

apparent stress is proportional to strength. If they are correct, then the strength of the 358 

oceanic lithosphere, being much greater than the clay-rich and over-pressured oceanic 359 

sediments that coat the frictional interface of subduction megathrusts, results in a 360 

correspondingly higher apparent stress. The earthquakes in our Table 2, on the other 361 

hand, are all strike-slip continental earthquakes so their lithologies are comparable and 362 

the variables strength and maturity have been separated so that we can reach a clearer 363 

conclusion regarding the effect of maturity on apparent stress.  364 

 365 

Hecker et al. (2010) measured the maximum slip to length ratio of prehistoric 366 

earthquake scarps on intraplate dip-slip faults in the western U.S. They found that this 367 

ratio, an indicator of stress drop, tends to decrease with net fault displacement. Our data 368 

is consistent with this finding: figure 8 presents the stress drop (Δ𝜎) as a function of the 369 

fault cumulative displacement (D), and show that Δ𝜎 ∝ 𝐷−0.45. Combining this result 370 

with our earlier finding that 𝑊𝑆2 ∝ 𝐷−0.35 implies that Δ𝜎 ∝ 𝑊𝑆2 and hence is linearly 371 

proportional to the mean fault roughness, as measured as RMS height to wavelength 372 

ratio.  373 
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 374 

The secondary faults that form the framework of the shear deformation zone must be 375 

formed early in the process, when the primary fault is very immature. They are 376 

subsequently reactivated by aftershocks in a halo around the fault that gradually 377 

narrows as the fault topography smooths with wear (fig. 6). In the early, fault-forming 378 

stage, EG must be much larger relative to ER and hence R will be much smaller than at 379 

later stages (Scholz, 2019 pp 137). This might explain the low value of R in the Tottori 380 

case as compared to earthquakes in later stages. 381 

 382 

4.3. Fault Structure and Aftershock Distributions: Strength and Limitations of our Study. 383 

As mentioned earlier, Powers & Jordan (2010) estimated the normal distance of the 384 

seismicity away from a signle vertical fault plane inferred from the surface trace of the 385 

fault. They defined the zone of shear deformation from the near fault seismicity during 386 

the interseismic period and averaged over the entire fault length, possibly neglecting 387 

local variations in fault plane orientation and leading to wider zones as compared to our 388 

results. In addition, geological heterogeneity and other effects may play a role, as 389 

pointed out by Hauksson (2010).  390 

 391 

Our approach of fitting only one fault plane to the local aftershock distribution as we 392 

step along the fault assumes that the rupture occurred mainly on one fault strand and 393 

that aftershocks are homogeneously distributed in the medium around. While individual 394 

secondary faults can be clearly distinguished around mature fault sections (see for 395 

instance oblique linear streaks around Morgan hill in Supp. Fig. S1), it is more difficult to 396 

identify them around immature fault sections (scattered aftershock distribution; i.e. 397 

Hector Mine, Landers; Supp. Fig. S1). Yukutake & Iio (2017), for example, analyzed each 398 
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identifiable secondary strand associated with the main Komachi-Odani fault that broke 399 

during the 2000 Tottori earthquake and found smaller across-strike distance for each of 400 

them. Moreover, fault zone architectures worldwide are complex and not necessarily 401 

symmetrical, especially near their propagating fault tip where secondary faults can be 402 

observed on one side of the primary fault (e.g., Perrin et al., 2016b). We do not depict 403 

this complexity in our study and simplify it as we sum the number of events on each side 404 

of the best fitting plane. However, the seismic signature of secondary faults is included 405 

in our smoothed across-strike distributions, which allow us to highlight the overall 406 

volume around immature fault zones which is involved in the rupture during 407 

earthquakes such as Hector Mine, Landers, Tottori, El Mayor Cucapah and Superstition 408 

Hills.  409 

 410 

In our study we compare an averaged normal distribution of aftershocks with fault 411 

parameters, considering for each case a homogeneous local fault structural maturity 412 

along the entire rupture length. But it has been shown that the fault maturity can vary 413 

along strike and this can affect the heterogeneity of fracture density around the fault 414 

core (Ostermeijer et al., 2020), the distribution of secondary faults at greater distances 415 

away from the fault (Perrin et al., 2016b) and finally the behavior of earthquakes (e.g., 416 

Huang, 2018; Perrin et al., 2016a). Consequently, it is possible that for long earthquake 417 

ruptures or multiple broken faults scenarii, the normal distribution of aftershocks can 418 

change along strike, following locally a similar trend (i.e. a wider shear deformation 419 

zone in the most immature parts of the rupture) at a local scale that we observe in our 420 

study at greater scales. This would be in good agreement with mapped faults at the 421 

surface that shows that the off-fault damage zone widens in the direction of long-term 422 
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fault propagation (e.g., Manighetti et al., 2001; Perrin et al., 2016b). Future work is 423 

needed to relate such observations to the occurrence of seismicity. 424 

 425 

5. Conclusion 426 

Our study presents strong correlations between independent datasets, i.e. the near-fault 427 

distribution of aftershocks following large earthquakes and the associated geological 428 

parameters of the long-term faults involved in the rupture (cumulative displacement, 429 

initiation age, slip rate). We find that for large faults, defined as those that have ruptured 430 

the entire brittle thickness, the zone of active shear deformation narrows as a power law 431 

with fault displacement, hence with fault maturity. This result is predicted by a dynamic 432 

rough fault model in which fault roughness decreases with displacement. We find that 433 

earthquake stress-drop also decreases with fault displacement and hence fault 434 

roughness. Our relations show how the volume around fault zones can be reactivated 435 

during large earthquakes, depending on fault maturity (i.e. its degree of wear 436 

approached here by fault cumulative displacement). Our study can be useful to 437 

anticipate across-strike distributions of aftershocks around major fault zones which are 438 

not covered by a dense seismic network, based on known geological fault parameters.  439 
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Figures and figure captions: 727 

 728 

Figure 1: Simplified view of the architecture of a fault zone and the density of 729 

fractures and seismicity away from the fault core.  730 

731 



 32 

732 

 733 
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Figure 2: Aftershocks distribution of the (a, b) 2004 Parkfield and (c, d, e, f, g) 734 

1999 Hector Mine earthquakes (see Supp. Fig. 1 for all cases). (a) Map view showing 735 

the San Andreas fault (black lines) and the surface rupture (thick grey line) of the 2004 736 

Parkfield earthquake (epicenter indicated by the red star). Red dots are aftershocks that 737 

occurred within 2 months after the mainshock (Waldhauser & Schaff, 2008; Perrin et al., 738 

2019). (b) Gray profiles are fault-normal earthquake distributions measured from the 739 

best fitting plane in each moving box along the rupture trace. Black curves are the mean 740 

of the gray profiles. Inset: cross section going through the hypocenter area. Depth in y-741 

axis; across strike distance in x-axis. Black line is best fitting plane minimizing fault-742 

normal distance to aftershock hypocenters (red dots); (c) same as (a) but for the 1999 743 

Hector Mine earthquake (earthquake catalog from Hauksson et al., 2012). Boxes include 744 

earthquakes used in d-g. (d-g) Same as (b) but for the 1999 Hector Mine earthquake. The 745 

four sub-figures are based on earthquakes included in boxes shown in (c). 746 

  747 
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 748 

Figure 3: Determination of WS1 and WS2 parameters from the aftershocks 749 

distribution of the (a) Parkfield 2004 and (b, c, d, e) Hector Mine 1999 750 

earthquakes (see Supp. Fig. 2 for all cases). Blue dots represent the mean distribution 751 

of each fault section (see black curve in Fig. 2 and Supp. Fig. 1). The red curve is the best 752 

fit of the distribution. The vertical gray dashed lines labeled WS1 and WS2 point out the 753 

locations where the numbers of earthquakes decrease rapidly and where they reach 754 

background level, respectively. WS1 is defined as the maximum of the 2nd derivative of 755 

the red fit. WS2 is defined by the red dot, which is the intersection between the red fit 756 

and the background level (horizontal blue line), when identified. .757 



 35 

Location 
Earthquake 
name /date 

Half width of 
seismicity fall 
off WS1 (km) 

Half width of 
the shear 

deformation 
zone WS2 (km) 

Name of fault 
section(s) 

Initiation 
age (Ma) 

Cumulative 
slip (km) 

Long-term 
slip rate 
(mm/yr) 

References  
for fault parameters 

Japan Tottori, 2000 0.684  0.050 3.777  0.050 Komachi-Odani ~ 5 0.7 to 2.8† ~ 0.1 
Sugiyama et al., 2005 ; Active fault 

database of Japan* 

USA 
El Mayor 
Cucapah, 

2010 

1.554  
+1128/-0.702 
(mean value) 

6.335  1783 
(mean value) 

Elsinore (southern 
section) 

~ 1.1 1 to 2 1 to 2 
Dorsey et al., 2012; K. E. K. Fletcher 
et al., 2011 and references therein 

USA 
Hector Mine, 

1999  

1.394  
+0.642/-0.302 
(mean value) 

2.697  940.5 
(mean value) 

Lavic Lake-Bullion < 10 10 to 20 ~ 0.8 

Dibblee, 1961; Dokka, 1983; Dokka 
& Travis, 1990; Garfunkel, 1974; 
Jachens et al., 2002; Oskin et al., 

2007 

USA 
Landers, 

1992  

0.954  
+0.144/-0.254 
(mean value) 

3.736  0.050 
Emerson-Camp Rock-

Homestead Valley-
Johnson Valley 

< 10 3.5 to 4.6 0.2 to 0.7 

Dibblee, 1961; Dokka, 1983; Dokka 
& Travis, 1990; Garfunkel, 1974; 
Jachens et al., 2002; Rockwell et 

al., 2000; Rubin & Sieh, 1997  

USA 
Morgan Hill, 

1984  
0.094  0.050 1.457  0.050 Calaveras ~ 12 60 to 70 3 to 25 

Stirling et al., 1996; Wakabayashi, 
1999 and references therein 

USA 
Parkfield, 

2004 
0.058  0.020 0.804  0.020 

San Andreas (central 
section) 

24 to 29 ~ 315 ~ 26 

Atwater & Stock, 1998; Critelli & 
Nilsen, 2000; Crowell, 1979; 

Graham et al., 1989; Liu et al., 
2010; Matthews, 1976; Revenaugh 

& Reasoner, 1997; Toké et al., 
2011  

USA 
South Napa, 

2014 
0.268  50 0.907  0.050 

West Napa (considered 
as part of the 

Calaveras fault zone) 
~12 60 to 70 3 to 25 

Stirling et al., 1996; Wakabayashi, 
1999 and references therein 

USA 
Superstition 
Hills, 1987 

0.858  50 > 2.500  
San Jacinto (southern 

section) 
< 2 ~ 4 ~ 4 

Blisniuk et al., 2010; Dorsey et al., 
2012; Gurrola & Rockwell, 1996; 
Hudnut & Sieh, 1989; Kirby et al., 

2007; Lutz et al., 2006 
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 758 

Table 1: Fault and aftershock distribution parameters for the eight earthquake sequences analyzed in this study. Minimum 759 

uncertainties are defined by the bin of normal distribution in single earthquake cases. For multiple broken fault sections (Hector Mine, Landers, 760 

El Mayor Cucapah), WS1 and WS2 are mean values, when possible, and the uncertainties represent the minimum and maximum range of values 761 

(see detailed measurements in Supp. Figure S2). Field measurements of the Awatere fault from Little et al. (1995) are also indicated (for details 762 

see text). 763 

* available at: https://gbank.gsj.jp/activefault/ 764 

† deduced from scaling relations in Schlische et al., 1996 (see text for details)765 

New 
Zealand 

- 
0.120 to 1.830  

(field 
measurements) 

~2800  
(field 

measurements) 
Awatere < 4 < 2 ~ 5 Little, 1995 and references therein 
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 766 

Figure 4: Relations between WS1 and WS2 for the eight earthquakes analyzed in 767 

this study. 768 

  769 
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 770 

 771 

Figure 5: Relations between (a) WS1 and (b) WS2 of eight earthquake sequences 772 

and the cumulative slip of their host fault taken from literature (solid symbols) 773 

and inferred (empty symbols) (see Table 1 for details). Power laws are indicated by 774 

grey lines. For comparison, red symbols indicate geological surface measurements along 775 

the Awatere fault (from Little, 1995). D is the cumulative fault displacement, k is a 776 

constant. 777 

  778 
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 779 

Figure 6: (a) Normal distribution of the mean number of aftershocks as a function 780 

of distance from the fault, for the eight earthquake sequences analyzed in this 781 

study (see also black curves in Fig. 2 and Supplementary Figure S1). Each colored curve 782 

represents one earthquake sequence. Curves with the same color are distinct fault 783 

sections that broke during one earthquake. Warm colors are more mature, cool colors 784 

more immature fault sections. For comparison, black squares indicate the cumulative 785 

number of faults (right y axis) measured at surface from the Awatere fault (modified 786 

from Little, 1995). (b) Sketch summarizing the fault-normal distributions of aftershocks 787 

for immature (blue curve) and mature (red curve) fault sections. (c) Interpretative 788 



 40 

cross-section describing the structural makeup of immature (blue) and mature (red) 789 

faults. As fault structural maturity increases, then inner and outer bounds of the shear 790 

deformation zone (WS1 and WS2, respectively) decrease, as expressed by a decreasing 791 

width of the fault-normal aftershock distribution. See text for more discussion. 792 

793 
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 794 

Figure 7: Comparison between power law deduced from the outer bound of the shear 795 

deformation zone (WS2; black line) and power law built from observations and models in 796 

Stirling et al., 1996 and Aslam & Daub, 2018 (blue dots and shaded area). Blue dots are 797 

assuming typical jog heights j = 1 km, the blue shaded area bounds the blue dots 798 

assuming j=0.5 and 2 km. 799 

  800 
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 801 

 802 

Table 2: Mainshock parameters for four earthquakes. 𝐸𝑅 is radiated energy, 𝐸𝐺  is 803 

the energy dissipated in damage of various types, Δ𝜎 is stress drop, 𝜎𝑎 is apparent 804 

stress, 𝑀0 is seismic moment, and R is the radiation efficiency. 805 

 806 

  807 

Earthquake 
name 

ER  
(J) 

M0  
(Nm) 

ER/M0   
(MPa) 

a  
(MPa) 

R  
(%) 

References. 
 

2000 Tottori 5.7e13 2.5e18 2.3e-5 23 0.7 6 
Ross et al., 

2018 

1992 
Landers 

4e15 8e19 4e-5 11 1.7 25 
J. B. Fletcher 
& McGarr, 

2006 

1999 Hector 
Mine 

3e15 6e19 5e-5 6 1.5 50 
Kaverina, 

2002 

2004 
Parkfield 

1.1e13 1e18 1.1e-5 2 0.3 25 

Kim & 
Dreger, 

2008; Ma et 
al., 2008 
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 808 

Figure 8: Earthquake stress drop (Δ𝜎) as a function of cumulative displacement of the 809 

broken fault section (D) for earthquakes listed in Table 2. Parameter c is a constant. 810 

 811 


