Figure
5 – Maps of vertically average fraction of sand present in each cell of
the model grid near the end of the model run. Cells with a value of zero
contain only mud, and cells with a value of 1 contain only sand. For the
top row (a–d) Qs = 2 m3/s, for
the middle row (e–h) Qs = 1
m3/s and for the bottom row (i–l)Qs = 0.5 m3/s. The first two
columns are unvegetated runs and the third and fourth are vegetated. The
first and third columns have Qw = 2000
m3/s and the data shown is from t = 1250 and
the second and fourth have Qs = 1000
m3/s and the data shown is from t = 4750.
References
Allison, M. A., and E. A. Meselhe (2010), The use of large water and
sediment diversions in the lower Mississippi River (Louisiana) for
coastal restoration, Journal of Hydrology , 387 (3-4),
346-360, doi:10.1016/j.jhydrol.2010.04.001.
Anthony, E. J., N. Marriner, and C. Morhange (2014), Human influence and
the changing geomorphology of Mediterranean deltas and coasts over the
last 6000years: From progradation to destruction phase?,Earth-Science Reviews , 139 , 336-361,
doi:10.1016/j.earscirev.2014.10.003.
Bryant, M., P. Falk, and C. Paola (1995), Experimental studies of
avulsion frequency and rate of deposition, Geology , 23 (4),
365-368.
Caldwell, R. L., and D. A. Edmonds (2014), The effects of sediment
properties on deltaic processes and morphologies: A numerical modeling
study, Journal of Geophysical Research: Earth Surface ,119 (5), 961-982, doi:10.1002/2013jf002965.
Chadwick, A. J., M. P. Lamb, and V. Ganti (2020), Accelerated river
avulsion frequency on lowland deltas due to sea-level rise, Proc
Natl Acad Sci U S A , 117 (30), 17584-17590,
doi:10.1073/pnas.1912351117.
Edmonds, D., R. Slingerland, J. Best, D. Parsons, and N. Smith (2010),
Response of river-dominated delta channel networks to permanent changes
in river discharge, Geophysical Research Letters , 37 (12),
n/a-n/a, doi:10.1029/2010gl043269.
Edmonds, D. A., and R. L. Slingerland (2009), Significant effect of
sediment cohesion on delta morphology, Nature Geoscience ,3 (2), 105-109, doi:10.1038/ngeo730.
Ericson, J., C. Vorosmarty, S. Dingman, L. Ward, and M. Meybeck (2006),
Effective sea-level rise and deltas: Causes of change and human
dimension implications, Global and Planetary Change ,50 (1-2), 63-82, doi:10.1016/j.gloplacha.2005.07.004.
Galloway, W. E. (1975), Process framework for describing the morphologic
and stratigraphic evolution of deltaic depositional systems,Deltas; models for exploration , 87-98.
Geleynse, N., J. E. A. Storms, D.-J. R. Walstra, H. R. A. Jagers, Z. B.
Wang, and M. J. F. Stive (2011), Controls on river delta formation;
insights from numerical modelling, Earth and Planetary Science
Letters , 302 (1-2), 217-226, doi:10.1016/j.epsl.2010.12.013.
Hiatt, M., and P. Passalacqua (2015), Hydrological connectivity in river
deltas: The first‐order importance of channel‐island exchange,Water Resources Research , 51 (4), 2264-2282,
doi:10.1002/2014wr016149.
Hoyal, D. C. J. D., and B. A. Sheets (2009), Morphodynamic evolution of
experimental cohesive deltas, Journal of Geophysical Research ,114 (F2), doi:10.1029/2007jf000882.
Jerolmack, D. J. (2009), Conceptual framework for assessing the response
of delta channel networks to Holocene sea level rise, Quaternary
Science Reviews , 28 (17-18), 1786-1800,
doi:10.1016/j.quascirev.2009.02.015.
Kim, W. (2012), Geomorphology: Flood-built land, Nature
Geoscience , 5 (8), 521-522, doi:10.1038/ngeo1535.
Kim, W., D. Mohrig, R. Twilley, C. Paola, and G. Parker (2009), Is it
feasible to build new land in the Mississippi River delta, EOS ,90 (42), 373-374.
Kim, W., C. Paola, J. B. Swenson, and V. R. Voller (2006), Shoreline
response to autogenic processes of sediment storage and release in the
fluvial system, Journal of Geophysical Research , 111 (F4),
doi:10.1029/2006jf000470.
Lauzon, R., and A. B. Murray (2018), Comparing the cohesive effects of
mud and vegetation on delta evolution, Geophysical Research
Letters , 45 (10), 10,437-410,445.
Leonardi, N., A. S. Kolker, and S. Fagherazzi (2015), Interplay between
river discharge and tides in a delta distributary, Advances in
Water Resources , 80 , 69-78, doi:10.1016/j.advwatres.2015.03.005.
Liang, M., N. Geleynse, D. A. Edmonds, and P. Passalacqua (2015a), A
reduced-complexity model for river delta formation – Part 2:
Assessment of the flow routing scheme, Earth Surface Dynamics ,3 (1), 87-104, doi:10.5194/esurf-3-87-2015.
Liang, M., W. Kim, and P. Passalacqua (2016a), How much subsidence is
enough to change the morphology of river deltas?, Geophysical
Research Letters , 43 (19), 10,266-210,276,
doi:10.1002/2016gl070519.
Liang, M., C. Van Dyk, and P. Passalacqua (2016b), Quantifying the
patterns and dynamics of river deltas under conditions of steady forcing
and relative sea level rise, Journal of Geophysical Research:
Earth Surface , 121 (2), 465-496, doi:10.1002/2015jf003653.
Liang, M., V. R. Voller, and C. Paola (2015b), A reduced-complexity
model for river delta formation – Part 1: Modeling deltas with
channel dynamics, Earth Surface Dynamics , 3 (1), 67-86,
doi:10.5194/esurf-3-67-2015.
Martin, J., B. Sheets, C. Paola, and D. Hoyal (2009), Influence of
steady base-level rise on channel mobility, shoreline migration, and
scaling properties of a cohesive experimental delta, Journal of
Geophysical Research , 114 (F3), doi:10.1029/2008jf001142.
Murray, A. B., and C. Paola (2003), Modelling the effect of vegetation
on channel pattern in bedload rivers, Earth Surface Processes and
Landforms , 28 (2), 131-143, doi:10.1002/esp.428.
Nardin, W., and D. A. Edmonds (2014), Optimum vegetation height and
density for inorganic sedimentation in deltaic marshes, Nature
Geoscience , 7 (10), 722-726, doi:10.1038/ngeo2233.
Nienhuis, J. H., A. D. Ashton, and L. Giosan (2015), What makes a delta
wave-dominated?, Geology , 43 (6), 511-514,
doi:10.1130/g36518.1.
Nienhuis, J. H., A. J. F. Hoitink, and T. E. Törnqvist (2018), Future
Change to Tide‐Influenced Deltas, Geophysical Research Letters ,45 (8), 3499-3507, doi:10.1029/2018gl077638.
Orton, G. J., and H. G. Reading (1993), Variability of deltaic processes
in terms of sediment supply with particular emphasis on grain size,Sedimentology , 40 , 475-512.
Paola, C., R. R. Twilley, D. A. Edmonds, W. Kim, D. Mohrig, G. Parker,
E. Viparelli, and V. R. Voller (2011), Natural processes in delta
restoration: application to the Mississippi Delta, Ann Rev Mar
Sci , 3 , 67-91, doi:10.1146/annurev-marine-120709-142856.
Pasquale, N., P. Perona, R. Francis, and P. Burlando (2014),
Above-ground and below-groundSalixdynamics in response to river
processes, Hydrological Processes , 28 (20), 5189-5203,
doi:10.1002/hyp.9993.
Passalacqua, P. (2017), The Delta Connectome: A network-based framework
for studying connectivity in river deltas, Geomorphology ,277 , 50-62, doi:10.1016/j.geomorph.2016.04.001.
Perona, P., et al. (2012), Biomass selection by floods and related
timescales: Part 1. Experimental observations, Advances in Water
Resources , 39 , 85-96, doi:10.1016/j.advwatres.2011.09.016.
Powell, E. J., W. Kim, and T. Muto (2012), Varying discharge controls on
timescales of autogenic storage and release processes in fluvio-deltaic
environments: Tank experiments, Journal of Geophysical Research ,117 (F2), doi:10.1029/2011jf002097.
Ratliff, K. M., E. W. H. Hutton, and A. B. Murray (2018), Exploring wave
and sea-level rise effects on delta morphodynamics with a coupled
river-ocean model, Journal of Geophysical Research ,123 (11), 2887-2900.
Straub, K. M., Q. Li, and W. M. Benson (2015), Influence of sediment
cohesion on deltaic shoreline dynamics and bulk sediment retention: A
laboratory study, Geophysical Research Letters , 42 (22),
9808-9815, doi:10.1002/2015gl066131.
Syvitski, J. P. M., et al. (2009), Sinking deltas due to human
activities, Nature Geoscience , 2 (10), 681-686,
doi:10.1038/ngeo629.
Syvitski, J. P. M., and Y. Saito (2007), Morphodynamics of deltas under
the influence of humans, Global and Planetary Change ,57 (3-4), 261-282, doi:10.1016/j.gloplacha.2006.12.001.
Tejedor, A., A. Longjas, R. Caldwell, D. A. Edmonds, I. Zaliapin, and E.
Foufoula‐Georgiou (2016), Quantifying the signature of sediment
composition on the topologic and dynamic complexity of river delta
channel networks and inferences toward delta classification,Geophysical Research Letters , 43 (7), 3280-3287,
doi:10.1002/2016gl068210.
Van Dijk, M., G. Postma, and M. G. Kleinhans (2009), Autocyclic
behaviour of fan deltas: an analogue experimental study,Sedimentology , 56 (5), 1569-1589,
doi:10.1111/j.1365-3091.2008.01047.x.
Wickert, A. D., J. M. Martin, M. Tal, W. Kim, B. Sheets, and C. Paola
(2013), River channel lateral mobility: metrics, time scales, and
controls, Journal of Geophysical Research: Earth Surface ,118 (2), 396-412, doi:10.1029/2012jf002386.
Wolinsky, M. A., D. A. Edmonds, J. Martin, and C. Paola (2010), Delta
allometry: Growth laws for river deltas, Geophysical Research
Letters , 37 (21), n/a-n/a, doi:10.1029/2010gl044592.