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Introduction

Information here consists of extended model descriptions, additional results which may

be of interest to the reader, and a demonstration of the land-surface filtering method used

in the primary document.
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WRF Model Description

Large-eddy simulations are conducted using a modification of version 3.8.1 of the WRF

model (Skamarock et al., 2008). Changes implemented, maintained, and distributed by

the LES ARM Symbiotic Simulation and ObservationWorkflow (LASSO) campaign (Endo

et al., 2015; W. Gustafson et al., 2019; W. I. Gustafson et al., 2020) notably include the

addition of specified large-scale tendency terms and enhanced output fields. An additional

modification implemented by Simon, Bragg, Dirmeyer, and Chaney (2021) is also used

here to specify heterogeneous surface properties from an offline LSM.

Each case is run with heterogeneous and homogeneous land-surface fields. Hetero-

geneous land-surface cases use solutions from the HydroBlocks LSM to specify two-

dimensional, time-evolving surface fields for sensible heat flux, latent heat flux, skin tem-

perature (found via specified emissivity and upward longwave radiation fields), albedo, and

momentum drag coefficient. The homogeneous cases specify a uniform (in space) surface

of each field to match the time-evolving domain-wide mean of the corresponding heteroge-

neous case (skin temperature is diagnosed from mean values of upward longwave radiation

and emissivity, rather than a domain-average of skin temperature directly). There is no

feedback from the atmosphere to the land surface in the LES; the HydroBlocks LSM is

run offline and the output surface fields are specified as the bottom boundary in the WRF

model. Histograms of means and standard deviations of mid-day latent and sensible heat

flux fields are shown in Fig. S1.

Following the LASSO configuration, simulations use the Thompson graupel micro-

physics scheme and the RRTMG radiation scheme (though surfaces are specified offline
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by HydroBlocks) with the cumulus and PBL schemes turned off. The model timestep is

0.5 s. The domain is approximately 14.5 km tall with 227 vertical levels and a vertical

resolution of 30 m in the lower 5 km of the column. Periodic boundary conditions are used

in both lateral directions and a w-Rayleigh damping layer is applied in the upper 2 km of

the column. The LES domain uses a flat bottom boundary, though terrain is considered

by the offline HydroBlocks simulation for subsurface and surface routing. Initial profiles

for potential temperature, water vapor mixing ratio, and lateral velocity components are

obtained from the LASSO database and are applied uniformly to the domain. Large-scale

heat and moisture tendency profiles based on the VARANAL dataset, obtained from the

LASSO database and configuration, are also included. The model configuration is oth-

erwise the same as in Simon et al. (2021), which is in turn largely based on the LASSO

configuration.

HydroBlocks Model Description

HydroBlocks is a field-scale resolving land-surface model (Chaney, Metcalfe, & Wood,

2016) that accounts for the water, energy, and carbon balance to solve land-surface pro-

cesses at field scales (30 m) over regional to continental extents (Chaney, Metcalfe, &

Wood, 2016; Chaney et al., 2020; Vergopolan et al., 2020). The core of HydroBlocks

is the Noah-MP vertical land surface scheme (Niu et al., 2011). For this study, Hy-

droBlocks is spun up for two years and uses high-resolution (30 m) soil type and land

cover maps from the Probabilistic Remapping of SSURGO (POLARIS) (Chaney, Wood,

et al., 2016; Chaney et al., 2019) and National Land Cover Database (NLCD) (Homer et

al., 2012) datasets, respectively, and one-eighth degree NLDAS-2 meteorology (Cosgrove
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et al., 2003; Mitchell et al., 2004) with NCEP Stage-IV radar rainfall (∼4 km) data (Lin

& Mitchell, 2005). The hourly state of the land surface produced by HydroBlocks for

the period of interest is then used to specify surface values in the WRF model. For

consistency, surface-flux fields are adjusted so that the domain-wide averages match the

time-evolving scalar surface fluxes specified by the LASSO campaign, which are from the

observationally-improved VARANAL dataset.
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Additional Fields

The analysis shown in Sec. 3.2 of the primary text for χ and γ(LWP) compared to

statistics of the surface sensible heat flux field, H, is repeated here for γ(TKE) compared

to statistics of H in Fig. S2. The correlations between γ(TKE) and mean values of σ(H),

L∆(H), L2(H) are not appreciably different than the correlations between χ and the

same statistics of the H field, particularly when considering σ(H). There is a small, but

nontrivial, negative Pearson correlation between γ(TKE) and µ(H), where ρp = −0.22

(Fig. S2a), which is understood by recalling that γ(TKE) is the ratio of TKE in corre-

sponding heterogeneous and homogeneous cases. Thus, larger mean surface sensible heat

flux values reduce the relative significance of TKE generated by any heterogeneous surface

patterns, making the total TKE more comparable between heterogeneous and homoge-

neous cases. Indeed, this negative correlation is virtually eliminated when comparing only

the circulating components of TKE (χ) to µ(H), where ρp = 0.00 (Fig. 3a in the main

text).

The same analysis for χ, γ(LWP), and γ(TKE) compared to statistics of the surface

latent heat flux field, Q, is shown in Fig. S3. The relationships between the χ, γ(LWP),

and γ(TKE) metrics and the surface latent heat flux field are very similar to those seen for

the surface sensible heat flux field, both quantitatively and qualitatively. The only notable

difference between the two surface fields is that the correlation between γ(TKE) and µ(Q)

is positive rather than the negative correlation seen for µ(H), though the two are similar in

magnitude. The small positive correlation between γ(TKE) and µ(Q) (Fig. S3a) appears

logical, as a larger mean latent heat flux would not be expected to inherently generate
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TKE in the atmosphere but may increase cloud production rates and thus exaggerate

heterogeneous surface effects.

The relationships between χ, γ(LWP), and γ(TKE) compared to statistics of the sur-

face temperature field, T , do show some distinctive features relative to those with H and

Q (Fig. S4). The relationships between the atmospheric metrics and σ(T ) is very similar

to those seen for σ(H) and σ(Q), but there is a larger correlation between µ(T ) and all

three atmospheric metrics, particularly χ (Fig. S4a), than is seen for µ(H) or µ(Q). This

suggests that while mean energy flux values do not correlate with the development of

secondary circulations, larger mean surface temperatures may help in circulation devel-

opment. As well, both length-scale metrics, L∆(T ) and L2(T ), show a lower correlation

with the atmospheric metrics than the length scales calculated from H or Q, suggesting

that the spatial structures of surface heat fluxes are more related to the atmospheric re-

sponse than the spatial structures of surface temperature. Intuitively, it should be the

case that the surface flux fields have a more direct impact on the atmosphere than surface

temperature; the surface sensible and latent heat fluxes directly connect the land-surface

to the atmosphere whereas the surface temperature is connected to the atmosphere via

the surface heat fluxes.
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Example Filtered Fields

The filter used in Sec. 3.3 of the primary text, defined as

F = 1− exp

[
−2π2

(
∆filter

λ

)2
]
, (1)

where ∆filter is the nominal filter length, is shown as applied to a representative mid-day

sensible heat flux field at an increasingly fine filter length in Fig. S5.
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Figure S1. Histogram of mean (µ) and standard deviation (σ) for mid-day sensible

(H) and latent (Q) heat flux fields for the 92 cases.

60 100 200

mean
[
µ(H)

]
(W m−2)

10−2

10−1

100

γ
(T

K
E

)

(i)

ρp = −0.22

ρs = −0.11

10 20 40 80

mean
[
σ(H)

]
(W m−2)

(j)

ρp = 0.84

ρs = 0.82

50 60 70

mean
[
L∆(H)

]
(km)

(k)

ρp = 0.70

ρs = 0.69

4 5

mean
[
L2(H)

]
(km)

(l)

ρp = 0.75

ρs = 0.74

Figure S2. The γ(TKE) metric as functions of statistics of the surface sensible heat

flux field, H. One negative-valued data point for γ(TKE) with a magnitudes O(10−2) is

not shown, but is included in the calculation of ρp and ρs.
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Figure S3. The χ (a – d), γ(LWP) (e – h), γ(TKE) (i – l) and metrics as functions of

statistics of the surface latent heat flux field, Q.
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Figure S4. The χ (a – d), γ(LWP) (e – h), γ(TKE) (i – l) and metrics as functions of

statistics of the surface temperature field, T .
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Figure S5. Comparison of a mid-day sensible heat flux field without filtering (a) and

after applying increasingly fine filters (b – f).
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