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Abstract16

A new seismic velocity model for the south Central Andes is derived from full waveform in-17

version, covering the Pampean flat and adjacent Payenia steep subduction segments. Strong18

focused crustal low-velocity anomalies indicate partial melts in the Payenia segment along19

the volcanic arc, whereas weaker low-velocity anomalies covering a wide zone in Pampean20

possibly indicates remnant melts in the past. Thinning and tearing of the flat Nazca slab21

below the Pampean is inferred by gaps in the high-velocity slab along the inland projec-22

tion of the Juan-Fernandez-Ridge. A high-velocity anomaly in the upper mantle below the23

flat slab is interpreted as a relic Nazca slab segment, which indicates an earlier slab break-24

off during the flattening process, triggered by the buoyancy of the Juan-Fernandez-Ridge.25

In Payenia, large-scale low-velocity anomalies atop and below the re-steepened Nazca slab26

are associated with the re-opening of the mantle wedge and sub-slab asthenospheric flow,27

respectively.28

Plain Language Summary29

Taking advantage of the abundant information recorded in seismic waveforms, we imaged30

the seismic structure of the crust and upper mantle beneath central Chile and western31

Argentina, where the oceanic Nazca slab is subducting beneath the South American plate.32

The Nazca plate is almost flat in the north of the study area below the Pampean region,33

where the Juan Fernandez seamount ridge is attached on the subducting Nazca slab. The34

slab steepens again in the south in the Payenia region. Our model reveals pronounced low-35

velocity anomalies in the middle of the Pampean flat slab along the inland projection of the36

Juan Fernandez Ridge, indicating that the Pampean flat slab is thinned or even torn apart.37

A high-velocity anomaly is imaged beneath the flat slab, representing a former slab segment38

that was broken off during the slab flattening process and was overridden by the advancing39

young slab. Our model suggests a causal relationship between the oceanic ridge subduction40

and the flat slab formation. In the Payenia region, the slab re-steepening resulted in the41

re-establishment of the mantle wedge and induced subslab asthenospheric flow, which are42

characterized by low-velocity anomalies in the model.43

1 Introduction44

The causes and consequences of flat subduction along the South American western margin45

are vigorously debated (e.g., Gutscher et al., 2000; Ramos & Folguera, 2009). Two promi-46
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nent on-going flat subduction segments beneath the Andes are the Peruvian and Pampean47

flat subduction zones, north and south of the conspicuous kink in the South American48

coastline respectively. They have been documented based on seismology (e.g., Wagner et49

al., 2005; Pesicek et al., 2012), volcanism (e.g. S. M. Kay & Abbruzzi, 1996; S. M. Kay50

& Mpodozis, 2002), gravity modeling (e.g. Sánchez et al., 2019) and electrical conductiv-51

ity measurements (e.g. Burd et al., 2013, 2014). Scenarios for their formation have been52

explored with geodynamic modeling (e.g., Hu et al., 2016; Hu & Liu, 2016). In this study53

we focus on the Pampean flat subduction and Payenia steep subduction to the south, from54

28◦–38◦S. Here, the Nazca slab is subducting beneath central Chile and western Argentina55

with a convergence rate of ∼6.7 cm a−1 in the N78◦E direction (Kendrick et al., 2003). In56

the Pampean flat subduction zone, the Nazca slab propagates horizontally for 200-300 km57

beneath the southern Central Andes (Figure 1a). There is no consensus on a single mech-58

anism for triggering flat subductions, but the following mechanisms have been proposed:59

(1) Increased buoyancy related to the presence of seamount chains or oceanic plateaus or60

younger age of the slab (e.g., Gans et al., 2011; Huangfu et al., 2016; Hu et al., 2016; S. Liu61

& Currie, 2016); (2) plate suction forces from a cold and/or over-thickened overriding plate62

with increased viscosity (e.g., Manea et al., 2012; Rodŕıguez-González et al., 2012); (3) in-63

creased movement of the overriding plate towards the trench and trench retreat (Schepers64

et al., 2017; Manea et al., 2017; S. Liu & Currie, 2016); (4) Over-pressure below the slab65

induced by mantle plumes (Boutelier & Cruden, 2008; Rodŕıguez-González et al., 2014).66

The Pampean flat subduction zone is believed to be associated with the subduction of the67

Juan Fernandez seamount ridge (JFR, Figure 1) (e.g. Gutscher et al., 2000; S. M. Kay68

& Mpodozis, 2002; Ramos et al., 2002). Plate reconstructions (Yáñez et al., 2001; Bello-69

González et al., 2018) indicate that the ridge has been moving southward along the western70

margin of South America. It was subducting beneath the Altiplano and Puna plateaus71

(21◦-26◦S) at ∼40-20 Ma, inducing inland migration of volcanism and a temporary lull be-72

tween 20-12 Ma (Yáñez et al., 2001; S. M. Kay & Coira, 2009; Beck et al., 2015). The73

JFR arrived at the current position beneath the Sierras Pampeanas around 12 Ma (Figure74

1) and the related flat subduction of the Nazca slab has triggered inland migration and75

spatial expansion of subduction-related volcanism (S. M. Kay & Mpodozis, 2002), uplift of76

the main Andes, thick-skinned deformation, crustal thickening and basement uplift over a77

broad zone in the overriding plate (Cristallini & Ramos, 2000; Ramos et al., 2002). The78

occurrence of adakitic magmatism has also been attributed to slab melting (Gutscher et al.,79

2000; Hu et al., 2016) or intrusion of the basaltic arc magmas (R. W. Kay & Kay, 2002).80
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In this study, we employ seismic full waveform inversion (FWI) to investigate the seismic81

structure in the upper mantle to understand the slab configuration changes and crustal melt82

distributions in response to the subduction of the JFR. For readability, we divide the whole83

study region into two domains (Figure 1a): the Pampean flat subduction zone in the north84

and the Payenia steep subduction zone in the south. The latter used to be a flat subduction85

zone from 15 Ma to 5 Ma but the slab has re-steepened since 4-5 Ma (S. M. Kay & Mpodozis,86

2002; Ramos & Folguera, 2009).87

2 Data and Method88

Following the same workflow as Gao et al. (2021), we collected 139 earthquakes from89

the Global Centroid-Moment-Tensor (GCMT) catalog (Ekström et al., 2012), which were90

recorded by 19 seismic networks (Figure 1 and Figure S1) operating between 1996 to 201991

and magnitudes between MW 5.0 to 7.0. Detailed network information and ray-path cover-92

age are presented in the supplementary material (Figures S1–S2 and Table S1). Our seismic93

velocity model is the result of the multi-scale FWI based on the adjoint methodology (e.g.,94

Fichtner et al., 2010; Tape et al., 2010), starting from the 3D seismic velocity model S20RTS95

(Ritsema et al., 2004). Solutions of the visco-elastic wave equation in a radially anisotropic96

Earth model are obtained from Salvus (Afanasiev et al., 2019). More information about the97

inversion workflow is provided in the supplementary material (Text S1).98

In order to analyse the resolution of the inversion and trade-offs between the parameters,99

we calculated the Hessian-vector product Hδm as point-spread function to assess possible100

smearing and distortion (Fichtner & Trampert, 2011; Tao et al., 2018). We find that the101

isotropic VS and VP models are robustly determined in the resolved region with a spatial102

resolution of 30-40 km in the upper mantle and 20-25 km in the crust horizontally and103

vertically. Detailed resolution tests are described in Text S2 and Figure S18-S24.104

3 Results and discussion105

After 53 iterations of FWI, the crust and upper mantle structure beneath central Chile106

and western Argentina has been clearly imaged. We display the isotropic VS model with107

some key depth and cross-sections. Further images and the isotropic VP model are shown108

in the supplementary material (Figures S5–S16).109
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3.1 Multi-stage crustal partial melting and mantle wedge evolution110

In contrast to the vigorous partial melting represented by strong low-velocity middle-111

crust beneath the Altiplano-Puna Volcanic Complex and volcanic arc for the northern Chile112

steep subduction zone (Yuan et al., 2000; Ward et al., 2014; Gao et al., 2021), the middle113

crust in the Pampean flat subduction zone (28◦–33◦ S) exhibits only moderately low to114

normal velocities along the volcanic arc (Figure 2a).115

Low-velocity anomaly C1 (Figure 2a and S17) is located beneath the Frontal Cordillera116

(FC) and has been reported by several earlier studies (e.g., Ward et al., 2013, 2017; Gao et117

al., 2021). C1 marks the waning partial melting beneath the Incapillo Caldera and Dome118

Complex (ICDC, Figure 1a), which is the southernmost ignimbritic caldera of the Central119

Andes during the Pleistocene (Goss et al., 2009, 2011). Meanwhile, weak and isolated120

low-velocity anomalies (C2 and C3, Figure 2a) beneath the Sierras Pampeanas (SP) are121

accompanied by middle to late Miocene adakitic volcanoes including the Famatina Mogotes122

Group (FMG, S. M. Kay & Mpodozis, 2002) and Gualcamayo Igneous Complex (GIC,123

D´Annunzio, Rubinstein, & Rabbia, 2018), indicating a slab melting origin or basaltic arc124

magma source (S. M. Kay & Abbruzzi, 1996; R. W. Kay & Kay, 2002; Gutscher et al., 2000;125

Hu & Liu, 2016).126

A striking low-velocity anomaly C5 (Figure 2b and Profile (a) in Figure 3) at approx-127

imate Moho depth (60 km) extends from the Frontal Cordillera to the Sierras Pampeanas128

(SP), forming a thin layer above the Pampean flat slab. As the mantle wedge must have been129

thinned to a sliver or completely closed during the flattening of the Nazca slab (Gutscher130

et al., 2000; Manea et al., 2017), this low-velocity anomaly could be attributed to the131

combined effect of a fossil ’MASH’ zone (melting-assimilation-storage-homogenization) and132

modern fluids released from the current flat slab (Hildreth & Moorbath, 1988). Dehydration133

of the flat slab has the potential to significantly modify the overriding lithosphere above it134

for a long distance from the trench (Z. Li, 2020). In Figure 3a-c, the continental mantle135

lithosphere south of 28◦S appears to be thinned considerably or even displaced (Axen et al.,136

2018; Gutscher, 2018).137

In contrast, south of 33◦S, C4 may mark the restoration of partial melt accumulation138

in the middle crust during the re-steepening process of the Nazca slab beneath the Payenia139

(Marot et al., 2014; Ramos & Folguera, 2009). The late Miocene volcanic activity in the140

back-arc and Pleistocene-Holocene volcanic activity in the frontal arc (including large-scale141

Payenia Volcanic Province, Figure 1a) indicate a trench-ward migration of the volcanism.142
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Following the re-steepening of the slab since 4-5 Ma, the mantle wedge has re-opened, leading143

to the re-injection of hot asthenosphere and renewed melt formation in the wedge induced144

by slab-derived fluids dehydration, in turn inducing trench-ward migration of the volcanism145

(Gutscher et al., 2000; S. M. Kay & Mpodozis, 2002; Ramos & Folguera, 2009, 2011; Marot146

et al., 2014). The re-opened mantle wedge is clearly imaged in our model as low-velocity147

anomaly M3 and represents the present situation after the slab re-steepening (Figure 2c and148

profile (d) and (e) in Figure 3).149

3.2 Slab thinning and tearing along the Juan Fernandez Ridge150

In the central part of the Pampean flat slab, two low-velocity anomalies (M1 and M2)151

span a slab window along the inland projection of the JFR (Figure 2c and Profile (b) in152

Figure 3) and are surrounded by two high-velocity limbs of the flat slab (H2). Though many153

prior works detected the Pampean flat slab with strong heterogeneities, most of seismological154

studies focused on the seismic structure south of 29◦S (e.g., Wagner et al., 2005; Porter et155

al., 2012; Marot et al., 2014; Linkimer et al., 2020), leaving an observational gap from 27◦–156

29◦S. In this study, events and stations north of 27◦S are included in the inversion, allowing157

us to resolve M1 and M2.158

The inland projection of the JFR is not well constrained from previous plate recon-159

struction studies (Yáñez et al., 2001; Bello-González et al., 2018) due to its relatively long160

subduction and migration history (12 Ma) beneath the Pampean area. Hence, the extent of161

the region affected by the JFR is not known precisely, nor are details of the seismic structure162

associated with the JFR (Gutscher et al., 2000; Wagner et al., 2005; Gans et al., 2011; Marot163

et al., 2014; Haddon & Porter, 2018). Following S. M. Kay and Mpodozis (2002), we assume164

the uncertainty width of the influence zone of the JFR within the oceanic lithosphere is 200165

km, which also takes into account the region of underplating and possible hydration of the166

oceanic lithosphere (Kopp et al., 2004), which extends beyond the seamount chain itself.167

Thus, the low-velocity anomalies M1 and M2 are located within the JFR influence range.168

Similar to predictions from numerical modelling (Hu & Liu, 2016), the slab thinning and169

tearing zone develops within the central part of the current flat slab. In Hu & Liu’s model,170

slab thinning and tearing initiates from the inboard tip of the flat slab before re-steepening171

downdip and propagates trench-wards, parallel to the track of the JFR and consistent our172

direct observation. In addition to the enhanced buoyancy of the JFR, its hydration state173

and inherited normal faults (Kopp et al., 2004) might have caused zones of weakness along174

which the thinning and tearing could progress.175
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Conspicuously, the slab tearing zone (M1 and M2) is characterized by the absence of176

intra-slab seismicity, in contrast to the slab limbs to the north and south (Fig. 2c). The177

focal mechanisms show a clear asymmetric pattern across the JFR track: the north branch178

of H2 is characterized by predominantly NE-SW oriented T axes, which are subparallel179

to the track of the JFR, whereas the T axes for events in the southern branch of H2 are180

oriented mainly NW-SE, sub-normal to the JFR trend, implying a ∼ 90◦ rotation of T axes181

across the aseismic zone (Figure 2c) at 120-160 km at depth. The northeast extension in182

the northern slab limb parallel to the JFR is superimposed on dominant slab pull (downdip183

extension), which is also reflected in the velocity field (Hu & Liu, 2016) and azimuthal184

anisotropy (Hu et al., 2017; Lynner et al., 2017). The south branch is coincident with the185

track of the JFR and attributed to the reactivation of the preexisting normal faults, causing186

vigorous intra-slab seismicity (Ranero et al., 2005; Anderson et al., 2007; Gans et al., 2011;187

Ammirati et al., 2015; Wagner et al., 2020).188

Near the slab tearing zone, Heit et al. (2008) detected a strong oceanic LAB signal189

west of 69◦W that suddenly disappears and even changes polarity further east (Profile (c)190

in Figure 3). Recent magnetic and gravity modeling work (Sánchez et al., 2019) also inferred191

hot asthenospheric flow beneath the flat slab and local slab thinning. These observations192

further validate our interpretation of M1 and M2 as evidence for thinning and tearing of the193

slab (Figure 4). M1 and M2 are also accompanied by weak crustal low-velocity anomalies194

C3 and C2 below the late Miocene adakitic volcanism including the GIC (D´Annunzio et195

al., 2018) and FMG (S. M. Kay & Mpodozis, 2002), respectively (Figure 2a), confirming196

enhanced slab melting (S. M. Kay & Mpodozis, 2002; Gutscher et al., 2000; Hu & Liu, 2016)197

near the tearing zone (Figure 4a).198

The Pampean flat slab, after having developed in the Middle to Late Miocene, suffered199

from numerous instabilities, such as internal stresses induced by the increased buoyancy200

of the JFR relative to its two flanks, changes in hydration state, reactivation of inherited201

normal faults, and basal heating by asthenosphere flow (Rodŕıguez-González et al., 2014).202

These factors have induced weakening, thinning and finally tearing of the oceanic slab,203

followed by melting of the oceanic crust as predicted by the geodynamic model (Hu & Liu,204

2016). The basalt input from the melted oceanic crust leads to the adakitic volcanism205

(Gutscher et al., 2000) during the late Miocene (Figure 4a).206
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3.3 Slab break-off: transition from steep to flat subduction?207

A prominent high-velocity anomaly (H3) is found just below the flat Nazca slab (H2),208

extending from 28◦ S to 30◦ S (Figure 2d). At depth, H3 is dipping steeply to the east209

from 200 km down to 350 km depth (Profile (a), Figure 3). This anomaly was also visible210

in previous global or teleseismic tomography studies, but was so far not interpreted (e.g.211

C. Li et al., 2008; Portner et al., 2020; Mohammadzaheri et al., 2021). Recent S-wave212

teleseismic work (Rodŕıguez et al., 2021) captured a similar but larger-scale high-velocity213

anomaly extending from 200 km down to the lower mantle and attributed it to a part of214

relic Phoenix/Aluk plate, which was completely subducted by the late Cretaceous (Horton,215

2018; Gianni et al., 2018). However, the resolution of the aforementioned models is limited216

in the upper mantle due to vertical smearing. We prefer to relate this anomaly to the more217

recent Nazca plate subduction as it seems unlikely that a part of the Phoenix slab could218

remain in the upper mantle for more than 100 million years and has not sunk into the219

lower mantle or thermally equilibrated with the surrounding mantle (Ramos & Folguera,220

2009; Bello-González et al., 2018; Chen et al., 2019). Thus, we propose this anomaly to221

be a fossil fragment of the Nazca slab that was subducting steeply prior to the onset of222

flattening, indicating break-off from the leading edge of the current Nazca slab (S. Liu &223

Currie, 2016). Slab break-off during the slab flattening process is common in geodynamic224

models (e.g. Haschke et al., 2002; S. Liu & Currie, 2016; X. Liu & Currie, 2019; Dai et225

al., 2020). The conditions for slab break-off during the slab flattening process include fast226

trenchward migration of the overriding plate (high convergence rate) and a strong buoyancy227

contrast between either an oceanic plateau or aseismic ridge crust (here the JFR) and the228

normal thickness oceanic crust of an old slab (Haschke et al., 2002; Z. Li et al., 2011; S. Liu229

& Currie, 2016; X. Liu & Currie, 2019). The removal of the leading dense portion would230

allow the positive buoyancy of the trailing edge to quickly flatten out the slab (Figure 4b).231

In many global tomography models, the Nazca slab extends to much shallower depth in the232

south than the north, where it is visible down to 1000 km depth (C. Li et al., 2008; Obayashi233

et al., 2013). Several teleseismic tomography models (Portner et al., 2017, 2020; Rodŕıguez234

et al., 2021) for South America seem to indicate a slab hole at 200-300 km depth around235

32◦S in the re-steepened portion within the upper mantle. Thus the relic slab break-off or236

detachment from the head of the young and buoyant Nazca slab seems a viable option.237

Taking account of the initial time of the transition from the steep to the flat subduction238

around 12 Ma coeval with the subduction of the JFR (Yáñez et al., 2001; S. M. Kay &239

Mpodozis, 2002; Ramos & Folguera, 2009), this would also be the time for the high density240
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portion ahead of the JFR to break off from the leading edge of the young Nazca slab241

(Figure 4b). Furthermore, partial eclogitization of the oceanic crust before the onset of the242

flat subduction may play an important role in controlling the breaking-off time (X. Liu &243

Currie, 2019) and sinking depth in the upper mantle. Thus, the tail of the broken portion244

would sink slowly in the upper mantle due to its relatively young age, while the head would245

have already sunk into the mantle transition zone or deeper, below the resolution limit of246

our model. After break-off, the young and buoyant Nazca slab with the JFR could lift to247

extend horizontally eastwards for nearly 300 km before re-steepening with a steep angle to248

a relatively shallower depth compared to the dip subduction zone north of 28◦ S (Figure249

4b).250

3.4 Subslab asthenospheric flow induced by sudden re-steepening of the251

Nazca slab beneath the Payenia?252

Another striking feature in our model is the low-velocity anomaly M4 extending from253

32◦–36◦S below the steep Nazca slab in Payenia subduction zone and from slab depths254

to 250–300 km depth (Figures 2c and 3, Profile. (e)-(h)). This low-velocity anomaly has255

also been observed by some earlier tomography studies (Feng et al., 2007; Portner et al.,256

2017, 2020; Celli et al., 2020; Rodŕıguez et al., 2021). Portner et al. (2017) attributed257

it to the asthenosphere entrainment by the JFR with the subducting Nazca slab due to258

the coupling between the asthenosphere and overlying oceanic lithosphere (L. Liu & Zhou,259

2015). However, due to its large size and location, it may more likely be caused by hot260

asthenospheric flow induced by the sudden re-steepening of the Nazca slab and trench retreat261

(Ramos & Folguera, 2009; Lin, 2014; Hu et al., 2017; Mohammadzaheri et al., 2021) since262

4 Ma beneath the Payenia subduction zone (Figure 4a).263

4 Conclusions264

Through multi-scale full seismic waveform inversion, we identify low velocity zones within the265

Pampean flat slab parallel to the inland projection of the Juan Fernandez Ridge, which we266

interpret as a tearing zone within the flat slab. It may be induced by the buoyancy contrast267

between the Pampean flat slab with Juan Fernandez Ridge attached and its surrounding268

steep slab portions to the north and south. Meanwhile, the buoyancy contrast between the269

young Nazca slab and the preceding steep Nazca slab appears to have triggered the slab270

break-off from the leading edge of current Nazca slab. The resulting buoyancy increase271

could possibly sustain the long-distance flat subduction. Flat subduction also expelled the272
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mantle wedge and shut off partial melting, resulting in much reduced volcanic activity and273

presence of partial melt in the crust. Re-steepening of the Nazca slab beneath the Payenia274

subduction zone seems to have significantly perturbed the sub-slab asthenospheric flow and275

introduced large-scale mantle flow, as visible in large low-velocity zone both above and below276

the slab. Re-opening of the mantle wedge and injection of the asthenosphere induced by277

the re-steepening of the Nazca slab may have caused the re-accumulation of partial melts278

within the middle crust and volcanic arc trench-ward migration and reactivation.279
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Ramos, V. A., Cristallini, E. O., & Pérez, D. J. (2002). The Pampean flat-slab of the532

Central Andes. Journal of South American earth sciences, 15 (1), 59–78. doi: https://533

doi.org/10.1016/S0895-9811(02)00006-8534

Ramos, V. A., & Folguera, A. (2009). Andean flat-slab subduction through time. Geological535

Society, London, Special Publications, 327 (1), 31–54. doi: https://doi.org/10.1144/536

SP327.3537

Ramos, V. A., & Folguera, A. (2011). Payenia volcanic province in the Southern Andes: An538

appraisal of an exceptional Quaternary tectonic setting. Journal of Volcanology and539

geothermal Research, 201 (1-4), 53–64. doi: https://doi.org/10.1016/j.jvolgeores.2010540

.09.008541

Ranero, C. R., Villaseñor, A., Phipps Morgan, J., & Weinrebe, W. (2005). Relationship542

between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry,543

Geophysics, Geosystems, 6 (12). doi: http://dx.doi.org/10.1029/2005GC000997544

Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (2004). Global transition zone tomog-545

raphy. Journal of Geophysical Research: Solid Earth, 109 (B2). doi: https://doi.org/546

10.1029/2003JB002610547

–17–



manuscript submitted to Geophysical Research Letters

Rivadeneyra-Vera, C., Bianchi, M., Assumpção, M., Cedraz, V., Julià, J., Rodŕıguez, M.,548
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Figure 1. (a) Map of major morphotectonic provinces (modified from Tassara et al. (2006);

Piceda et al. (2020)). Red solid line denotes the Payenia Volcanic Province (Ramos & Folguera,

2011). White saw-tooth line denotes the trench. (b) Map showing focal mechanisms of the earth-

quakes used for FWI. Color-coded circles represent the seismicity (magnitude > Mw 4.0) retrieved

from the ISC-EHB catalog (Engdahl et al., 2020). Black solid lines denote the Nazca slab contours

from Slab 2.0 (Hayes et al., 2018). Inset map marks the position of our study region. Topography

data is retrieved from ETOPO1 Global Relief Model (Amante & Eakins, 2009).
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Figure 2. Horizontal slices for isotropic VS at 20 km (a), 60 km (b), 140 km (c), and 280 km

(d). In (c) T (tension) axes from GCMT focal mechanism solutions (Ekström et al., 2012) for

earthquakes between 120 and 150 km depth with magnitude MW >5.0 are indicated by magenta

bars. The large and small magenta circles are seismicity from ISC-EHB catalog and the relocated

catalog from Sippl et al. (2020), respectively, and within 10 km of the nominal depth of the slice.

The pink shaded area off-shore indicates the position of the weakened oceanic lithosphere detected

by Kopp et al. (2004) along the JFR. Solid black lines denote the top of the slab according to Slab

2.0 (Hayes et al., 2018) at the depth of the slice. Black straight lines in (d) denote the positions of

the cross-sections in Figure 3.
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Figure 3. Cross-sections of isotropic VS perturbation relative to the reference 1D VS defined

in Figure S3. (see Figure 2d for profile locations). Thick solid black lines denote the continental

Moho (Rivadeneyra-Vera et al., 2019) and thin solid black lines denote the slab contour from Slab

2.0 (Hayes et al., 2018). The thick white dashed line in b denotes the oceanic LAB from receiver

function (Heit et al., 2008). Magenta dots in b-d denote the seismicity relocated by Sippl et al.

(2020) and in other profiles are retrieved from ISC-EHB catalog.
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Figure 4. (a) Schematic representation of the current Nazca slab configuration west of 66◦W.

Gray zone with short bars indicates the inland projection of the Juan Fernandez Ridge. South of

33◦S the Nazca plate subducts steeply in the Payenia segment. (b) Proposed sequence of the steep

to flat slab subduction evolution along 29◦S since 12 Ma, which can explain the observed pattern

of sub-slab anomalies.
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