9. References
Ambraseys, N.N. & Melville, C.P., 1982. A History of Persian Earthquakes, Cambridge Univ. Press. https://doi.org/10.1016/j.jseaes.2008.08.001
Avouac, J.P., 2015. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle, Annu. Rev. Earth Planet. Sci. 2015. 43:233–71, doi: 10.1146/annurev-earth-060614-105302.
Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G., Priestley, K., Madanipour, S., Rezaeian, M., 2013. Seismicity in the western coast of the South Caspian Basin and the Talesh Mountains. Geophys. J. Int. 194, 799–814. https://doi.org/10.1093/gji/ggt299
Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K., Mortezanejad, G., Rezaeian, M., 2016. Lithospheric structure beneath NW Iran using regional and teleseismic travel-time tomography, Physics of the Earth and Planetary Interiors 253, 97–107. http://dx.doi.org/10.1016/j.pepi.2016.02.006
Berberian, M., Arshadi, S., 1976. On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city. Geol. Surv. Iran Rep. 39, 397–418.
Berberian, M., 1997, Seismic sources of the Transcaucasian historical earthquakes. In S. Giardini and Balassanian, S. (Eds.), Historical and prehistorical earthquakes in the Caucasus. Kluwer Academic Publishing, Dordrecht, Netherlands, pp. 233–311.
Berberian, M. & Yeats, R.S., 1999. Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America 89 , 120–139.
Berberian, M. & Yeats, R.S., 2001. Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. Journal of Structural Geology 23 , 563–584.
Copley, A., Faridi, M., Ghorashi, M., Hollingsworth, J., Jackson, J., Nazari, H., Oveisi, B., Talebian, M., 2013. The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian plateau. Geophys. J. Int. 196, 15–21. http://dx.doi.org/10.1093/gji/ggt379
Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F., 2011. NW Iran eastern Turkey present-dat kinematics: results from the Iranian permanent GPS network, Earth planet. Sci. Lett., 307, 27–34. http://dx.doi.org/10.1016/j.epsl.2011.04.029
Donner, S., Ghods, A., Krauger, F., Roßler, D., Landgraf, A. & Ballato, P., 2015. The Ahar-Varzeghan earthquake doublet (Mw 6.4 and 6.2) of 11 August 2012: regional seismic moment tensors and a seismotectonic interpretation, Bull. seism. Soc. Am., 105, doi:10.1785/0120140042.
Eaton, D.W., & Schultz, R., 2018. Increased likelihood of induced seismicity in highly overpressured shale formations, Geophysical Journal International, 214(1), 751–757, https://doi.org/10.1093/gji/ggy167.
Engdahl, E.R.; Jackson, J.A.; Myers, S.C.; Bergman, E.A.; Priestley, K. Relocation and assessment of seismicity in the Iran region. Geophys. J. Int. 2006, 167, 761–778. http://dx.doi.org/10.1111/j.1365-246X.2006.03127.x
Floyd, M.A., et al., 2016. Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake, Geophys. Res. Lett., 43, doi:10.1002/2016GL069428.
Ghalamghash, J., Schmitt, A.K., Chaharlang, R., 2019. Age and compositional evolution of Sahand volcano in the context of post-collisional magmatism in northwestern Iran: Evidence for time-transgressive magmatism away from the collisional suture, Lithos 344–345 (2019) 265–279, https://doi.org/10.1016/j.lithos.2019.06.031.
Ghods, A., Shabanian, E., Bergman, E., Faridi, F., Donner, S., Mortezanejad, G., Aziz- Zanjani, A., 2015. The Varzaghan-Ahar, Iran, Earthquake Doublet 1 (Mw 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophys. J. Int. 203, 522–540. http://dx.doi.org/10.1093/gji/ggv306
Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., Brodesky, E.E., 2017. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells, Earth and Planetary Science Letters, 472, 50-61. https://doi.org/10.1016/j.epsl.2017.05.011
Harris, R. A. (2017), Large earthquakes and creeping faults, Rev. Geophys., 55, 169-198, doi:10.1002/2016RG000539.
Henry, C., & S. Das, 2002. The Mw 8.2 17 February 1996 Biak, Indonesia, earthquake: Rupture history, aftershocks, and fault plane properties, J. Geophys. Res., 107 (B11), 2312, doi: 10.1029/2001JB796.
Hessami Azar, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbasi, M.R., Feghhi, K., Solaymani, S., 2003. Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Ann. Geophys. 46, 903–915. DOI: https://doi.org/10.4401/ag-3461
Jackson, J., 1992. Partitioning of strike-slip and convergent motion between Eurasia and Arabia in Eastern Turkey and the Caucasus. J. Geophys. Res. 97, 12471–12479. https://doi.org/10.1029/92JB00944
Jackson, J., Priestley, K., Berberian, M., 2002. Active tectonics of the South Caspian Basin. Geophys. J. Int. 148, 214–245. https://doi.org/10.1046/j.1365-246X.2002.01588.x
Johann, L., Shapiro, S.A. & Dinske, C., 2018. The surge of earthquakes in Central Oklahoma has features of reservoir-induced seismicity. Sci Rep 8, 11505. https://doi.org/10.1038/s41598-018-29883-9.
Kagan, Y. Y., and Jackson, D. D., 1991, Long-term earthquake clustering, Geophys. J. Int., 104, 117–133. https://doi.org/10.1111/j.1365-246X.1991.tb02498.x
Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Avagyan, A., Hessami, K., Jamali, Bayraktutan, F. M., Bagdassarian, H., Arakelian, S., Davtyan V., and Adilkhanyan, A., 2004, Active faulting and natural hazards in Armenia, eastern Turkey and Northern Iran, Tectonophysics, 380, 189–219. https://doi.org/10.1016/j.tecto.2003.09.020
Khoshmanesh, M., Shirzaei, M., 2018. Episodic creep events on the San Andreas Fault caused by pore pressure variations, Nat. Geosci. https://doi.org/10.1038/s41561-018-0160-2
Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tatar, M., Tavakoli, F., Nankali, H. & Vernant, P., 2006. Extension in NW Iran driven by the motion of the South Caspian Basin, Earth planet. Sci. Lett., 252, 180–188. https://doi.org/10.1016/j.epsl.2006.09.038
Michel, S., Avouac, J.P., Jolivet, R., and Wang, L., 2018. Seismic and Aseismic Moment Budget and Implication for the Seismic Potential of the Parkfield Segment of the San Andreas Fault, Bulletin of the Seismological Society of America, Vol. 108, No. 1, pp. 19–38, Doi: 10.1785/0120160290.
McClusky, S., et al., 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 105, 5695–5719. https://doi.org/10.1029/1999JB900351
Momeni, S.M., Tatar, M., 2018. Mainshocks/aftershocks study of the August 2012 earthquake doublet on Ahar-Varzaghan complex fault system (NW Iran). Physics of the Earth and Planetary Interiors, 283 , 67-81. https://doi.org/10.1016/j.pepi.2018.08.001
Momeni, S.M., Aoudia, A., Tatar, M., Twardzik, C. & Madariaga, R., 2019. Kinematics of the 2012 Ahar–Varzaghan complex earthquake doublet (M w6.5 and M w6.3), Geophysical Journal International , 217 , 2097–2124, https://doi.org/10.1093/gji/ggz100
Momeni, S.M., Madariaga, R., 2020. Long-term induced seismicity on the Mosha fault by Damavand Volcano, N-Iran, Implications on the seismic hazard of Tehran metropolis, under review in SRL.
Moradi, A.S., Hatzfeld, D. & Tatar, M., 2011. Microseismicity and seismotectonics of the North Tabriz Fault (Iran), Tectonophysics, 506, 22–30. https://doi.org/10.1016/j.tecto.2011.04.008
Noda, H., & Lapusta, N., 2013, Stable creeping fault segments can become destructive as a result of dynamic weakening, NATURE,493 , 518-521, doi:10.1038/nature11703
Schulz, S., Darehshouri, S., Hassanzadeh, E. et al. 2020. Climate change or irrigated agriculture – what drives the water level decline of Lake Urmia. Sci Rep 10, 236. https://doi.org/10.1038/s41598-019-57150-y.
Su, Z., Wang, E., Hu, J., Talebian, M. & Karimzadeh, S., (2017). Quantifying the Termination Mechanism Along the North Tabriz-North Mishu Fault Zone of Northwestern Iran via Small Baseline PS-InSAR and GPS Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 1, pp. 130-144, doi: 10.1109/JSTARS.2016.2586742.
Reilinger, R., et al., 2006. GPS constraints on continental deformation in the Africa- Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411. https://doi.org/10.1029/2005JB004051.
Rezaeifar, M., Kissling, E., Shomali, Z.H. & Shahpasand-Zadeh, M., 2016. 3D crustal structure of the northwest Alborz region (Iran) from local earthquake tomography. Swiss J. Geosci., 1–12, Springer International Publishing. doi:10.1007/s00015-016-0219-2
Rizza, M., Vernant, P., Ritz, J., Peyrat, M., Nankali, H., Nazari, H., Djamour, Y., Salamati, R., Tavakoli, F., Chéry, J., Mahan, S., Masson, F., 2013. Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophys. J. Int. 193, 1083–1094. https://doi.org/10.1093/gji/ggt041
Ruiz, S., & Madariaga, R., 2013. Kinematic and dynamic inversion of the 2008 northern Iwate earthquake, Bull. Seismol. Soc. Am.,103 (2A), 694–708, Doi: 10.1785/0120120056.
Saar, M.O., Manga, M., 2003. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon, Earth and Planetary Science Letters, 214, 605-618. https://doi.org/10.1016/S0012-821X(03)00418-7
Scuderi, M.M., Collettini, C., Marone, C., 2017. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault, Earth and Planetary Science Letters, 477 , 84-96. https://doi.org/10.1016/j.epsl.2017.08.009
Solaymani Azad, S., Philip, H., Dominguez, S., Hessami Azar, K., Shahpasandzadeh, M., Foroutan, M., Tabassi, H., Lamothe, M., 2015. Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640–641, 20-38. https://doi.org/10.1016/j.tecto.2014.11.010
Van den Ende, M.P.A., Chen, J., Ampuero J.P. & Niemeijer A.R., 2020. Rheological Transitions Facilitate Fault‐Spanning Ruptures on Seismically Active and Creeping Faults, Journal of Geophysical Research: Solid Earth Volume 125, Issue 8, https://doi.org/10.1029/2019JB019328
Vadacca, L., 2020, The Altotiberina Low-Angle Normal Fault (Italy) Can Fail in Moderate-Magnitude Earthquakes as a Result of Stress Transfer from Stable Creeping Fault Area, Geosciences, 10, 144; doi:10.3390/geosciences10040144.
Valerio, E., Manzo, M., Casu, F., Convertito, V., De Luca, C., Manunta, M., Monterroso, F., Lanari, R. & De Novellis, V., 2020. Seismogenic Source Model of the 2019, Mw 5.9, East-Azerbaijan Earthquake (NW Iran) through the Inversion of Sentinel-1 DInSAR Measurements, Remote Sens., 12, 1346; doi:10.3390/rs12081346.
Vernant, Ph., et al., 2004. Contemporary crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int. 157, 381–398.
Wang, R., Martin, F.L., Roth, F., (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCM, Computers & Geosciences 29, 195–207, 2003.
Zamani, B., Masson, F., 2014. Recent tectonics of East (Iranian) Azerbaijan from stress state reconstructions. Tectonophysics 611, 61–82.
Zhu, W., Allison, K.L., Dunham, E.M., Yang, Y., 2020. Fault Valving and Pore Pressure Evolution in Simulations of Earthquake Sequences and Aseismic Slip, Computational Physics, https://arxiv.org/abs/2001.03852.