9. References
Ambraseys, N.N. & Melville, C.P., 1982. A History of Persian
Earthquakes, Cambridge Univ. Press.
https://doi.org/10.1016/j.jseaes.2008.08.001
Avouac, J.P., 2015. From Geodetic Imaging of Seismic and Aseismic Fault
Slip to Dynamic Modeling of the Seismic Cycle, Annu. Rev. Earth Planet.
Sci. 2015. 43:233–71, doi: 10.1146/annurev-earth-060614-105302.
Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G.,
Priestley, K., Madanipour, S., Rezaeian, M., 2013. Seismicity in the
western coast of the South Caspian Basin and the Talesh Mountains.
Geophys. J. Int. 194, 799–814. https://doi.org/10.1093/gji/ggt299
Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley,
K., Mortezanejad, G., Rezaeian, M., 2016. Lithospheric structure beneath
NW Iran using regional and teleseismic travel-time tomography, Physics
of the Earth and Planetary Interiors 253, 97–107.
http://dx.doi.org/10.1016/j.pepi.2016.02.006
Berberian, M., Arshadi, S., 1976. On the evidence of the youngest
activity of the North Tabriz Fault and the seismicity of Tabriz city.
Geol. Surv. Iran Rep. 39, 397–418.
Berberian, M., 1997, Seismic sources of the Transcaucasian historical
earthquakes. In S. Giardini and Balassanian, S. (Eds.), Historical and
prehistorical earthquakes in the Caucasus. Kluwer Academic Publishing,
Dordrecht, Netherlands, pp. 233–311.
Berberian, M. & Yeats, R.S., 1999. Patterns of historical earthquake
rupture in the Iranian Plateau. Bulletin of the Seismological Society of
America 89 , 120–139.
Berberian, M. & Yeats, R.S., 2001. Contribution of archaeological data
to studies of earthquake history in the Iranian Plateau. Journal of
Structural Geology 23 , 563–584.
Copley, A., Faridi, M., Ghorashi, M., Hollingsworth, J., Jackson, J.,
Nazari, H., Oveisi, B., Talebian, M., 2013. The 2012 August 11 Ahar
earthquakes: consequences for tectonics and earthquake hazard in the
Turkish-Iranian plateau. Geophys. J. Int. 196, 15–21.
http://dx.doi.org/10.1093/gji/ggt379
Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F., 2011. NW Iran
eastern Turkey present-dat kinematics: results from the Iranian
permanent GPS network, Earth planet. Sci. Lett., 307, 27–34.
http://dx.doi.org/10.1016/j.epsl.2011.04.029
Donner, S., Ghods, A., Krauger, F., Roßler, D., Landgraf, A. & Ballato,
P., 2015. The Ahar-Varzeghan earthquake doublet (Mw 6.4 and 6.2) of 11
August 2012: regional seismic moment tensors and a seismotectonic
interpretation, Bull. seism. Soc. Am., 105, doi:10.1785/0120140042.
Eaton, D.W., & Schultz, R., 2018. Increased likelihood of induced
seismicity in highly overpressured shale formations, Geophysical Journal
International, 214(1), 751–757,
https://doi.org/10.1093/gji/ggy167.
Engdahl, E.R.; Jackson, J.A.; Myers, S.C.; Bergman, E.A.; Priestley, K.
Relocation and assessment of seismicity in the Iran region. Geophys. J.
Int. 2006, 167, 761–778.
http://dx.doi.org/10.1111/j.1365-246X.2006.03127.x
Floyd, M.A., et al., 2016. Spatial variations in fault friction related
to lithology from rupture and afterslip of the 2014 South Napa,
California, earthquake, Geophys. Res. Lett., 43,
doi:10.1002/2016GL069428.
Ghalamghash, J., Schmitt, A.K., Chaharlang, R., 2019. Age and
compositional evolution of Sahand volcano in the context of
post-collisional magmatism in northwestern Iran: Evidence for
time-transgressive magmatism away from the collisional suture, Lithos
344–345 (2019) 265–279, https://doi.org/10.1016/j.lithos.2019.06.031.
Ghods, A., Shabanian, E., Bergman, E., Faridi, F., Donner, S.,
Mortezanejad, G., Aziz- Zanjani, A., 2015. The Varzaghan-Ahar, Iran,
Earthquake Doublet 1 (Mw 6.4, 6.2): implications for the geodynamics of
northwest Iran. Geophys. J. Int. 203, 522–540.
http://dx.doi.org/10.1093/gji/ggv306
Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., Brodesky, E.E.,
2017. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for
long-range poroelastic triggering at >40 km from fluid
disposal wells, Earth and Planetary Science Letters, 472, 50-61.
https://doi.org/10.1016/j.epsl.2017.05.011
Harris, R. A. (2017), Large earthquakes and creeping faults, Rev.
Geophys., 55, 169-198, doi:10.1002/2016RG000539.
Henry, C., & S. Das, 2002. The Mw 8.2 17 February 1996 Biak, Indonesia,
earthquake: Rupture history, aftershocks, and fault plane properties, J.
Geophys. Res., 107 (B11), 2312, doi: 10.1029/2001JB796.
Hessami Azar, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbasi,
M.R., Feghhi, K., Solaymani, S., 2003. Paleoearthquakes and slip rates
of the North Tabriz Fault, NW Iran: preliminary results. Ann. Geophys.
46, 903–915. DOI: https://doi.org/10.4401/ag-3461
Jackson, J., 1992. Partitioning of strike-slip and convergent motion
between Eurasia and Arabia in Eastern Turkey and the Caucasus. J.
Geophys. Res. 97, 12471–12479. https://doi.org/10.1029/92JB00944
Jackson, J., Priestley, K., Berberian, M., 2002. Active tectonics of the
South Caspian Basin. Geophys. J. Int. 148, 214–245.
https://doi.org/10.1046/j.1365-246X.2002.01588.x
Johann, L., Shapiro, S.A. & Dinske, C., 2018. The surge of earthquakes
in Central Oklahoma has features of reservoir-induced seismicity. Sci
Rep 8, 11505. https://doi.org/10.1038/s41598-018-29883-9.
Kagan, Y. Y., and Jackson, D. D., 1991, Long-term earthquake clustering,
Geophys. J. Int., 104, 117–133.
https://doi.org/10.1111/j.1365-246X.1991.tb02498.x
Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Avagyan, A.,
Hessami, K., Jamali, Bayraktutan, F. M., Bagdassarian, H., Arakelian,
S., Davtyan V., and Adilkhanyan, A., 2004, Active faulting and natural
hazards in Armenia, eastern Turkey and Northern Iran, Tectonophysics,
380, 189–219. https://doi.org/10.1016/j.tecto.2003.09.020
Khoshmanesh, M., Shirzaei, M., 2018. Episodic creep events on the San
Andreas Fault caused by pore pressure variations, Nat. Geosci.
https://doi.org/10.1038/s41561-018-0160-2
Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tatar, M., Tavakoli,
F., Nankali, H. & Vernant, P., 2006. Extension in NW Iran driven by the
motion of the South Caspian Basin, Earth planet. Sci. Lett., 252,
180–188. https://doi.org/10.1016/j.epsl.2006.09.038
Michel, S., Avouac, J.P., Jolivet, R., and Wang, L., 2018. Seismic and
Aseismic Moment Budget and Implication for the Seismic Potential of the
Parkfield Segment of the San Andreas Fault, Bulletin of the
Seismological Society of America, Vol. 108, No. 1, pp. 19–38, Doi:
10.1785/0120160290.
McClusky, S., et al., 2000. Global positioning system constraints on
plate kinematics and dynamics in the eastern Mediterranean and Caucasus.
J. Geophys. Res. 105, 5695–5719. https://doi.org/10.1029/1999JB900351
Momeni, S.M., Tatar, M., 2018. Mainshocks/aftershocks study of the
August 2012 earthquake doublet on Ahar-Varzaghan complex fault system
(NW Iran). Physics of the Earth and Planetary Interiors, 283 ,
67-81. https://doi.org/10.1016/j.pepi.2018.08.001
Momeni, S.M., Aoudia, A., Tatar, M., Twardzik, C. & Madariaga, R.,
2019. Kinematics of the 2012 Ahar–Varzaghan complex earthquake doublet
(M w6.5
and M w6.3), Geophysical Journal
International , 217 ,
2097–2124, https://doi.org/10.1093/gji/ggz100
Momeni, S.M., Madariaga, R., 2020. Long-term induced seismicity on the
Mosha fault by Damavand Volcano, N-Iran, Implications on the seismic
hazard of Tehran metropolis, under review in SRL.
Moradi, A.S., Hatzfeld, D. & Tatar, M., 2011. Microseismicity and
seismotectonics of the North Tabriz Fault (Iran), Tectonophysics, 506,
22–30. https://doi.org/10.1016/j.tecto.2011.04.008
Noda, H., & Lapusta, N., 2013, Stable creeping fault segments can
become destructive as a result of dynamic weakening, NATURE,493 , 518-521, doi:10.1038/nature11703
Schulz, S., Darehshouri, S., Hassanzadeh, E. et al. 2020. Climate change
or irrigated agriculture – what drives the water level decline of Lake
Urmia. Sci Rep 10, 236.
https://doi.org/10.1038/s41598-019-57150-y.
Su, Z., Wang, E., Hu, J., Talebian, M. & Karimzadeh, S., (2017).
Quantifying the Termination Mechanism Along the North Tabriz-North Mishu
Fault Zone of Northwestern Iran via Small Baseline PS-InSAR and GPS
Decomposition. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 10, no. 1, pp. 130-144, doi:
10.1109/JSTARS.2016.2586742.
Reilinger, R., et al., 2006. GPS constraints on continental deformation
in the Africa- Arabia-Eurasia continental collision zone and
implications for the dynamics of plate interactions. J. Geophys. Res.
111, B05411. https://doi.org/10.1029/2005JB004051.
Rezaeifar, M., Kissling, E., Shomali, Z.H. & Shahpasand-Zadeh, M.,
2016. 3D crustal structure of the northwest Alborz region (Iran) from
local earthquake tomography. Swiss J. Geosci., 1–12, Springer
International Publishing. doi:10.1007/s00015-016-0219-2
Rizza, M., Vernant, P., Ritz, J., Peyrat, M., Nankali, H., Nazari, H.,
Djamour, Y., Salamati, R., Tavakoli, F., Chéry, J., Mahan, S., Masson,
F., 2013. Morphotectonic and geodetic evidence for a constant slip-rate
over the last 45 kyr along the Tabriz fault (Iran). Geophys. J. Int.
193, 1083–1094. https://doi.org/10.1093/gji/ggt041
Ruiz, S., & Madariaga, R., 2013. Kinematic and dynamic inversion of the
2008 northern Iwate earthquake, Bull. Seismol. Soc. Am.,103 (2A), 694–708, Doi: 10.1785/0120120056.
Saar, M.O., Manga, M., 2003. Seismicity induced by seasonal groundwater
recharge at Mt. Hood, Oregon, Earth and Planetary Science Letters, 214,
605-618. https://doi.org/10.1016/S0012-821X(03)00418-7
Scuderi, M.M., Collettini, C., Marone, C., 2017. Frictional stability
and earthquake triggering during fluid pressure stimulation of an
experimental fault, Earth and Planetary Science Letters, 477 ,
84-96. https://doi.org/10.1016/j.epsl.2017.08.009
Solaymani Azad, S., Philip, H., Dominguez, S., Hessami Azar, K.,
Shahpasandzadeh, M., Foroutan, M., Tabassi, H., Lamothe, M., 2015.
Paleoseismological and morphological evidence of slip rate variations
along the North Tabriz fault (NW Iran). Tectonophysics, 640–641, 20-38.
https://doi.org/10.1016/j.tecto.2014.11.010
Van den Ende, M.P.A., Chen, J., Ampuero J.P. & Niemeijer A.R., 2020.
Rheological Transitions Facilitate Fault‐Spanning Ruptures on
Seismically Active and Creeping Faults, Journal of Geophysical Research:
Solid Earth Volume 125, Issue 8, https://doi.org/10.1029/2019JB019328
Vadacca, L., 2020, The Altotiberina Low-Angle Normal Fault (Italy) Can
Fail in Moderate-Magnitude Earthquakes as a Result of Stress Transfer
from Stable Creeping Fault Area, Geosciences, 10, 144;
doi:10.3390/geosciences10040144.
Valerio, E., Manzo, M., Casu, F., Convertito, V., De Luca, C., Manunta,
M., Monterroso, F., Lanari, R. & De Novellis, V., 2020. Seismogenic
Source Model of the 2019, Mw 5.9, East-Azerbaijan Earthquake (NW Iran)
through the Inversion of Sentinel-1 DInSAR Measurements, Remote Sens.,
12, 1346; doi:10.3390/rs12081346.
Vernant, Ph., et al., 2004. Contemporary crustal deformation and plate
kinematics in Middle East constrained by GPS measurements in Iran and
northern Oman. Geophys. J. Int. 157, 381–398.
Wang, R., Martin, F.L., Roth, F., (2003). Computation of deformation
induced by earthquakes in a multi-layered elastic crust—FORTRAN
programs EDGRN/EDCM, Computers & Geosciences 29, 195–207, 2003.
Zamani, B., Masson, F., 2014. Recent tectonics of East (Iranian)
Azerbaijan from stress state reconstructions. Tectonophysics 611,
61–82.
Zhu, W., Allison, K.L., Dunham, E.M., Yang, Y., 2020. Fault Valving and
Pore Pressure Evolution in Simulations of Earthquake Sequences and
Aseismic Slip, Computational Physics,
https://arxiv.org/abs/2001.03852.