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Abstract 10 

We quantify how changes in natural flood discharge control bedload rest time distributions 11 

and may influence particle diffusion through mountain river networks. We embedded 12 

accelerometers and gyroscopes into artificial cobbles deployed in Halfmoon Creek, Colorado, 13 

USA, and measured bedload transport during 28 daily snowmelt flood hydrographs in 2015. 14 

From the motion sensor data we calculate motion and rest distributions over ≈6 orders of 15 

temporal magnitude, from ≈2 seconds to ≈1 month. Motion durations follow a thin-tailed 16 

exponential distribution. Rests > 12 hours can be well fit by both truncated Pareto distributions 17 

and exponentially-tempered Pareto distributions, suggesting ambiguity in whether rests remain 18 

heavy-tailed or transition to thin tails at even longer timescales. Rest time scaling varies not only 19 

with timescale but also with flow intensity, becoming less heavy-tailed as shear stress increases.  20 

A rest time scaling break at ≈12 hours may be caused by daily discharge cyclicity. 21 

 22 

Plain language summary 23 

Gravel moves downstream during floods in mountain streams.  Some grains move faster and 24 

farther and some move slower and shorter distances, causing sediment to spread out along 25 

channels over time.  Predicting this spreading—called diffusion—is useful for understanding 26 

effects of floods along rivers, including patterns of erosion and deposition. We used 27 

“smartrocks” containing accelerometers and batteries to measure exactly when individual 28 

sediment grains moved during a month-long flood in the Rocky Mountains of Colorado. The 29 
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data were used to calibrate various equations that relate movements to diffusion. These equations 30 

can improve predictions of how different floods will cause gravel to spread downstream during 31 

future floods.     32 

 33 

Key Points 34 

• Sensor-embedded cobble tracers quantify rest and hop durations during snowmelt-driven 35 

bedload transport in a natural mountain stream.  36 

• Cobble rest time scaling varies with hydraulic forcing as well as with timescale. 37 

• Heavy-tailed rests and thin-tailed hop durations imply a transition from subdiffusion to 38 

superdiffusion with increases in both timescale and shear stress. 39 

 40 

1. Introduction 41 

Understanding how hydrologic forcing controls sediment advection and diffusion during 42 

floods is important for improving predictions of bedload transport and channel evolution, 43 

particularly as climate and land use change may affect flood frequency and intensity in many 44 

environments (e.g. Hunt, 2002, Milly et al., 2002, Pelletier et al., 2015; East and Sankey, 2020). 45 

Field studies of tracer transport have generally been restricted to timescales either relatively short 46 

(seconds to hours) or relatively long (positions before and after floods, up to decades) (e.g., 47 

Nikora et al., 2002; Haschenburger, 2013; Philips et al., 2013; Bradley, 2017). Few field-based 48 

studies have been able to quantify transport statistics during floods and span a wide range of 49 

timescales in one data set (e.g., McNamara and Borden, 2004; Olinde and Johnson, 2015; 50 

Habersack, 2001). 51 

Statistical distributions of grain movements and rests control particle advection and 52 

diffusion through river networks (e.g., Einstein, 1937; Sayre and Hubbell, 1965).  Bedload 53 

diffusion can be characterized in terms of the variance (𝜎𝑥
2) of particle displacements in the 54 

downstream (x) direction over a given time interval (𝑡), such that 𝜎𝑥
2 ∝ 𝑡𝛾. Normal (Fickian) 55 

diffusion occurs when variance increases linearly with time (𝛾 = 1). Anomalous diffusion (𝛾 ≠56 

1) can be further categorized into subdiffusion ( 1 ) and superdiffusion ( 1 ) (Weeks and 57 

Swinney, 1998; Martin et al., 2012). Anomalous diffusion indicates that nonlocal factors—58 
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variables that are not only functions of that particular location and time but also depend on 59 

upstream-integrated effects--influence local transport (e.g., Foufoula-Georgiou and Passalacqua, 60 

2013), including upstream watershed-dependent sediment supply and discharge, spatial 61 

variations in scour and fill, and grain size sorting. Nonlocality affects the accuracy of flux 62 

measurements over different averaging timescales, how clasts advect and disperse, and how 63 

environmental perturbations propagate through watersheds (e.g., Ganti et al. 2010, Martin et al 64 

2012, Zhang et al., 2012). Mechanistically, transport processes that influence the degree to which 65 

particle hop and rest durations follow thin-tailed or heavy-tailed distributions can control 66 

whether diffusion is normal or anomalous (e.g., Weeks and Swinney, 1998; Nikora et al., 2002, 67 

Schumer et al., 2009, Zhang et al., 2012; Voepel et al., 2013; Martin et al., 2012; Martin et al., 68 

2014; Fan et al., 2016, Bradley et al., 2010).  69 

At least three distinct diffusion regimes have been interpreted as functions of timescale 70 

(e.g., Nikora et al., 2002), although Pierce and Hassan (2020) note that these diffusion ranges 71 

“are not resolved by any one data set”. Contrasting diffusion behaviors have been interpreted for 72 

long (“global”) timescales, including subdiffusion (Nikora et al., 2002; Cecchetto et al., 2018), 73 

normal diffusion (Zhang et al., 2012;, Voepel et al., 2013; Hassan et al., 2013; Haschenburger, 74 

2013), and superdiffusion (Bradley et al., 2010, Bradley, 2017; Martin et al., 2012, Philips et al. 75 

2013, Martin et al. 2014; Olinde and Johnson, 2015). While Nikora et al. (2002) hypothesized 76 

that flow intensity may also affect bedload diffusion, little previous work has explored this 77 

dependence. Using flume experiments, Heyman et al. (2013) and Liu et al. (2019) generally 78 

found that lower shear stresses corresponded to heavier-tailed rest time distributions.  79 

Accelerometer-embedded smartrocks allow us to precisely measure the timing and 80 

durations of both motions and rests during a natural snowmelt flood. Pretzlav et al. (2020) use 81 

new smartrock data from Halfmoon Creek, Colorado to calculate bedload hysteresis and 82 

evolving thresholds of motion. In the present work, we analyze these data to explore different 83 

questions: How do rest durations scale over > 5 orders of temporal magnitude, and what do these 84 

distributions imply about bedload diffusion?  Is rest time scaling independent of sediment 85 

transport intensity, or does it vary with hydrological forcing? Does cyclicity in flood discharge 86 

influence rest time distributions?   87 
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2. Field Site 88 

Halfmoon Creek, Colorado, USA is well characterized by previous bedload transport 89 

work (Torizzo and Pitlick, 2004, Mueller and Pitlick, 2005; Bradley and Tucker, 2012; Bradley, 90 

2017; Bunte and Swingle, 2005). Pretzlav et al. (2020) give details of our study reach and 91 

methods. Channel reach width is ≈7 m, depth from thalweg to banks ~1 m, and slope ~0.5%. Bed 92 

surface median grain diameter varied spatially between D50≈6-13 cm in our reach, with D84≈29 93 

cm.  USGS gaging station 07083000 is ≈1.5 km downstream. The 2015 snowmelt flood had a 94 

peak discharge of 11.5 m3/s and a 10-year recurrence interval (Pretzlav et al., 2020).  Pressure 95 

transducers monitored flow depth (h) in the reach, which was used to calculate shear stress 96 

ghS =  and Shields stress 𝜏∗ = 𝜏 (𝜌𝑠 − 𝜌)𝑔𝐷⁄ , where   and s  are water (1000 kg/m3) and 97 

sediment (2650 kg/m3) density, g is gravitational acceleration (9.81 m/s2), S is reach slope, and D 98 

is the intermediate tracer diameter (7.2 cm, roughly bed D50). 99 

“Smartrock” cobbles were designed to infer the precise timing and duration of grain 100 

movements at high temporal resolutions. Custom high-density nylon tracer housings formed 101 

triaxial ellipsoids with axis diameters 7.2, 12.0 and 6.4 cm. Each smartrock contained a sensor 102 

(made by Gulf Coast Data Concepts LLC) which measured acceleration on 3 orthogonal axes 103 

(±2g), gyroscope rotation rate (± 2000 degrees / second), and magnetometer compass direction 104 

(± 1200 𝜇𝑇) using an InvenSense 9150 9-axis inertial measurement unit (IMU). Accelerometer 105 

and gyroscope data were collected at 10 Hz and used to calculate when individual motions 106 

started and ended.  Pretzlav et al. (2020) describe the algorithm we developed that accurately 107 

measures motions and rests ≥2 s in duration.  108 

Thirty-three tracers were deployed May 13, 2015, in the same location as Bradley and 109 

Tucker (2012), following their protocol of replacing a similarly-sized surface grain with a tracer 110 

to reduce enhanced mobility during initial motions. 27 tracers were recovered in fall 2015 when 111 

flow was low, although 6 of those sensors failed to record data.  Because only 4 recovered 112 

tracers were buried, our data are likely biased towards surface grains. From the start of transport 113 

on June 3, individual tracers logged data for 2-28 days, limited by battery life. Our analysis uses 114 

all 15,536 movements from 21 tracers, detected over 28 days of diurnal hydrographs for which 115 

the entire flow was above threshold (Pretzlav et al., 2020). Hop durations are calculated from the 116 
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start and end times of a given motion. Rest durations are calculated from the end of the last 117 

motion to the beginning of the next entrainment. 118 

3. Scaling Methods 119 

 A distribution of tracer rest durations ( dt ) is heavy-tailed when power law tail exponent 120 

2  for exceedance probability (P): 121 

( ) − tttP d    (1)  122 

where 𝑡 is a given time interval. Thin-tailed distributions (such as exponential functions; Figure 123 

1a) have 2  (e.g. Hassan et al., 2013).  Following previous work, we assume that dt  are 124 

power-law distributed, with different tail exponents expected over different timescales (e.g., 125 

Nikora et al., 2002; Pierce and Hassan, 2020). We calculate   for rest time distributions from 126 

the entire 28-day record, using the Hill estimator of Nuyts (2010) which avoids bias in   127 

estimates from only fitting a range of data within a given distribution. To objectively determine 128 

scaling breaks we apply the method of Clauset et al. (2009), which uses the Kolmogorov-129 

Smirnov goodness of fit statistic (KS) to quantify how well different ranges of dt  are fit by 130 

power-law distributions. Scaling breaks are chosen at local KS minima, because lower KS values 131 

indicate that a given scaling break leads to a better power-law fit to that range of data (Figure 1b; 132 

see Supporting Information Text S2 for details). 95% confidence intervals are estimated using 133 

the bootstrap approach of Clauset et al. (2009), which involves subsampling dt  and calculating 134 

variability in repeated   estimates (Figure 1c).  135 

Truncated and exponentially-tempered Pareto distributions can also fit our rest time data. 136 

Data collection methods that prevent larger values from being included in a given distribution 137 

can bias exponent estimates to lighter-tailed values, appearing as a “rollover” in exceedance 138 

probabilities at longer rest durations (Figure 1d).  A Truncated Pareto distribution characterizes 139 

power-law behavior when there is a fixed upper limit in a data set (i.e., a single maximum 140 

measurable rest duration) (Aban et al., 2006; Bradley, 2017): 141 
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where tra is the power-law tail exponent (comparable to α in Equation 1), truncation parameter 143 

b is the upper bound (i.e. maximum duration) that could be present in distribution t, and ot  is the 144 

minimum duration fit by the function. In principle, Equation (2) enables tra to be determined 145 

without truncation bias, as applied by Bradley (2017) for tracers over longer timescales in 146 

Halfmoon Creek.   147 

Zhang et al. (2012), Voepel et al. (2013), and Hassan et al. (2013) argued that diffusion 148 

transitions from anomalous to normal as timescales increase to be very long, suggesting that rest 149 

time distributions should gradually become thin-tailed. To explore whether our data are 150 

consistent with this behavior, we also fit exponentially-tempered Pareto distributions, which 151 

gradually transition from power-law scaling at shorter timescales to thin-tailed exponential at 152 

longer timescales (Meerschaert et al., 2012):  153 

( ) ( ) ctacta

or etetttP etoet −−
=  for ott   (3) 154 

where power-law exponent eta  is comparable to   and tra  in Equations (1) and (2), and c  155 

characterizes the exponential decay. Truncated and exponentially-tempered Pareto distributions 156 

can often fit the same data because both gradually transition to thin-tailed distributions at longer 157 

timescales, and “if the practitioner believes that a fixed upper bound is reasonable, then the 158 

truncated Pareto is suitable” (Meerschaert et al., 2012). In contrast, a variety of physical 159 

mechanisms (including but not limited to truncation) could result in data following an 160 

exponentially-tempered Pareto distribution, making it less diagnostic of underlying causes of 161 

observed scaling. We fit Equations (2) and (3) to rest-time distributions using Matlab nonlinear 162 

curve fitting (Figure 1d).  163 

We also calculate separate rest time exponents for daily flood events 1-22 (Figure 2). 164 

Events 23-28 did not have sufficient numbers of rests to meaningfully constrain separate tail 165 

distributions following Clauset et al. (2009) methods; 99.7% of movements occurred before 166 

event 23. Rest distributions for all events 1-28 are shown in Supporting Information (Figure S2, 167 

S3). Rests were apportioned to each daily hydrograph (defined from discharge minimum to 168 

discharge minimum the following day; Figure 2g), with rest times truncated at the boundaries of 169 

each event. For example, if a tracer came to rest during event 4, and remained at rest until event 170 
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5, the rest was apportioned between each event. Diurnal rests cannot be longer than the diurnal 171 

cycle.  172 

The control of bedload rest and hop statistics on anomalous diffusion has previously been 173 

inferred using the asymmetric random walk model of Weeks and Swinney (1998) (e.g., Martin et 174 

al., 2012, Olinde and Johnson, 2015; Bradley, 2017). Under thin-tailed hop durations (Figure 175 

1b), diffusion exponent 𝛾 (i.e., 𝜎𝑥
2 ∝ 𝑡𝛾) is a function of rest time tail exponent 𝛼: 176 





−


=

21,3

10,2




    (4) 177 

Fan et al. (2016) modeled bedload rests and hops and found diffusion consistent with Equation 4, 178 

supporting its use. Finally, Nikora et al. (2002) proposed that bedload diffusion scaling changed 179 

over different nondimensional timescales ( *t ):  180 

D

tu
t =*     (5)  181 

where shear velocity u =  . 182 

4. Results 183 

Hop durations ≥2 seconds follow a thin-tailed exponential distribution (Figure 1a), 184 

justifying the use of Equation 4, and consistent with laboratory experiments including Martin et 185 

al. (2012), Roseberry et al. (2012), and Liu et al. (2019).  186 

Table 1 gives rest time exponent fits, calculated diffusion exponents, nondimensional 187 

timescales (Equations 1-5), and comparisons to previous field and experimental work. The KS 188 

minimum indicates that the strongest scaling break occurs at 12.5 (11.8-23.6) minutes, with 189 

additional scaling breaks suggested by local minima at 7 s (possible range 5.9-7.1 s) and 12.3 190 

(11.8-12.9) hours (Figure 1b; Supporting Information; Clauset et al., 2009).  Local KS minima 191 

>12.3 hours (most notably at ≈2.17×105 s, or ≈2.5 days) are not interpreted as additional breaks 192 

because α estimates are within uncertainty of each other for minima >12.3 hours, in part because 193 

the relatively small number of long rests give large α uncertainties (Clauset et al., 2009). 194 

Transitions between scaling regimes appear gradual (Figure 1c). 195 

Rests between 7 s and 12.5 min follow 1 =0.28±0.02 (±95% confidence intervals). The 196 

numeric subscript on α simply indicates an Equation (1) fit to a particular timespan of the data, 197 
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with 1  representing 7 s-12.5 min (Figure 1c). For 12.5 min < tr < 12.0 hours, 2 =0.62±0.05. 198 

For rests ≥12.3 hours, 3 =1.26±0.30 (the longest individual rest in our data is 12.24 days). From 199 

Equation (4) these heavy-tailed exponents correspond to 1 =0.56±0.04, 2 =1.24±0.1, and 
3200 

=1.74 (1.44-2), suggesting a transition from subdiffusion ( <1) to superdiffusion ( >1) with 201 

increasing timescale (Table 1). 202 

Rests can also be well fit by both truncated Pareto and exponentially-tempered Pareto 203 

distributions (Equations 2 and 3; Figure 1d).  For tr>12.5 min, atr=0.59±0.04 and aet=0.60±0.03, 204 

within uncertainty of 2 =0.62±0.05. For tr>12.3 hours, atr=1.0±0.25 and aet=0.98±0.29 (Table 205 

1). While within uncertainty of atr and aet for tr>12.3 hours,  the higher value of 3 =1.26±0.30 206 

may indicate bias by truncation of larger rest times. 207 

Figure 1c compares smartrock rest times from Reynolds Creek, Idaho (Olinde and 208 

Johnson, 2015). For tr ≥ 20 minutes, they reported α=0.67±0.11 using a different α estimation 209 

method. Using Nuyts (2010) and Clauset et al. (2009) methods for fitting Equation (1) we find 210 

α=0.73±0.14, within uncertainty of Halfmoon Creek 2  (0.62±0.05; 12.5 min ≤ tr ≤ 12.0 hr). A 211 

lack of rollover at longer rest times indicates that truncation or tempering effects are not evident 212 

in the Olinde and Johnson (2015) data.  213 

 By separately fitting rests for each daily hydrograph, Figure 2 demonstrates that rest time 214 

scaling varies systematically with shear stress over timescales from 7 s to 24 hours. Using short-215 

duration scaling breaks from the seasonal dataset (Figure 1b), rests 7 s < tr < 12.5 min were fit 216 

using Equation (1), while rests 12.5 min < tr < 24 hours used Equation (2) to account for 217 

truncation (b=24 hours for this daily analysis). Exponents increase with Shields stress *  (Figure 218 

2a,d), but are more strongly correlated with transport stage 
**

cr  (Figure 2b,e). As calculated 219 

by Pretzlav et al. (2020), 
*

cr  evolved with daily floods and so transport stage reflects changes in 220 

both *  and 
*

cr . In contrast, cumulative discharge explains little of the variability in rest scaling 221 

(Figure 2c,f), which we plot to evaluate whether changes in daily rest time scaling dominantly 222 

reflect clasts being progressively worked into the bed during the overall snowmelt flood. 223 

5. Discussion 224 
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5.1 Scaling over seconds to minutes 225 

Because hop durations are thin-tailed, dispersion exponents (γ) should primarily depend 226 

on rest time scaling (Equation 4; Weeks and Swinney, 1998).  Our shortest duration scaling 227 

regime ( 1 =0.56±0.04 for 7 s ≤ tr ≤ 12.5 min) predicts subdiffusion over nondimensional 228 

timescales 22<𝑡∗<2400 (Equation 5, D=7.2 cm, average u =0.23 m/s; Pretzlav et al., 2020). 229 

These results are consistent with previous work of Cecchetto et al. (2018;  ≈0.6 for 100<230 

𝑡∗<2000) and Nikora et al. (2002;  ≈0.66 for 15< 𝑡∗<2000) (Table 1). 231 

  Mechanistically, over short timescales bedload transport is strongly influenced by 232 

turbulence, including coherent flow structures such as “sweeps” (e.g., Drake et al., 1988; 233 

Roseberry et al., 2012). Spatial and temporal correlations in fluid velocity fields can cause 234 

anomalous diffusion in physical systems (Bouchaud and Georges, 1990; Weeks et al., 1996). 235 

Heyman et al. (2013) conducted flume experiments with rest durations from ≈0.1-4.5 s 236 

(1.2<t*<61), and found that rest distributions varied with shear stress. They hypothesized that 237 

turbulent sweeps transported a higher proportion of sediment at lower τ* (resulting in heavier-238 

tailed rest distributions due to longer rests between sweeps), while more grains moved 239 

independently from sweeps at higher τ* (resulting in less heavy-tailed rest distributions). We 240 

hypothesize that temporal velocity correlations may similarly explain our rest time τ* 241 

dependence over 7 s ≤ tr ≤ 12.5 minutes (22<𝑡∗<2400) (Figure 2a,b).  In a gravel-bed pool-riffle 242 

channel, Marquis and Roy (2011) found that turbulence was clustered or “imbricated” and 243 

caused velocities to accelerate and decelerate, or “pulse”, over timescales from several seconds 244 

to ≈10 minutes that bridge variability in turbulence and discharge. Mechanistically, a particle 245 

will be more likely to have last moved when flow velocities were higher. The probability of high 246 

velocities will increase with both shear stress and over the timescales of sweeps and pulsing. A 247 

reduced likelihood that clasts remain at rest would cause α to progressively increase with shear 248 

stress (i.e., increasing α corresponds to fewer long rests). Our hydraulic data (gaging station 249 

discharge at 15 minute intervals) are insufficient to evaluate these dependencies.  250 

5.2 Scaling over minutes to hours 251 
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The superdiffusive scaling suggested by our season-averaged intermediate regime ( 2252 

=1.24±0.1 for 2400<t*<1.4×105) are similar to Olinde and Johnson (2015) (  =1.46±0.28 for 253 

2700 <t*<2×106; Figure 1c) and other previous field and experimental work (Table 1). Pierce 254 

and Hassan (2020) proposed a random-walk model that predicted changes in diffusion scaling 255 

with timescale; their “intermediate” timescale scaling  ≈1 is similar to our results over minutes 256 

to hours. Mechanistically, motions and rests (with negligible burial) control diffusion over 257 

intermediate timescales in their model.  258 

Combining all rests from the month-long flood record (Figure 1c,d) masks the 259 

observation that rest time scaling varies systematically with daily hydraulic forcing (Figure 2a-f). 260 

For daily flood hydrographs, scaling exponents increase with hydrograph-averaged Shields stress 261 

and transport stage. Olinde and Johnson (2015) similarly found higher  in their largest flood 262 

compared to smaller prior events, although their data collection methods could not quantify shear 263 

stress dependence. Singh et al. (2009) found that statistical measures of bedload flux variability 264 

(“roughness” and “intermittency”) decreased as 
**

cr  increased. We interpret that fewer rests 265 

are exceptionally long as 
**

cr  increases because transport rates become less intermittent. This 266 

results in rest time exponents that become less heavy (i.e. lower values of  ).   267 

Wilcock and McArdell (1993) interpreted that full mobility of surface GSDs occurs in 268 

gravel-bed channels when 
** 2 cr  .  Figure 2 allows us to predict the flow conditions at which 269 

 =2 and diffusion should transition from anomalous to normal ( =1). Assuming that the linear 270 

regressions can be extrapolated to higher 
**

cr , rests>12.5 min and 7 s<tr<12.5 min similarly 271 

predict that α=2 at 
**

cr ≈2.1-2.3, with a 95% confidence interval between 
**

cr ≈1.8 and 3.4. 272 

Future work could test the quantitative hypothesis that coarse bedload exhibits normal diffusion 273 

during floods with transport at or near full mobility (𝜏∗ ≳ 2𝜏𝑐𝑟
∗ ).    274 

5.3 Scaling over hours to weeks 275 

Our season-averaged rest times >12.3 hours can be empirically fit in multiple ways 276 

(Figure 1c,d). Because our statistics are not sufficient to distinguish between these, we present 277 

several contrasting interpretations of diffusion. First, we interpret that the scaling break found 278 
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using the Clauset et al. (2009) method at 12.3 hr is real, rather than an artifact from rest time 279 

variability combined with gradual truncation (Figure 1b-d; see Supporting Information for 280 

scaling break details). For our rest durations 12.3 hrs < tr < 12.24 days, Equations (1) and (4) 281 

suggest superdiffusion (γ3=1.44-2 at 95% confidence, Table 1). We can account for possible 282 

truncation effects for rests >12.3 hrs using the truncated or exponentially-tempered Pareto 283 

distributions, which suggest comparable superdiffusive behavior (γ=1.5-2 or 1.38-2, 284 

respectively). This scaling is consistent with Phillips et al et al. (2013), who measured 88.1=  285 

over multiple natural floods spanning similar timescales (Table 1).  286 

Because truncated and exponentially-tempered distribution can fit rests >12.5 minutes, a 287 

second possible interpretation is that these data reflect gradual truncation combined with noise, 288 

with no scaling break at 12.3 hours (Figure 1d). In this case, the “true” scaling exponents 289 

(atr=0.59±0.04 or aet =0.6±0.03) suggest γ=1.2±0.08, consistent with γ2=1.24±0.1, with 290 

γ=1.46±0.28 for Reynolds Creek, and with γ=1.34 measured by Bradley (2017) for Halfmoon 291 

Creek over multiple years (Table 1). The range of best-fit truncation times (b in Equation 2; 292 

8.6×105±2.9×105 s and 6.8×105±3.2×105 s, Figure 1d) spans 4-13 days, shorter than the total 293 

sampling duration. Individual smartrock batteries failed at different times (between daily 294 

hydrographs 3 and 28; Pretzlav et al., 2020), giving a distribution of truncation times. This may 295 

explain why the rollover appears more gradual than the truncated Pareto distribution, which 296 

assumes a single truncation value.     297 

Third, a final possible interpretation of our data is that the gradual rollover at longer rest 298 

durations is real and not just an artifact of truncation. In this scenario, the exponentially-299 

tempered Pareto fits could indicate a transition to thin-tailed rest distributions and normal 300 

diffusion (γ=1) over longer timescales, as has been suggested by Hassan et al. (2013) over 301 

seasons to decades. We emphasize contrasting statistically-supported interpretations of our data 302 

to motivate future work that can distinguish between these possibilities at longer timescales, and 303 

because some previous work might be affected by truncation and/or by potentially large 304 

uncertainties on exponents calculated from small numbers of tail distribution measurements (e.g., 305 

Clauset et al., 2009; Supporting Information Text S1).  306 



 12 

Mechanistically, bed scour and fill may provide a nonunique but physically plausible 307 

explanation for a transition from superdiffusion to normal diffusion, based on modeling by 308 

Voepel et al. (2013). However, models by Martin et al. (2014) and Pierce and Hassan (2020) 309 

predicted that strong superdiffusion (with γ≈2) should persist over these longer timescales of 310 

intermittent burial, consistent with our possible interpretation of γ≈1.4-2 for tr>12.3 hr. Our data 311 

may not fully capture effects of burial and exhumation on rest times, as 23 out of 27 recovered 312 

tracers were found on the bed surface (Pretzlav et al., 2020). Perhaps grain interlocking on the 313 

bed surface (Yager et al., 2018), or grain trapping in deep surface pockets enabled by a broad 314 

grain size distribution, can cause rest time scaling comparable to local burial and scour. 315 

Finally, we hypothesize that discharge cyclicity may cause the possible ≈12 hr scaling 316 

break in Halfmoon Creek rests (Figure 1b, c).  Importantly, a similar break is not observed in 317 

Reynolds Creek (Olinde and Johnson, 2015), even though the smartrock methods and flood 318 

durations above threshold were similar (Figure 1c). Figure 2g-j shows that daily hydrograph 319 

cyclicity causes local peaks in power spectral density at 12 and 24 hours in both channels, but 320 

peaks are an order of magnitude lower in Reynolds Creek because the diurnal hydrographs are 321 

less sinusoidal and more variable in duration. We hypothesize that the ≈12 hr Halfmoon break 322 

occurs because discharge cyclicity reduces the probability of clasts remaining at rest for longer 323 

than the duration of one rising or falling limb. In contrast, we hypothesize that Reynolds Creek 324 

rests do not show a corresponding scaling break because power is more distributed over a range 325 

of periods, reflecting less cyclicity in the shear stresses that drive bedload transport (e.g., 326 

Bouchaud and Georges, 1990). Although the Halfmoon spectral density is higher at 24 hr, 327 

perhaps the scaling break occurred at 12 rather than 24 hr simply because the shorter duration 328 

cyclicity overprints the 24 hr signal. Note also that another Halfmoon spectral peak at ≈2.12×105 329 

s (2.5 days) is very similar in rest duration to a minor KS minima at ≈2.17×105 s (Figure 1b), 330 

suggesting again that hydrograph cyclicity might be expressed in rest time distributions.  331 

Regardless, our analyses suggest that the effects of flow intensity and cyclicity on anomalous 332 

diffusion across timescales warrant further study. 333 

 334 

6. Conclusions 335 
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Consistent with previous experimental work, motion sensor-embedded tracers indicate an 336 

exponential distribution of hop times during a natural flood. Our rest time scaling predicts 337 

subdiffusion over timescales from 7 seconds to 12.5 minutes, and superdiffusion for rest 338 

durations from 12.5 minutes to 12.3 hours. For durations >12.3 hr, our data can be nonuniquely 339 

fit by heavy-tailed power law or truncated Pareto distributions which predict superdiffusion, but 340 

also by an exponentially-tempered Pareto distribution which suggests a gradual transition to 341 

normal (Fickian) diffusion at even longer timescales.  342 

Daily rest time scaling varies systematically with shear stress, indicating a transition from 343 

subdiffusion to superdiffusion with increasing transport capacity. We hypothesize that a rest time 344 

scaling change at ≈12 hours is influenced by the cyclicity of daily snowmelt flood hydrographs. 345 

 346 

Figure Captions 347 

Figure 1. (a) Hop duration exceedance probabilities with the best-fit exponential to hops >2 348 

seconds. (b) Scaling breaks indicated by local minima in Kolmogorov-Smirnov statistic, 349 

following method of Clauset et al. (2009).  (c) Rest duration exceedance probabilities, with 350 

Equation (1) exponents for Halfmoon and Reynolds Creek. (d) Halfmoon Creek rest times > 12.5 351 

minutes and >12.3 hours, each fit with truncated and exponentially-tempered Pareto distributions 352 

(R2>0.99 for each fit).  353 

 354 

Figure 2.  (a-f) For daily hydrographs, rest duration tail exponents systematically increase with 355 

Shields stress (a,d) and transport stage (b,e) but minimally correlate with cumulative discharge 356 

(c,f).  Error bars and regression uncertainties represent 95% confidence intervals (2σ); 357 

regressions were weighted by 1/σ2 for each data point. Outlier event 1 was not included in 358 

regressions because grains started in less stable positions (Pretzlav et al., 2020). For d-f, b=24 359 

hours; to=12.5 min (Equation 2). (g) Hydrographs during motion tracer sampling for Halfmoon 360 

Creek, Colorado, showing sequential floods 1-28, and (h) 2012 flood, Reynolds Creek, Idaho, 361 

recurrence interval 4.5 years (Olinde and Johnson, 2015).  (i, j). Power spectral density for the 362 

Halfmoon and Reynolds Creek hydrographs, calculated using Matlab “periodogram” function. 363 

For 12 hour and 24 hr periods, power is an order of magnitude higher for Halfmoon than for 364 
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Reynolds Creek. The strongest peak in spectral density corresponds to the length of the spring 365 

floods. 366 
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Table 1:  Comparison of field and experimental data

Rest duration exponent (95% 
confidence intervals if reported) t* range (Equation 5)

Rest duration range (time 
above threshold)

Diffusion exponent γ (95% 
confidence intervals if reported) Interpretation Method

Seconds to minutes
This paper   α1 = 0.28 ± 0.02 22 < t*  < 2400 7 s < t r  < 12.5 min γ1 = 0.56 ±0.04† subdiffusion Power-law (Eq. 1)

Nikora et al., 2002   0.33 200 < t*  < 2000 14 s < t r  <140 s 0.66† subdiffusion Power-law (Eq. 1)
Cecchetto et al., 2018   0.3 100 < t*  < 2000 7 s < t r  < 140 s 0.60† subdiffusion Power-law (Eq. 1)

Minutes to hours
This paper   α2 = 0.62 ± 0.05 2400 < t* < 1.4x105 12.5 min < t r  < 12.3 hrs γ2 = 1.24 ± 0.1† superdiffusion Power-law (Eq. 1)

This paper   a tr =0.59 ± 0.04 2400 < t*  < 3.4x106 12.5 min < t r  < 12.24 days 1.18 ± 0.08† superdiffusion Truncated Pareto (Eq. 2)

This paper   a et =0.60 ± 0.03 2400 < t*  < 3.4x106 12.5 min < t r  < 12.24 days 1.20 ± 0.06† superdiffusion Exp-temp. Pareto (Eq. 3)

Olinde & Johnson, 2015   0.73 ± 0.14 2700 < t* < 2x106 20 min < t r  < 7.8 days 1.46 ± 0.28† superdiffusion Power-law (Eq. 1)
Martin et al., 2012   0.68, 0.85‡ 500 < t*  < 13000 13 s < t r  < 13 min 1.36, 1.70† superdiffusion Power-law (Eq. 1)

Hours to weeks
This paper   α3 = 1.26 ± 0.30 1.4x105 < t* < 3.4x106 12.3 hrs < t r  < 12.24 days γ3 = 1.74 (1.4 - 2.0)† superdiffusion Power-law (Eq. 1)

This paper   a tr =1.00 ± 0.25 1.4x105 < t* < 3.4x106 12.3 hrs < t r < 12.24 days 2 (1.5-2)† superdiffusion Truncated Pareto (Eq. 2)

This paper   a et =0.98 ± 0.29 1.4x105 < t* < 3.4x106 12.3 hrs < t r  < 12.24 days 1.96 (1.38-2)† superdiffusion Exp-temp. Pareto (Eq. 3)

Bradley, 2017   a tr =0.67† 6X106 < t*  < 8x107 12 days < t r  < 167 days 1.34 superdiffusion Truncated Pareto (Eq. 2)

Phillips et al., 2013   0.94 or 1.12† 5.4x104 < t* < 2.2x106 7 hrs < t r  < 11 days 1.88 superdiffusion Power-law (Eq. 1)
† Calculated using Equation (4)
‡ The two values are from two similar experiments
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