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In addition to the methods reported in Clauset et al. (2009) and Nuyts (2010), another 

way to calculate power-law exponents uses the slope of linear regressions to log-

transformed distributions and exceedance probabilities. For example, the equation 

( ) −= ktttP d  becomes ( )( ) )log()log(log ktttP d +−=  , and a simple linear 

regression can be used to find slope α and k from the intercept.  It is established that this 

method can result in exponent values that appear to visually match plotted data but can be 

inaccurate and biased (e.g., Clauset et al., 2009).  Nonetheless, since this method is 

straightforward and widely used, as a methodological comparison we also calculate   in 

this manner.  

 

The log-transformed method gives 1 =0.38±0.0005 (R2=0.997, p≈0, 7 s ≤ tr ≤ 12.5 min), 

2 =0.62±0.0009 (R2=0.99, p≈0, 12.5 min ≤ tr ≤ 12.3 hr), and 3 =1.33±0.05 (R2=0.97, 

p≈0, tr ≥ 12.3 hr). Uncertainties correspond to 95% confidence intervals on the 

regressions. Comparison to Table 1 shows that all of the exponents are similar, with 2  

and 3  within uncertainty bounds of the other method. The empirical uncertainties from 

the Clauset et al. (2009) method (using the estimator of Nuyts (2010)) are much larger 

than regression uncertainties from the log-transformations.   In particular, the ratio of 

Clauset et al. (2009) to log-transformed confidence intervals are 40, 55, and 6 for 1 , 2  

and 3  respectively.   

 

Finally, for considering uncertainties, we note that Clauset et al. (2009) say that their 

“experience suggests that 𝑛 ≳ 50 is a reasonable rule of thumb for extracting reliable 

[tail exponent] parameter estimates”, where n is the number of points fit by the power 

law.  Estimates in previous work based on signficantly fewer points than this may be 

relatively inaccurate. 

 

The method we use to determine rest duration scaling breaks is based on Clauset et al. 

(2009).  Their method finds a cutoff value (in our case, a rest duration) at which the 

cumulative exceedance probability of larger values best follows a power-law distribution.  

The goodness-of-fit between power-law and data is measured using the classic 

Kolmogorov-Smirnov statistic KS: 

𝐾𝑆 = 𝑚𝑎𝑥(|𝑆(𝑥) − 𝑃(𝑥)|)  𝑓𝑜𝑟  𝑥 > 𝑥𝑚𝑖𝑛  (S1) 

where x is some variable (in our case, rest durations td), 𝑆(𝑥) is the cumulative distribution 

function (CDF) of the observations of x greater than a given cutoff value 𝑥𝑚𝑖𝑛, and 𝑃(𝑥) 

is the CDF of the power-law fit to 𝑆(𝑥). Lower KS values mean that a given 𝑥𝑚𝑖𝑛 allows 
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the power-law to fit the tail of the distribution better.  It is also worth noting that the use 

of cumulative distribution functions means that considering more data points tends to 

result in a better match between 𝑆(𝑥) and 𝑃(𝑥), because smaller data sets give more 

statistical fluctuations (Clauset et al., 2009). Thus, this approach balances the goodness of 

power-law fit and fitting as many points as possible. Clauset et al. (2009) apply this 

method to synthetic exceedance probability data and show that it works accurately to 

identify break points in power-law scaling.   

Figure 1b in the main paper shows KS calculated by setting 𝑥𝑚𝑖𝑛 to each td value.  The 

lowest KS value occurred at 12.5 minutes, with similarly low KS values over the range 

11.8-23.6 minutes.  Following Clauset et al. (2009), this duration is interpreted as a 

scaling break. In other words, the power-law fit to td>12.5 minutes gives the best match 

(as measured by KS) for the overall dataset.  In addition, Figure 1b shows local minima in 

KS at ≈7 s and ≈12 hours, which we also interpret as scaling breaks.  Importantly, these 

scaling breaks are supported by using the same KS analysis but cropping the data set at 

different scaling breaks.  For example, when only considering td <≈12.5 minutes, the 

strongest scaling break is found at ≈7 s.  Similarly, only considering td >≈12.5 minutes 

results preserves the KS minimum (i.e., interpreted scaling break) at ≈12 hours.  As 

described in the main text, KS minima >12.3 hours in Figure 1b predict scaling exponents 

(α) that are within uncertainty of our α3 estimate.  Therefore, our data at these longer rest 

times are not sufficient to identify whether additional scaling breaks might be found over 

even longer timescales.  Our data are useful because they cover orders of magnitude of 

rest times within one internally consistent data set.  Future work that is able to fill a rest 

time data gap between ≈300 hours and ≈10 years will be required to understand diffusion 

over these timescales. 

We emphasize that our methodology assumes the rest data are power-law distributed and 

that multiple different power-law scaling regimes occur in the data. Our method is 

designed to find scaling breaks for which power laws best match segments of the rest 

time data. The fact that scaling exponents are statistically significantly different for the 

different scaling regimes supports the interpretation that these scaling breaks are valid 

and meaningful. Nonetheless, other statistical distributions may also be able to fit the data 

robustly. In particular, we also find that power laws, Truncated Pareto, and 

Exponentially-tempered Pareto distributions can all fit longer rests in our data with high 

degrees of goodness-of-fit. We include multiple interpretations of diffusion for the 

longest rest times because we do not believe that our statistical analyses are sufficient to 

robustly distinguish whether the transition to less heavy tails at the longest rest times in 

our data are more consistent with power-law scaling, truncation effects, or tempered 

scaling.   
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This section provides a summary of the previously published theoretical framework for 

application of anomalous diffusion theory to model the dispersion of bedload tracers 

(Weeks et al., 1996; Weeks and Swinney, 1998).   

 

Dispersion of bedload is considered normal (e.g. Fickian) when the variance of particle 

displacements (𝜎𝑥
2) scales linearly with time (𝑡): 

𝜎𝑥
2 =  〈(𝑋𝑖 − 〈𝑋〉)2〉 ∝ 𝑡𝛾

where 𝑋𝑖 is the cumulative displacement distance of a given 𝑖th tracer and 〈 〉 denotes the 

ensemble average for all tracers in the population. Thus, 〈𝑋〉 represents the average 

displacement distance of the tracers over time, 𝑡. Dispersion is normal when the scaling 

exponent, 𝛾, is equal to 1, and variance therefore grows linearly with time (i.e. 𝜎𝑥
2 ∝ 𝑡1). 

When 𝛾 ≠ 1, dispersion is considered “anomalous” (i.e. not normal/Fickian). 

Subdiffusion occurs when 𝛾 < 1, indicating that 𝜎𝑥
2 grows more slowly with time than it 

would for normal dispersion. Conversely, dispersion is superdiffusive when 𝛾 > 1, and 

the variance of displacements increase more quickly with time compared with normal 

dispersion.  

 

For many tracer studies, measurements of dispersion have been conducted when only the 

starting and final resting positions of tracers is known. When the distribution of rest times 

and hop times or transport distances are also known, application of the theory of Weeks 

et al. (1996) and Weeks and Swinney (1998) can be used to determine if anomalous 

dispersion is either superdiffusive or subdiffusive. This framework is based upon 

modeling symmetric and asymmetric random walks and represents the dispersion pattern 

of individual hops rather than only the cumulative, event-based transport distances. It is 

worth noting that hop times and travel distances of individual hops are used somewhat 

interchangeably in their work, resulting in a built-in assumption of a linear correlation 

which may not be appropriate for all situations.  

 

Figure S1a-c shows the phase diagrams from Weeks et al. (1996) and Weeks and 

Swinney (1998), which define the dispersive behavior (𝛾) as a function of the power law 

scaling exponents for hop and rest times (𝜇 and 𝜈 ) for symmetric, asymmetric, and 

strongly asymmetric random walks. Three of the four phases are normal, superdiffusive, 

and subdiffusive dispersion defined above. The fourth phase is called ballistic, and is 

defined by 𝛾 = 2. However, the ballistic phase does not apply to the strongly asymmetric 

case, which is what one would expect for mountain rivers where bedload moves 

overwhelmingly downstream.  

 

From Weeks et al. (1996), if 𝜇 and 𝜈 are the exponents representing the asymptotic power 

law decay of the hop and rest time probability density functions (PDFs), then: 

𝑃𝐻(𝑡ℎ) ~ 𝑡ℎ
−𝜇
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and  
𝑃𝑅(𝑡𝑟) ~ 𝑡𝑟

−𝜈

are the PDFs for hop and rest times distributions, respectively, as 𝑡 → ∞. Under this 

framework, dispersion is normal when both of the tails of the rest or hop time 

distributions scale as a power law with PDF scaling exponent 𝜇 or 𝜐 greater than 3 

(Figure S1a-c). Notably, an exponential distribution, like is found in our study for hop 

times, can be thought of as having a power law scaling exponent that is very large, 

approaching ∞.  

 

Our study, as well as Olinde and Johnson (2015) and Martin et al. (2012), used the 

exceedance probability, 𝑃(𝑋𝑖 > 𝑥), to characterize dispersion of tracers. The exceedance 

probability is equivalent to the Complimentary Cumulative Density Function (CCDF) or 

1 − 𝐶𝐷𝐹, which allows power law functions to be more easily fit to distribution tails. 

Converting the power law scaling exponent from PDF units to CDF units requires 

integration of the power law function such that:  

𝐶𝐻(𝑡ℎ) ~ 𝑡ℎ
−(𝜇−1)

and  

𝐶𝑅(𝑡𝑟) ~ 𝑡𝑟
−(𝜈−1)

.

As a result, we define CDF power law function scaling exponents such that:  

𝐶𝐻(𝑡ℎ) ~ 𝑡ℎ
−𝛽

, 𝜇 =  𝛽 + 1

and  
𝐶𝑅(𝑡𝑟) ~ 𝑡𝑟

−𝛼, 𝜈 = 𝛼 + 1

where 𝛼 and 𝛽 are the power law decay exponents for the rest and hop durations, 

respectively, such that: 

𝑃(𝑡ℎ > 𝑡) ∝ 𝑡−𝛼

and 

𝑃(𝑡𝑟 > 𝑡) ∝ 𝑡−𝛽

Figure S1d-f shows our adaptation of the phase diagrams of Weeks et al., [1996] and 

[1998], modified for use with the CDF of a power law function.  Assuming that the 

distribution of hop times is approximately exponential, we can assume  𝛽 → ∞ and read 

the right side of each phase diagram for calculating dispersion coefficients. We also 
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assume that bedload transport is not well represented as symmetric as particles typically 

move in the downstream direction. Notably, under the assumption of exponentially 

distributed hop times, there is no difference between modeling dispersion as either an 

asymmetric or strongly asymmetric random walk (Figures S1e-f). We therefore get a 

function for 𝛾 under asymmetric random walks with an exponential hop time distribution: 

 𝛾 = {
2𝛽,            0 < 𝛽 ≤ 1
3 − 𝛽,       1 < 𝛽 < 2 

This equation is the same as equation (4) in the paper which accompanies this 

supplementary material.  
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Figure S1. Modified from Weeks et al. (1996) and Weeks and Swinney (1998). Phase 

diagrams for variance of a) symmetric, b) asymmetric, and c) strongly asymmetric 

random walks for the power law decay of the PDF of rest times (𝝊) and hop times (𝝁). 
Phase diagrams for variance of d) symmetric, e) asymmetric, and f) strongly asymmetric 

random walks for the power law decay of the CCDF of rest times (𝜶) and hop times (𝜷). 
The equations on each plot use values of power law scaling exponents on the x and y 

axes to determine the value of 𝜸, which determines whether dispersion is normal (𝜸 =
𝟏), superdiffusive (𝜸 > 1), subdiffusive (𝜸 < 𝟏), or ballistic (𝜸 = 2), indicated by the 

shading. The phase diagram for the CCDF and the strongly asymmetrical case (f) was 

used for this analysis.   
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