
The Buoyancy Reynolds Number Instability and Thermohaline1

Staircase Formation in the Polar Oceans2

Yuchen Ma and W.R.Peltier3

University of Toronto, 60 St.George Street, Toronto, Canada4

(Dated: May 4, 2022)5

1



Abstract6

The Arctic Ocean main thermocline may be characterized by a series of fine-scale thermohaline7

staircase structures that are present in a wide range of regions, the formation mechanism of which8

remains unclear. Recent analysis has led to the proposal of a theoretical model which suggested9

that these staircase structures form spontaneously in the salinity and temperature-stratified ocean10

when the turbulent intensity determined by the buoyancy Reynolds number Reb is sufficiently weak11

([1]). In the current work, we have designed a series of Reb controlled direct numerical simulations12

of turbulence in the Arctic Ocean thermocline to test the effectiveness of this theory. In these13

simulations, the staircases form naturally when Reb falls in the range predicted by the instability14

criterion that is the basis of the proposed theory. In the DNS analyses described we show that the15

exponential growth-rate of the layering mode of instability matches well with the prediction of [1].16

The staircases formed in our simulations are further compared with the classical diffusive interface17

model initially proposed by [2], which argued that stable staircase structures can only form when18

the density ratio Rρ is smaller than the critical value of Rcrρ = τ−1/2. Here τ is the ratio of haline19

diffusivity over thermal diffusivity. We show that the staircase structures can stably persist in the20

model regardless of whether or not Rρ < Rcrρ is satisfied because of the involvement of stratified21

turbulence in the interfaces of the staircase.22

INTRODUCTION23

Thermohaline staircases are a strikingly organized structures in the oceans which are24

characterized by a series of vertically well mixed layers of both heat and salt separated25

by sharp interfaces (see chapter 8 of [3] for a recent review). Depending on whether the26

relatively warmer and saltier waters are lying above or below the relatively colder and27

fresher waters, the thermohaline staircases can be classified into salt-fingering staircases28

which are usually observed in low and mid latitude oceans and the diffusive-convection29

staircases which are mainly observed in the polar oceans. The first observations of these two30

types of thermohaline staircases were reported in the late 1960s ([4], [5]) and their origins31

were quickly connected with the two types of double-diffusive convection: salt-fingering32

and diffusive-convection. However, half a century later, we are only ”half-way” towards a33

complete understanding of their formation mechanisms: while we have already gained the34

ground-breaking understanding of the detailed mechanism for the salt-fingering staircases,35
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its still unclear what the key mechanism is that is responsible for the formation of the36

diffusive-convection staircases.37

On the salt-fingering side of the story, the formation of the staircase structures has been38

understood through the instability of the flux-gradient laws that are characteristic of dou-39

bly diffusive mixing. The critical theory for layer formation in this circumstance has been40

discussed in the work of [6], which has been referred to as the γ instability theory in the41

literature on staircase formation. In this work, the author assumed that the large scale42

effect of the stochastic field of salt fingers can be described by parametrized effective di-43

apycnal diffusivities for heat KΘ and salt KS which are determined solely on the density44

ratio RSF
ρ ≡ Θz/Sz (here Θ and S are the potential temperature field and salinity, both in45

density units). Following from this assumption, the author analyzed the linear stability of46

the parametrized mean field model and derived the criterion on basis of which the system47

will be susceptible to a layering instability if the parametrized flux ratio γSF ≡ RSF
ρ KΘ/KS48

is a decreasing function of RSF
ρ . The dependence of KΘ and KS on RSF

ρ was calibrated using49

a series of direct numerical simulations (DNSs) (e.g. [7],[8], [9] and [10]), field measurements50

(e.g. [11]) and the theoretical modeling (e.g. [12], [9]). All above contributions establish the51

existence of a clear trend of decreasing γSF with increasing RSF
ρ when RSF

ρ is small. Mean-52

while, accumulating evidences has established that spontaneous formation of salt-fingering53

staircases from the mechanism of [6] which includes direct numerical simulations (e.g. [13]),54

basin-scale model simulation (e.g. [14]), mean-field model simulations (e.g. [15], [16], [17]).55

Most importantly, the multi-scale version of the flux-gradient model proposed by [16] suc-56

cessfully solved the ultraviolet catastrophe problem that existed in the original theoretical57

framework of [6]. The growth-rate of the instability in this new model is shown to decrease58

to a very small value after Rρ reaches the value of 1.8, which perfectly explains why nearly59

all the salt-fingering staircases observed in the ocean have the density ratio RSF
ρ smaller60

than 2 (see [18] or [3] for a review).61

The above explanation for salt-fingering staircase formation suggests that the salt-62

fingering fluxes formed from salt-fingering instability and resulting turbulence alone are63

sufficient to drive the system into a layered state. However, this simple picture does not64

suffice to provide an explanation of staircase formation in the diffusive-convection regime.65

While most diffusive-convection staircases have been found to exist in a large range of den-66

sity ratio 2 < Rρ < 9 (see [19], [20] for example), (here Rρ ≡ Sz/Θz is the density ratio for67
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the diffusive convection system), the linear diffusive-convection instability is only active in a68

tiny window of the parameter space 1 < Rρ < 1.16 (see [3]). This strongly suggests that the69

linear diffusive- convection regime can not be regarded as the ultimate cause of the forma-70

tion of diffusive-convection staircases, for example, that are observed in the Arctic Ocean.71

Therefore, it is the common belief for researchers in this field that another missing piece72

of information has to be introduced in the diffusive-convection circumstance to solve this73

problem. One of the most promising candidates for the explanation has been that associated74

with thermohaline-shear instability theory initially proposed by [21] and in this case this75

missing piece of information is ”shear”. In this work and the following work of [22], [23], it76

is demonstrated that a flow that is stable to both shear instability and diffusive-convection77

instability might become unstable under the joint action of diffusive-convection and different78

forms of shear. It has been further shown that these instabilities are able to develop into79

layered structures in the non-linear evolution of direct numerical simulations ([21]). While80

the thermohaline-shear instability perfectly solves the problem of the mismatch between the81

different ranges of density ratio, the development for the instability is still currently depen-82

dent on some specific form of the shear (e.g., a vertically sinusoidal form is considered [21]83

and the time-dependent form is considered in [22], [23]). Another candidate explanation for84

the diffusive-convection staircases is the thermohaline intrusion mechanism discussed by [24]85

and [25] where the missing piece of information is imagined to be the ”horizontal gradient”.86

This theory was firstly discussed to explain the formation of salt-fingering staircases in [24]87

and it has been extended to explain the diffusive-convection staircases by [25]. While the88

coexistence of thermohaline intrusion and double-diffusive staircases are often apparent in89

the observational data as shown in [25], it remains a challenging question as to whether90

the presence of horizontal gradients is a necessary condition for staircases to form in the91

diffusive-convection regime, considering that salt-fingering staircases have now been shown92

to be able to form without horizontal gradients in the γ instability theory of [6].93

While these two candidate theories described above may significantly contribute to our94

understanding of the problem, we believe that there should exist a theory for the formation95

of diffusive convection staircases which is as straightforward and instability-based as that96

which has been shown to apply in the salt fingering case. Recently, such a new theory for97

the formation of layering in the diffusive convection regime was proposed in [1] (hereafter98

referred to as MP21). In this paper a formation mechanism is illustrated using the same99
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mean field framework for the instability analysis of flux-gradient laws as in the previous100

work of [6], namely that involving the effective turbulent diapycnal diffusivities for heat KΘ101

and salt KS which are parametrized to represent the average transport properties of the102

micro-scale fluid dynamics. However, in the work of MP21 KΘ and KS are parametrized103

as depend only upon the non-dimensional parameter referred to as the buoyancy Reynolds104

number Reb = ε/(νN2) (here ν is the kinematic viscosity, ε is the viscous dissipation rate and105

N =
√
−g/ρ0〈dρ/dz〉 is the BruntVisl frequency) instead of the density ratio which plays106

the critical role in the formation of salt fingering staircases. The hypothesis that underlies107

this different choice of governing non-dimensional parameter is that the formation of the108

diffusive-convection staircases originates from the background stratified turbulence itself109

instead of diffusive convection instability. One mechanism that leads to layer formation110

from stratified turbulence is that previously proposed by [26] and further discussed most111

recently by [27], but their analyses apply only to a fluid in which density is determined112

by only a single advecting and diffusing species. Since Arctic Ocean staircases involve113

perfectly correlated steps in both temperature and salinity it is clear that no analysis based114

upon the assumption of a single component fluid can suffice the solution of the problem.115

Nevertheless, and as explicitly discussed in MP21, the Phillips mechanism for the staircase116

in the salinity component of Arctic staircases is lurking in the background of the results for117

the two-component system. The proposal in MP21 is the first detailed demonstration of how118

a thermohaline staircase could emerge directly out of turbulence in a two-component fluid119

in which the background stratification is in the diffusive convection regime. By analyzing120

the linear stability of the parametrized mean field model that is based on the local buoyancy121

Reynolds number and assumes the specific functional dependence of KΘ(Reb) and KS(Reb)122

described by [28], MP21 demonstrated that the a system defined by constant background123

gradient in both temperature and salinity will be susceptible to a layering mode of instability124

if the buoyancy Reynolds number satisfies the criterion for instability. For this reason, we125

will refer to the theory described in MP21 as the Reb instability theory in what follows for126

simplicity.127

There are two lines of evidence that strongly support the Reb instability theory as a highly128

plausible mechanism for the formation of staircase structures in the diffusive convection129

environment of the Arctic Ocean. First, the mean-field model simulation performed in MP21130

confirmed that the initially fastest growing mode follows the Reb instability mechanism and131
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does grow into the layered state in the non-linear stage of evolution. Second, the criterion in132

MP21 which states that whether layers will form or do not is determined by the turbulence133

level determined by Reb and independent of Rρ is consistent with a series of oceanographic134

measurements (e.g. [20], [29]), as discussed in details in MP21.135

Despite these supporting evidences there remain two critical questions upon which we will136

focus in the present paper. First, we will test whether development of the Reb instability will137

inevitably lead to the formation of a thermohaline staircase structure in a DNS of a three138

dimensional fully developed turbulent flow. It needs to be kept in mind that the current139

form of Reb instability theory describe in MP21 is a linear stability theory that relies on a140

series of idealized assumptions, and therefore it is crucial for us to evaluate its effectiveness141

using that resolve the smallest scales of fluid dynamics. Second, we want to understand142

whether the thermohaline staircase state formed from the Reb instability will remain as a143

stable structures after they first form and what mechanism is responsible for keeping such144

interfaces stable. In the early literature a comprehensive theoretical analysis of the diffusive145

interfaces that separate distinct steps in a staircase was developed by [2], hereafter LS. The146

model developed in this work has kept been used as the basis for the analyses on the diffusive147

interface structure by researchers in this field (e.g. [30] , [31]). An important prediction of148

LSs theory is that no steady interface structure can exist when Rρ > τ−1/2 (τ = κs/κθ is the149

ratio of molecular diffusivities for salt and heat, τ−1/2 ≈ 10 in the Arctic Ocean), whereas150

the Reb instability theory predicts that the system is unstable to the layering mode at any151

Rρ that is larger than 1. Therefore, the second major goal of this paper is to explore the152

range of the stably staircase structure formed in our DNSs and compare it with the classical153

theory of LS. It should be noticed that although most of the diffusive-interfaces have been154

found in regions with Rρ < 10 in the measurements of ocean and lakes (and this has always155

been regarded as criterion for diffusive-interfaces, see review of [32] for example), observed156

diffusive staircases with Rρ > 10 do exist occasionally (e.g. [33], [34]).157

In the process of addressing the primary goals of this paper, we will conduct a series of158

DNSs designed to address the questions raised in the above paragraph. In these series of159

simulations, we consider the homogeneous system consisting of a fluid in which density is160

determined by two diffusing species driven by the stochastic forcing of large-scale vortical161

modes. Vortical mode body-forcing has been implemented in previous work to study ho-162

mogenous stratified turbulence (e.g. [35], [36], [37], [38]). It is well suited for the exploration163
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of layer formation occurring through Reb instability since it allows us to properly control the164

energy input into the system that is required to control the averaged Reb of the system. As165

we will demonstrate in what follows, if and only if the average buoyancy Reynolds number166

lies in the unstable regime predicted by MP21 will the system develop into a layered state.167

The remainder of the paper will be arranged as follows. In section 2 we will give a brief168

review of the derivation of the Reb instability theory. The settings of the DNSs employed in169

this work will be presented in section 3. In the following section 4 we will describe the time170

evolution of the system and illustrate how the layered structure forms in the system. These171

simulation results will be analyzed and compared with the theoretical prediction of MP21172

in various different ways. In section 5 we will analyze the interface structure formed in our173

numerical system in details to illustrate how the stable staircase state is maintained and174

compare it with the classical theory of LS. Finally we summarize our conclusions in section175

6.176

SUMMARY OF Reb INSTABILITY THEORY177

In this section, we will briefly review the original formulation of the Reb instability theory178

discussed in MP21 in order to provide context for the discussion to follow that begins in179

Section 3.180

The theory of MP21 considers the evolution of the stratified turbulence that develops181

in a background state in which the stratifications of temperature and salinity lie in the182

diffusive-convection regime. In this circumstance it is assumed that the average effect of183

micro-scale stratified turbulence on the larger scale background can be adequately captured184

by the effective turbulent diapycnal diffusivities for temperature KΘ and salinity KS. It is185

then further assumed that both KΘ and KS are only dependent upon the buoyancy Reynolds186

number Reb of the system so that the governing mean field equations for the 1D averaged187

temperature profile Θ(z, t) and salinity profile S(z, t) have the forms:188

∂Θ

∂t
= − ∂

∂z
FΘ =

∂

∂z
(KΘ(Reb)

∂Θ

∂z
)

∂S

∂t
= − ∂

∂z
FS =

∂

∂z
(KS(Reb)

∂S

∂z
)

(1)

In the above equations, Θ and S are defined in density units so that the equation of state189

can be written as: ρ = ρ0 + S −Θ.190
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It is furthermore assumed that the system is initially characterized by uniform gradi-191

ents Θ(z, t = 0) = −Θz0z and S(z, t = 0) = −Sz0z so that the initial state which deter-192

mines a background density ratio Rρ = Sz0/Θz0. Θ(z) and S(z) at later times can then193

be decomposed into a combination of background fields Θ = −Θz0z, S = −Sz0z and weak194

perturbations Θ′, S ′, as:195

Θ(z) = Θ(z) + Θ′(z)

S(z) = S(z) + S ′(z)
(2)

These perturbations Θ′(z) and S ′(z) will then leads to a variation of Reb by the amount196

Re′b =
∂Reb
∂ρz

∂ρ′

∂z
=
ρ0

νg

ε0

(∂ρ
∂z

)2

∂ρ′

∂z
= −Reb

∂S′

∂z
− ∂Θ′

∂z
∂ρ
∂z

(3)

which feeds back on the time-evolution of Θ(z) and S(z) through the governing equations197

(1). Positive feedback for certain modes will lead to the general instability of the system. By198

expanding the perturbations in normal modes (Θ′, S ′) = (Θ̂, Ŝ) exp(λt) exp(ikz) in (1) the199

original equation set (1) will be transformed to an eigenvalue problem with the growth-rate200

λ as the eigenvalue of the resulting 2 by 2 matrix. The value of λ is then determined by201

solving the quadratic equation resulting in:202

λ2 + k2(Kθ +Ks +
∂Ks

∂Reb
Reb

Rρ

Rρ − 1
− ∂Kθ

∂Reb
Reb

1

Rρ − 1
)λ

+ k4(KθKs +
∂Kθ

∂Reb
KsReb

1

Rρ − 1
− ∂Ks

∂Reb
KθReb

Rρ

Rρ − 1
) = 0

(4)

A positive value of λ, which represents instability of the system, will be obtained if and only203

if the following criterion is satisfied:204

KθKs +
∂Kθ

∂Reb
KsReb

1

Rρ − 1
− ∂Ks

∂Reb
KθReb

Rρ

Rρ − 1
< 0 (5)

if we assume that KS and Kθ have a local power law dependence on Reb as KS ∼ Reβsb and205

KΘ ∼ Reβθb , the above criterion will be simplified to:206

βs − 1 >
βθ − 1

Rρ

(6)

Therefore the precise criterion for the instability depends on the details of the parametriza-207

tion scheme that is employed to describe the dependence of the turbulent diffusivities upon208

the buoyancy Reynolds number in the stratified turbulent flow. In MP21 we employed the209
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empirically calibrated parametrization scheme for single-component fluids of [28] as the can-210

didate parametrization based on the somewhat bold assumption that the temperature and211

salinity field will be relatively independent in the state and therefore this pair of single-212

component parametrizations should provide an accurate description of the doubly diffusive213

turbulent system. The effectiveness of this description will be tested in section 4.2 of the214

current paper below and a more general calibration of the parametrization for the diffusive-215

convection system will be performed and compared with the current assumption in the work216

that will be discussed in detail elsewhere. The specific functional form of [28]s parametriza-217

tion scheme is as follows:218

KBB
ρ (Reb, P r) = κ, forReb < 10

2
3Pr−

1
2

KBB
ρ (Reb, P r) =

0.1

Pr
1
4

νRe
3
2
b , for 10

2
3Pr−

1
2 < Reb < (3ln

√
Pr)2

KBB
ρ (Reb, P r) = 0.2νReb, for (3ln

√
Pr)2 < Reb < 100

KBB
ρ (Reb, P r) = 2νRe

1
2
b , forReb > 100

(7)

If we substitute Pr = 700 and Pr = 7 into the above equations to obtain the forms of219

KS(Reb) and KΘ(Reb) separately, the criterion described in (6) can be evaluated to obtain220

the following condition:221

0.17 < Reb < 97 (8)

Once this criterion is satisfied, the layering mode of instability will continually grow until a222

diffusive-convection staircases is fully formed, as has demonstrated by the no linear mean-223

field model simulation in MP21. However, as will be discussed in detail in what follows, we224

will employ a more moderate value of Prandtl number Pr = 70 (or Schmitt number Sc = 70)225

for salinity in the DNSs to be discussed herein due to the constraints on computational226

resources. In this circumstance, parametrization of [28] gives a different formula for the227

salinity diffusivities which will lead to a revised Reb criterion of:228

0.55 < Reb < 41 (9)

While (8) is still the criterion that should be applied into the real oceanographic environment,229

the effectiveness of the theory needs to be tested based in our DNS is criterion (9), under230

the choice of parameters in the current model. The goal of the analyses we will proceed to231
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describe is to demonstrate that the theory for staircase formation that we have demonstrated232

to explain the appearance of such structures in a mean field theory is verified in fully three-233

dimensional turbulent flow.234

DIRECT NUMERICAL SIMULATIONS235

In this section we discuss the design of DNS analyses to be employed to study the de-236

velopment of the layering structures that form from the Reb instability. In what follows,237

we will firstly discuss the governing equations and critical physical quantities in section 3.1.238

Then, in Section 3.2 we will discuss the detailed numerical settings of our DNS analyses.239

Governing equations and physical quantities240

In order to develop a state of homogeneous stratified turbulence in the diffusive-convection241

regime consider the temperature Θ(x, y, z, t) and salinity S(x, y, z, t) fields to be determined242

by a background temperature and salinity characterized by negative vertical gradients Θz0243

and Sz0 and perturbation fields Θpt(x, y, z, t) and Spt(x, y, z, t), namely:244

Θ(x, y, z, t) = Θz0z + Θpt(x, y, z, t)

S(x, y, z, t) = Sz0z + Spt(x, y, z, t)
(10)

Subject to the Boussinesq approximation, the scalar fields Θpt(x, y, z, t), Spt(x, y, z, t) and245

the velocity field u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) will be governed by the246

Navier-Stokes equation as in:247

∂u

∂t
+ u · ∇u = −∇p− J(

Rρ

Rρ − 1
Spt − 1

Rρ − 1
Θpt)ez +

1

Re
∇2u + F

∇ · u = 0

∂Θpt

∂t
+ u · ∇Θpt =

1

RePr
∇2Θpt + w

∂Spt

∂t
+ u · ∇Spt =

1

ReSc
∇2Spt + w

(11)

where ez is the unit vector in the positive vertical direction. We have non-dimensionalized248

above equations using the length scale L0, velocity scale U0, temperature scale ∆Θ = |Θz0L0|,249

salinity scale ∆S = |Sz0L0| and density scale ∆ρ = ∆S −∆Θ.250
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The critical non-dimensional parameters are the Reynolds number Re, bulk Richardson251

number J , inverse density ratio Rρ, Prandtl number Pr and Schmitt number Sc, which can252

then be defined explicitly as:253

Re =
U0L0

ν

J =
g∆ρL0

ρ0U2
0

=
g(∆S −∆Θ)L0

ρ0U2
0

Rρ =
∆S

∆Θ

Pr =
ν

κθ

Sc =
ν

κs

(12)

where ν is the kinematic viscosity, κθ and κs are molecular diffusivities for heat and salt and254

ρ0 is the reference density. We also assume that the system is subject to an external body255

forcing F whose specific form will be discussed in detail in the next subsection.256

Based on (11), we can straightforwardly derive the time-derivative of the volume-averaged257

kinetic energy of the system KE ≡ 1/2〈|u|2〉 as (here 〈·〉 represents the volume averages):258

dKE

dt
= P − (Fbθ + Fbs)− ε (13)

where259

P = 〈u · F〉

ε =
1

Re
〈∂ui
∂xi

∂ui
∂xi
〉

Fbθ = − J

Rρ − 1
〈w′Θ′〉

Fbs =
JRρ

Rρ − 1
〈w′S ′〉

(14)

are defined to be the energy input from external forcing, viscous dissipation ratio, buoyancy260

flux associated with temperature and salinity separately. In above equations, we decomposed261

any given field f(x, y, z, t) into f = f + f ′, where the f represents the horizontal average262

of that field and f ′ represents perturbation to it. It should be noticed that the unstably263

stratified background temperature field continues to release energy to the system through264

the heat flux and Fbθ < 0, meanwhile the energy of the system continues to be invested in265

mixing the stably stratified salinity gradient through the salt flux and Fbs > 0.266

When the system remains in a quasi-steady state, the right-hand side of (13) should be267

approximately 0. Considering that the absolute value of buoyancy fluxes Fbθ and Fbs are268
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usually much smaller than the viscous dissipation ε in our system (as will be demonstrated269

below), the balance of the KE budget is mainly kept by the first and last term of the right270

hand side of (13), namely:271

P ∼ ε (15)

Because the value of ε directly controls the value of the Reb of the system, the Reb can be272

estimated through:273

Reb =
Re

J
ε ∼ Re

J
P (16)

By controlling the energy input rate P we can essentially control the buoyancy Reynolds274

number of the system, which allows us to test our criterion for staircase formation in Reb275

instability theory which is based solely on Reb.276

Numerical Methods277

Governing equations (11) are integrated in a triply-periodic cubic domain of length 2π278

using the open-source computational fluid dynamics software Nek5000 ([39]). Nek5000 was279

developed at Argonne National Laboratory based on the spectral element method (e.g. [40],280

[41]) which is especially suited to simulations of transitional and turbulent flow.281

In order for the system to achieve a quasi-steady state, we choose to apply very sim-282

ilar initial fields and forcing with the settings in the recent body-forced simulations of283

[38]. Specifically the initial fields are defined as a superposition of randomly phased hor-284

izontal shear modes ushear and randomly phased three-dimensional internal wave modes285

(uinternal,Θinternal, Sinternal). The shear modes are confined to large scale modes m ≤ mc = 7286

only and amplitude for modes with vertical wavenumber m is allocated to be proportional287

1/m in order to follows initial energy spectrum of m−2. The detailed functional form of288

ushear is as follows:289

(ushear, vshear, 0) =
1
√
mc

mc∑
m=1

1

m
(cos(φm +mz), sin(φm +mz), 0) (17)

where φm is the phase chosen randomly for each vertical mode.290

The form of these internal wave modes is initialized based upon the algorithm as discussed291

in Appendix b of [42] to satisfy the three-dimensional Garrett-Munk Spectrum. These292

internal wave modes only contribute 10% of the initial energy and they are only non-zero for293
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modes with |k| ≤ 7. For recent discussions of the Garrett-Munk spectrum of internal waves294

in the oceans and the ability of high-resolution ocean models forced by both the atmosphere295

and the astronomical tidal potential to replicate this spectrum see [43] and [44].296

We first integrate the system without body-forcing to 20-time units in order for the energy297

contained in the initial larger scale modes to cascade to the small scales, a strategy previously298

employed in [38]. Then we begin to introduce body-forcing that has an appropriate form299

to represent the stochastic forcing of the large-scale modes. As employed in previous direct300

numerical simulations (e.g. [36], [37], [38]), these vortical modes of forcing only act on the301

horizontal component of the velocity and can be written in the following form:302

(Fx, Fy) = A
∑
(k,l)

Ak,l(l,−k)ei(kx+ly) (18)

where k and l are the wave numbers in the x and y directions respectively. The forcing303

is only non-zeros for modes whose horizontal wavenumber kh =
√
k2 + l2 lies in the small304

parameter window of 2.5 ≤ kh ≤ 3.5, as optimized in [38]. The complex action for each305

mode Ak,l is chosen randomly at each time step, after which a normalization constant A is306

determined such as to control the energy input rate P at each time step to be a constant307

(we used the method proposed by [37] to avoid accidental energy inputs due to the finite308

time step).309

We have performed 6 different simulations that will be discussed in this paper, whose310

governing parameters are summarized in Table 1. While fixed values of Re = 1000, J = 1,311

Pr = 7 and Sc = 70 were employed for all these simulations, we vary the density ratio312

Rρ for simulations 1-4 to investigate how Rρ will influence the dynamics or the equilibrium313

state of the system. It will be important to note that Rρ →∞ for simulation 4 is achieved314

by integrating the system in the single-component stratification case with Sc = 70. For the315

control simulation number 5, we switched the power P to the value 0.1 which leads to a316

larger value of Reb ∼ 100 that is well beyond the upper limit of the instability criterion. For317

the control experiment number 6, we double the vertical extent of the domain with Rρ = 5318

to investigate how the layer formation process is dependent upon this characteristic of the319

model.320

For simulations other than simulation number 6 in the current paper, we first apply an321

intermediate resolution of 350 × 350 × 350 grid points (for simulation number 6 in which322
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Numbering Lz P Rρ Pr Sc Re J

1 2π 0.01 2 7 70 1000 1

2 2π 0.01 5 7 70 1000 1

3 2π 0.01 8 7 70 1000 1

4 2π 0.01 ∞ N.A. 70 1000 1

5 2π 0.1 2 7 70 1000 1

6 4π 0.01 5 7 70 1000 1

TABLE I. Governing parameters for the direct numerical simulations performed in this paper.

the vertical domain is doubled, the vertical resolution is also doubled to 350 × 350 × 700323

grid points) in the simulation domain. From a theoretical perspective this resolution that324

cannot reach the requirement of DNS as the mesh could not reach the Batchelors scale for325

the slower diffusing salinity. However, in order to represent the layer formation process326

both the large domain size and the long integration time is necessary for our simulations,327

which restricts the resolution that can be applied. In Appendix A, we compared simulations328

with different resolutions to show that the layer formation that we report in this paper is329

resolution independent. Once the steady layered structure forms in the numerical simulations330

(the corresponding time is marked as t = t1), we then double the resolution in each direction331

(which gives 700×700×700 grid points for simulations other than number 6) in the domain,332

which allows us to better resolve the structure of the staircase state that forms. This system333

is then integrated for a short time until the system stabilizes again at t = t2. In what follows,334

we will first analyze the layer formation process that is characterized by the long integration335

of intermediate resolution in section 4, then we will analyze the staircase states in detail by336

focusing on the subsequent high-resolution evolution to be discussed in section 5.337

SPONTANEOUS FORMATION OF THERMOHALINE STAIRCASES IN THE DI-338

RECT NUMERICAL SIMULATIONS339

In this section, we will focus on discussing the process of spontaneous formation of layered340

structures in our system. In section 4.1 we will first describe the evolution of the system in341
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each different simulations to illustrate whether layers will form from the system and how the342

layer formation processes depend on different values of Reb and Rρ. Then in section 4.2 we343

will provide a detailed comparison between the layer formation process in the simulations344

with the linear growth-rate derived from section 2. By doing this we will be able to evaluate345

whether the Reb instability theory is indeed dominating the non-linear evolution process of346

direct numerical simulations. It will be important to recognize that the discussion in this347

section is confined to the layer-formation phase of the evolution that is characterized by348

time t ≤ t1.349

Thermohaline layering state in the direct numerical simulations350

In our simulations, well-defined layered structures form spontaneously in all simulations351

except for simulation number 5 in which a stronger forcing is applied. As an example,352

the layer formation process for simulation number 1 is illustrated in Figure 1, in which we353

show the state of the temperature and salinity fields in pseudo-color plots (a-f) and the354

horizontally averaged vertical profiles (g-i). At t = 100, the constant energy input from355

the vortical mode forcing keeps the system in a homogeneously stratified turbulent state in356

which the temperature and salinity fields remain in the linear-gradient configuration. After357

a long integration time, the first sign of the formation of the vertical structure occurs at358

approximately ti = 1000 (ti represents the time that the initial layering structure forms).359

As shown in Figure 1 (b,e,h), the system develops into a four-step staircase state at this360

time of the evolution. These four-step staircases then gradually merge together to form a361

well-defined two-step layered state at approximately tm=2100 (tm represents the time that362

the layers merge into higher steps in our system), which is then retained in the system363

until the end of the simulation at t1 = 3098. The layered state at t = t1 is illustrated in364

Figure 1 (c,f,i). By comparing Figure 1(h) and Figure 1(i), we can notice that the merged365

two-layer state has much sharper interfaces and more homogenized mixed layers compared366

with the four-step staircase. In what follows, we will use the phrase staggered layered state367

to describe the layered state that are not very well shaped as in Figure 1(h).368

These different phases of evolution of the layer formation process can also be viewed in369

the time variation of Fbθ and Fbs depicted in Figure 2. In this Figure, three different phases,370

namely the initial staircase formation stage, layer merging stage and equilibrium stage are371
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FIG. 1. In Figures (a-f) we show the pseudo-color plots of the salinity field Spt(x, y, z, t) (a-c)

and the temperature field Θpt(x, y, z, t) (d-f) at three different time slices t = 100, t = ti = 1000,

t = ti = 3098 for simulation number 1. In Figures (g-i) we plot the horizontally averaged profiles

of salinity S(z) (blue) and temperature Θ(z) (red) as a function of depth for the same time slices.

separated by three characteristic time (ti, tm, t1) which are denoted using the vertical lines.372

Generally speaking, both |Fbθ| and |Fbs| experience a continuous increase during the layer373

formation stage and layer merging stage and become stabilized in the final equilibrium stage374

of evolution. This trend of increasing |Fbθ|, |Fbs| as layers form and merge is consistent375
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with previous numerical simulations of thermohaline staircases of the salt-fingering system376

([13]) and the low-Pr diffusive-convection system ([45]). Meanwhile, the net buoyancy flux377

Fb = |Fbs| − |Fbθ| keeps decreasing in the layer formation stage and layer merging stage,378

so that Fb changes from positive values to negative values in the entire evolution process.379

As we will show in the next subsection, this increase of energy flow to the kinetic energy380

reservoir will lead to an increase of viscous dissipation in the system.381

FIG. 2. Evolution of the temperature induced buoyancy flux Fbθ (red) and salinity induced buoy-

ancy flux Fbs (blue) in the evolution of simulation number 1. Temperature induced buoyancy flux

is plot with the absolute (negative) value for comparison. The three characteristic times ti, tm and

t1 represent the time that the first layered structure forms, the time that well-defined layers form

and the end of the intermediate resolution simulation respectively (their definitions are discussed

in details in the text).

The above-described evolution process generally applies also for simulations number 2-4382

(which corresponds to Rρ = 5, Rρ = 8 and Rρ = ∞ separately). In these simulations,383

however, the firstly formed staggered layered state has two steps, which then merge into384

the single-step layered state so that the mixed layers that forms occupies almost the entire385
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domain. Such evolution can be seen the pseudo-color plot for the salinity field Spt(x, y, z, t)386

for simulation number 2 (as an example) at the initially formed staggered layered stage387

(t = ti = 1500) and merged layered stage (t = tm = 5000) in Figure 3 (a,b). In order to388

test whether the layer formation process in the simulations is dependent upon the height389

of the domain, we compare the staircase state formed in simulation number 2 (this will be390

referred to as ”normal box”) with that in simulation number 6 that has twice the vertical391

domain height (this will be referred to as ”tall box”) while all other conditions remain the392

same. In the tall box simulation shown in Figure 3(c,d), the staircases formed are somewhat393

unevenly distributed with step-sizes varying at different vertical levels. There are 5 steps394

formed at time t = 1500 which later merged into 3 steps at t = 5000. This makes the395

averaged step-sizes slightly lower but comparable with that of the normal box simulation at396

both these time-slices. Furthermore, the turbulence characteristics also appear similar for397

the normal box domain and the tall box domain as can be seen in Figure 3. Therefore we398

conclude that the time-scale and the length-scale of the staircase formation are not sensitive399

to the vertical domain height we have chosen. For this reason we will only discuss the Rρ = 5400

simulated in the normal box to be consistent with other simulations in what follows. It is401

worth mentioning here that although the 3-step configuration shown in Figure 3(d) is stable402

within our integration time of 6500 time units, we dont rule out the possibility that these403

staircases will eventually merge if this simulation is integrated much longer.404

The important quantities for the layer formation and layer merging process are summa-405

rized in dimensional units in Table II. The unit transformation is made by relating the406

controlled non-dimensional viscous dissipation rate with the typical value of viscous dissi-407

pation ε = 5 × 10−9W/kg (see [29] for example) in the Canada Basin. Using the typical408

value of molecular viscosity of ν = 1.8 × 10−6m2/s in the Arctic Ocean, we calculate the409

characteristic length-scale for simulation numbers 1-4 to be approximately L0 = 0.33m and410

a time scale L0/U0 = 60s. After transforming the characteristic times to physical units411

as shown in Table II, we can see that it takes a timescale of several days for the layered412

structure to develop and merge into an equilibrated staircase. The step-size L of these413

equilibrium staircase structures in our simulation has the physical length scale of approxi-414

mately 1m. This is consistent with the measurements of the staircases in the Arctic Ocean,415

whose step-sizes typically range from 1m-5m (e.g. [19]). This also shows that the choice416

of our vertical domain height in the numerical simulations is capable of capturing the real417
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FIG. 3. Pseudo-color plots of the salinity field Spt(x, y, z, t) for simulation with Rρ = 5 at time

slices t = ti = 1500 (a,c) and t = tm = 5000 (b,d). Figure (a,b) shows the normal box simulation

for simulation number 2 and Figure (c,d) shows the tall box simulation for simulation number 6.

staircases formed in the Arctic Ocean. The interfacial thicknesses hIθ and hIs formed in418

our simulations have been evaluated as the depth-range within which |Θz| > 1 and |Sz| > 1419

are satisfied separately. The interfacial thicknesses have the order of 0.1m, with the tem-420

perature interfaces generally thicker than the salinity interfaces due to the higher molecular421
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# P Rρ Reb Layering Steps ti(day) tm(day) t1(day) t2(day) L(m) hIθ(m) hIs(m)

1 0.01 2 9.5 Yes 4→2 0.7 1.5 2.15 2.23 0.6 0.07 0.05

2 0.01 5 8.8 Yes 2→1 0.9 3.6 5.05 5.12 1.3 0.11 0.08

3 0.01 8 8.8 Yes 2→1 0.8 3.1 3.16 3.20 1.3 0.12 0.09

4 0.01 ∞ 8.7 Yes 2→1 1.4 6.6 6.94 6.99 0.6. N.A. 0.10

5 0.1 2 83.0 No N.A N.A N.A 1.81 N.A N.A. N.A. N.A.

TABLE II. Basic simulation results summarized for the five simulations performed. In this table,

layering with ”yes” or ”no” indicates whether layered structure observed to form in the system. ti,

tm represents the time that the initially (staggered) layered state form and the well-merged layered

state is observed in the simulation respectively. L is the step-size in the finally merged layering

state, hIθ and hIs are the interfacial thicknesses of the temperature profile and salinity profile in

the equilibrium layered state.

diffusivity at the interface. These values match well with the interfacial thickness measured422

in the Canada Basin by [46], who found that the temperature interfacial thicknesses are423

about 0.15m. These consistencies in physical scales of the staircase structures suggest that424

the layered structures formed in our numerical simulations not only provide guidance for425

theoretical studies of the layer formation mechanism, but they are also physically relevant426

for the actual staircases observed in the Arctic Ocean.427

Comparison between the layer formation process in DNS analyses and theoretical428

predictions of MP21429

While we have shown that the thermohaline staircase structures do form naturally in our430

numerical system, in this subsection we will provide the analyses required to answer the431

question as to whether these layered structures form because of the mechanism discussed432

in MP21. In this process we will provide three tests on the basis of which to compare our433

numerical simulations with the theoretical predictions of MP21 in what follows. Firstly434

we will investigate whether the stability criterion derived in MP21 is consistent with the435

layer formation process observed in our numerical simulations. Secondly we will analyze436

whether or not the key assumption of the [28] parametrization scheme that lies at the heart437
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of the theory proposed in MP21 is operating in the current numerical system. Third we438

will investigate whether the growth rate of the layering mode in our system is equal to439

the growth-rate predicted by the linear stability analysis. As we will demonstrate in what440

follows, the Reb instability theory of MP21 provides rather good predictions for all these441

three aspects of the layer formation process.442

We will start by evaluating the instability criterion of MP21. As we have reviewed in443

section 2, the Reb instability theory predicts the layering instability of the system to occur444

only when the buoyancy Reynolds number satisfies the criterion 0.55 < Reb < 41 for Pr = 7445

and Sc = 70. In order to evaluate whether the instability criterion is satisfied, we show the446

evolution of Reb in the five different simulations we have performed in Figure 5. As expected,447

the buoyancy Reynolds number of the system self-adjusts to the level of approximately448

ReP/J = 1000P (as discussed in (16)) soon after the introduction of the vortical forcing at449

t = 20. Therefore only the first four simulations (with P = 0.01) have an Reb that satisfies450

the instability criterion which is consistent with our observations that the layered structure451

forms and only forms in these 4 simulations. Furthermore, it should be noticed that the452

level of Reb is slightly higher for Rρ = 2 than for the other simulations with P = 0.01. This453

is a consequence of the fact that negative buoyancy flux arises in this case which provides an454

additional net energy source to be dissipated only at Rρ = 2 (as has been mentioned before455

in Figure 2). The value of Reb for each simulation is averaged for time periods of t = 50 to456

t = ti (which roughly captures the stage of layer growth) to be shown in Table II.457

Next we turn to evaluate the effectiveness of the [28]parametrization in the current nu-458

merical system. To do this we need to compute the diapycnal diffusivities Kθ and KS at459

different vertical depth of our system and evaluate whether they are strongly correlated with460

the local buoyancy Reynolds number Reb. To reduce the influence of advection that varies461

strongly with time, we perform time-averages over a 40 (nondimensional) time-unit interval462

to obtain the time-averaged vertical profiles on the basis of which to evaluate Reb, KΘ and463

KS as follows:464
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FIG. 4. Evolution of the volume averaged buoyancy Reynolds number in simulation number 1-5.

Reb(z) =
Re〈ε(z)〉t

J

FΘ(z) = 〈w′Θ′(z)〉t −
1

RePr

∂〈Θ(z)〉t
∂z

FS(z) = 〈w′S ′(z)〉t −
1

ReSc

∂〈S(z)〉t
∂z

KΘ(z) = − FΘ(z)
∂〈Θ(z)〉t

∂z

KS(z) = − FS(z)
∂〈S(z)〉t
∂z

(19)

In the above equations, the overline represents the horizontal averages (this is different465

with background stratification defined in equation (10)) and 〈·〉t represents the time averages466

over the chosen time-intervals. FΘ(z) (or FS(z) ) are the total vertical heat (or salt) fluxes467

which include the contribution from both the convective fluxes and the diffusive fluxes.468

In Figure 5, we showed the correlation between diapycnal diffusivities KΘ(z), KS(z) and469

Reb(z) at t = 0.5ti for simulations 1-4 (t = t1 for simulation number 5), namely at half the470

time needed for the first layering state to form in these simulations. These depth-dependent471

data are averaged in 50 small depth-intervals and plotted in the (Reb, K) parameter space472

to be compared with the [28]’s parametrization evaluated from (7) in Figure 5. It can be473
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clearly seen in this figure that the distribution of Reb at different depths spans approximately474

an order of magnitude due to the growth of perturbations in the system. In such a wide475

range of Reb the diapycnal diffusivities KΘ(z), and KS(z) follow very well the predictions of476

[28], except for slight deviations in the small Reb regions for KΘ(z). Most importantly the477

key element of the [28] parametrization needed to support the theory of MP21, namely the478

existence of the buoyancy-controlled regime for KS(z) that scales as Re
3/2
b is well captured479

in the current system as shown in Figure 5(b). This fact shows that, in the process of the480

initial layering formation, the [28] does function in the way that we have described in the481

MP21 theory. This strongly implies that the theoretical derivations in MP21 are based on482

reasonable assumptions which are clearly confirmed in our current numerical system.483

Finally, we will perform a detailed analysis of the vertical wavenumber spectrum for tem-484

perature/salinity for comparison with the theoretical predictions of MP21 for the growth485

rate of the layering mode of instability. Specifically, we perform the vertical Fourier trans-486

formation off the horizontally averaged salinity field (or temperature field) following:487

Sm(t) =
1

V

∫
V

S(x, y, z, t)eimzdV

Θm(t) =
1

V

∫
V

Θ(x, y, z, t)eimzdV

(20)

where m must take integer values as constrained by our triplet periodic domain with size488

2π. In Figure 6(a-d) we show the evolution of the vertical wavenumber spectrum of salinity489

Sm (temperature spectrum is similar) for the four simulations in which staircases formed.490

The evolution of the spectrum confirms our observations described in the last subsection491

concerning the different stages of the evolution: for Rρ = 2 shown in Figure 6(a). The492

system is first dominated by the m = 4 mode at t = ti when the system has a staggered493

layered structure (see Figure 1(h)). At t = tm, the growth of the m=2 mode finally dominates494

the system and stays steady, which represents the formation of the stable two-layer staircase495

state. We can also see the formation of the two-layer state for Rρ = 5, Rρ = 8 and Rρ =∞496

before the final formed single-layer staircase in Figure 6(b)(c)(d). For comparison simulation497

number 5, however, there is no sign of layer formation as can be seen in Figure 6(e).498

The evolution of the vertical wavenumber spectrum can also be compared with the499

growth-rate predicted by the theory based on the Reb and Rρ for each simulation. These500

linear growth-rates are represented as the dashed lines in Figure 6 (a-d). It can be seen from501
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FIG. 5. Scatter plot of (Reb(z),KΘ(z)) (a) and (Reb(z),KS(z)) at (Reb,K) parameter space

different vertical coordinates (b) evaluated for time-averaged at t = 0.5ti for simulation number

1-4 and at t = t1 for simulation number 5. The black solid line shows the parametrization scheme

of (7) for temperature Pr=7 (a) and salinity Sc=70 (b). The vertical dotted lines represent the

critical Reb values that separate different parametrization regions in (7).

the figure that the theory of MP21 offers a fairly good prediction for the growth of the first502

two vertical modes m = 1 and m = 2 before saturation. This fact provides further strong503

support for the effectiveness of the theory of MP21.504

To summarize the results of this section, we have demonstrated the effectiveness of the505

Reb instability theory from three perspectives. First we demonstrated that the instability506
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FIG. 6. Evolution of the vertical spectrum of salinity for various mode Sm as a function time

in simulation number 1-5. The dot-dashed line (in (a)-(d)) represents the growth-rate λ for each

mode predicted from the linear stability analysis calculated from formulae (4). The vertical dotted

line (in (a)-(d)) marks the characteristic time ti and tm sequentially.

criterion provided correct predictions of whether the layers would form in the system. Sec-507

ondly we showed that the key assumption of the parametrization scheme of [28] provides an508

accurate description of the vertical variations of the system. Finally we have demonstrated509

that the growth of the governing layering mode is consistent with the prediction of the lin-510

ear stability analysis. Therefore, we conclude that the spontaneous formation of the layered511

structure in our system is indeed triggered by the Reb instability theory described by MP21.512
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It should also be clear on the basis of the previous discussions that while Reb solely513

determines whether the layered structure will form in the DNS system, it seems that Rρ514

plays a role in determining the step-size of the initially formed layering mode, considering515

that the number of layers formed in our simulations varies with Rρ. The explanation of516

the depth of the firstly formed layers in the system is not predictable on the basis of MP21517

and goes beyond the scope of the current paper. In order to fully understand this problem,518

we need a multi-scale model that captures the response of gradients at smaller scales, an519

example of which is provided in the work of [16] that focused upon the salt-fingering regime520

of doubly diffusive convection.521

DIFFUSIVE CONVECTION STAIRCASE STRUCTURE IN THE DIRECT NU-522

MERICAL SIMULATIONS523

As we have demonstrated above, the thermohaline staircase structures form sponta-524

neously in our continuously forced system. A natural and critical further objective of the525

present work is to analyze the detailed steady structure of the diffusive convection staircases526

that are formed. In order to achieve this, we have integrated the staircase state of the system527

(t = t1) with doubled resolution for an additional short period of time (summarized in Table528

2) until the system reaches its steady state with the higher resolution, which is denoted as529

time t2. The better resolved domain allows us to look closely at the morphology and the530

vertical transport, as will be discussed in section 5.1. In the following section 5.2, we will531

compare our simulated interfaces with the existing theories of diffusive interfaces.532

Staircase Structure533

In Figure 7, we show the vertical cross-sections of the density field for simulations with534

Rρ = 2, 5, 8 separately. As discussed previously, while there forms the two-step layered state535

with Rρ = 2 at the end of our numerical simulation, simulations with Rρ = 5 and Rρ = 8536

only has the single layer structure across the vertical domain. In all these simulations,537

very sharp interface(s) and be clearly observed to separate well-mixed convective layers538

below and above. Thin plumes can be observed in these fields to rise from the interfaces539

to transport scalars into the mixed layers. These plumes have also been observed in the540
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previous numerical simulations of diffusive interfaces of [30], [47] and they have been argued541

as the crucial structure in transporting scalars from the interface into the mixed layers ([48]).542

FIG. 7. Density fields for the equilibrium staircases at t = t2 for simulation with Rρ = 2 (a),

Rρ = 5 (b), Rρ = 8 (c) separately. The pseudo-color plot is performed for the x-z plane at the y

midpoint of the 3D domain.

In order to facilitate a further quantitive analysis of the layered structure, in Figure 8543

we show the vertical distribution of heat/salt fluxes (FΘ(z), FS(z)), vertical gradients of544

temperature/salinity (Θz(z), Sz(z)) as well as the effective vertical diffusivities for temper-545

ature/salinity (KΘ(z), KS(z)) (calculated as the ratio of the previous two sets of physical546

quantities) of the system, all evaluated based on averaged profiles in the steady state of the547

high-resolution run for our simulations with Rρ = 2, 5, 8 separately. As shown in Figure 8548

(c,f,i), the vertical diffusivities are significantly different in the mixed layers compared with549

the interface regions, suggesting entirely different dynamics in those vertical regions: in the550

mixed layers, mixing is driven by strong turbulent convection which leads to the same values551

of diffusivities for heat and salt. In the interface region(s), however, the turbulent diffusiv-552

ities for heat and salt are of the same order as the molecular diffusivities for temperature553

and salinity, suggesting the absence of turbulent motions at the interface region. In fact,554

the turbulent diffusivities at the interfaces are much lower for Rρ = 5, 8 compared with555

Rρ = 2. This is possibly because the scalar variations across the interfaces are higher for556

Rρ = 5, 8 compared with Rρ = 2 (as shown in Figure 7), which makes it more difficult for557

the turbulent convection in the mixed layers to penetrate the interfaces.558

Even though the vertical diffusivities in the mixed layer regions are 2-3 orders of magni-559
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FIG. 8. Time averaged vertical fluxes for heat and salt FΘ(z), FS(z), vertical gradients for tem-

perature and salinity Θz(z), Sz(z) and diapycnal diffusivities for heat and salt KΘ(z), KS(z) as a

function of depth for simulation with Rρ = 2 (a,b,c), Rρ = 5 (d,e,f), Rρ = 8 (g,h,i) separately.
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tude higher than in the interface regions, the vertical scalar gradients in the mixed layers560

are 2-3 orders of magnitude lower than in the interface regions (shown in Figure 8 (b,e,h)),561

which leads to the crude balance of vertical fluxes shown in Figure 8 (a,d,g). Specifically,562

while interface vertical fluxes are well balanced with mixed layer vertical fluxes with Rρ = 2,563

the interface vertical fluxes are somewhat smaller than the mixed-layer vertical fluxes for564

Rρ = 5 (Figure 8(d)) and Rρ = 8 (Figure 8(g)), for both heat flux and salt flux. This mis-565

match suggests that the steady state for our simulations with Rρ = 5 and Rρ = 8 is in fact566

a quasi-equilibrium state and the system is still slowly evolving towards a true equilibrium567

state. Based on the equations of conservation of temperature/salinity:568

∂Θ(z)

∂t
= −∂FΘ(z)

∂z
∂S(z)

∂t
= −∂FS(z)

∂z

(21)

The relatively low fluxes at the interface will lead to the accumulation of scalars at the569

bottom of the interface and the depletion of scalars at the top of the interface. Therefore570

as time evolves this flux structure (smaller at the interface and higher in the mixed layer571

regions) will lead to a further enhancement of the scalar differences across the interface,572

which shows that the single layered structure for Rρ = 5 and Rρ = 8 are stable and the573

structure is becoming stabilized through time. In order to reach the full equilibrium state,574

another long period of simulation time is needed (O(1000) time units) which is difficult to575

reach with our limited computational resources.576

Comparison with the diffusive interface model of LS577

While we have illustrated how the steady staircase structure is maintained by the bal-578

ance of heat and salt flux between interface regions and mixed layers, we will compare these579

structures with the classical theoretical model of diffusive interfaces. LS presented a time-580

independent model of diffusive interfaces, which provides significant insights concerning the581

following theoretical and numerical simulations of diffusive interfaces studies (see review of582

[32], [45]). In this model, the interface consists of two boundary layers from which fluctua-583

tions arise on the outer edge of the interfaces and a diffusive core cross in which transport584

takes place only by molecular diffusion. This theoretical model describes a diffusive-interface585

structure that can only remain stable when the density ratio Rρ is smaller than the critical586
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value of Rcr
ρ = τ−1/2. The LS model has later been extended by [49] and [50] to include587

the run-down evolution of the diffusive-interfaces in the Rρ > Rcr
ρ regime. As the diffusive588

interface structure is spontaneously formed and kept stable in our numerical simulations,589

the run-down model of [49] and [50] will be irrelevant to our current discussions. Therefore590

we will focus on comparing our interface structures only with the original time-independent591

model of LS.592

To investigate whether the unstably stratified boundary layers are formed in our model593

as described in the LS theory, we plot in Figure 9 the horizontally averaged vertical density594

gradient, namely the buoyancy frequency, as follows,595

N2 = − 1

J

∂〈ρ(z)〉t
∂z

= − 1

J
(

Rρ

Rρ − 1

∂〈S(z)〉t
∂z

− 1

Rρ − 1

∂〈Θ(z)〉t
∂z

) (22)

for Rρ = 2, 5 and 8. In our system, Rcr
ρ = τ−1/2 = 3.16 so that the small Rρ simulation596

Rρ = 2 satisfies the criterion while the large Rρ simulations with Rρ = 5 and 8 are outside597

the criterion. As shown in Figure 9(b,c), the unstably stratified boundary layers dont exist598

for the large Rρ staircases (Rρ=5 and Rρ=8) considering that N2 > 0 across the entire599

vertical domain. For Rρ = 2, on the other hand, N2 takes negative values in the mixed600

layer region. While this fact shows that the boundary layer structure is not that special in601

keeping the staircases stable in our model, it does not contradict the LS theory considering602

that the water columns do become unstably stratified below and above the interface core.603

In order to further test whether the small Rρ staircase that satisfies LSs criterion is604

consistent with their model, we need to evaluate the major predictions provided by this605

theory, in order for the interface structures to be stable. For this to be possible it is shown606

that density ratio at the interface RI
ρ and the flux ratio at the interface γI are both required607

to be dependent solely on the molecular diffusivity ratio τ . Specifically their values have608

been predicted to be:609

RI
ρ ≡

Sz
Θz

Rρ|interface =
1√
τ

γI ≡ FS
FΘ

Rρ|interface =
√
τ

(23)

The above conclusions were derived in LS by making the assumption that the fluxes610

across the center of the interface are purely governed by molecular diffusion of heat and salt.611

As pointed out by [51] and developed in the recent work of [31], the molecular diffusivity612

in the LS theory should be replaced by the ratio of effective diffusivity across the interface613
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FIG. 9. Time averaged buoyancy frequency N2 in the mixed layers as a function of depth for

simulation with Rρ = 2(a), Rρ = 5 (b), Rρ = 8(c) separately.

when the interface is influenced by turbulence. In our system, we have demonstrated that614

the effective diffusivities cross the center of the interface are close to but higher than the615

molecular values (see Figure 8 (c)). The ratio of the effective diffusivities τ eff = KS/KΘ at616

the interface are approximately 0.21 for both interfaces at t = t2 for our simulation number617

1, which is approximately twice the molecular value of 0.10. The predicted value for RI
ρ618

and γI evaluated by substituting into τ eff to (23) is RI
ρ = 2.2 and γI = 0.45 separately. In619

Figure 10 we have plotted the (time-averaged) depth-dependent Rρ(z) and γ(z) (solid lines)620

evaluated for our Rρ = 2 simulation to be compared with the predicted value of RI
ρ and γI621

at the interfaces (dashed lines). From this Figure it will be observed that the prediction of622

LS theory is lower for the estimate of interface Rρ and higher for the estimate of interface623

γ, both with approximately 25% percent differences.624

In order to understand why the LS model cannot provide an accurate description of625

our staircase simulations, two important distinctions between our numerical model and626

the original theoretical model of LS should be recognized: firstly, the theoretical model627

of LS assumed a perfectly homogenized mixed layers above and below the interfaces. As628

shown in our numerical model, however, a fully equilibrated staircase structure requires629
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FIG. 10. Density ratio Rρ(z) (a) and flux ratio γ(z) are plotted in the solid lines for simulation

number 1 (Rρ = 2), in comparison with the predicted value of RIρ (a) and γI (b) from LSs theory

in the vertical dashed lines.

finite values of vertical gradients (for both temperature and salinity) in the mixed layers.630

In this circumstance, as we have discussed above, the balance between vertical fluxes in the631

mixed layers and those in the interfaces are the key to maintain the staircase structure.632

This clearly goes beyond the description of the simplified LS model which only contains the633

interface transportation. Secondly, the theoretical model of LS is a purely buoyancy-driven634

model which doesnt include any effect of dynamically-driven stratified turbulence. Without635

stratified turbulence, the unstably stratified boundary layer becomes necessary for the flux636

transport in their model. However, when the effect of stratified turbulence is properly taken637

into account in our model, the flux transport can be achieved solely by stratified turbulence638

(as in our simulation with Rρ = 5, 8 and Rρ = ∞ ). Therefore the staircase structure can639

stably exist in those systems even though they are predicted to be unstable by LSs theory.640

SUMMARY AND CONCLUSIONS641

In this paper, we have performed a series of DNS analyses of the continuously forced strati-642

fied turbulent system comprised of two different scalars stratified in the diffusive-convection643

configuration. We found that thermohaline layered structure forms spontaneously in the644
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simulations. We then considered three different aspects of this process to show that it is645

indeed well explained by the theory of MP21. First we showed that the controlled parameter646

Reb in the layering simulations do satisfy the criterion derived by MP21. Secondly we have647

demonstrated that the key assumption of the Reb instability theory of MP21, namely that648

the [28] parametrization scheme determines the vertical transports of the system, is indeed649

the case in the layer formation stage of our system. Third we have found good consistency650

between the exponential growing of the layering mode with the predicted growth-rate from651

the linear theory of MP21. These results strongly support the conclusion that the Reb in-652

stability theory of MP21 is the correct explanation of thermohaline staircase formation in653

the diffusive convection regime that is characteristic of the Arctic Ocean.654

The staircases formed in our DNS simulations were next examined and compared with655

the model proposed by LS. We explained how the vertical fluxes are kept balanced in our656

model despite the fact that the boundary layer structure that has been regarded as critical657

in stabilizing the interface structure is missing in our model. We have argued that the reason658

for the discrepancies between the classical model and our simulations is because they did not659

consider the stratified turbulence that may exist within their original model in the boundary660

layers and mixed layers.661

There are several limitations of the numerical simulations that we have performed as662

basis for the discussion of the detailed staircase formation processing this paper. Firstly it663

should be kept in mind that all of the simulations have performed have assumed a Schmitt664

number Sc=70 which is an order of magnitude smaller than the typical value of Sc=700.665

This prevents us from directly comparing the values of fluxes obtained from our simulations666

with the empirical interface flux laws calibrated previously (e.g. [48], [52] [53]). Secondly667

we do not as yet know whether the steady staircase state we observed is in its equilibrium.668

It is possible that after a much longer integration time (and higher domains) the current669

stable stabilized staircases will continue to merge together. Observing such trends in DNSs670

requires a huge number of computational resources.671

On the theoretical perspective, we have mentioned several times in the paper that the672

[28]’s parametrization of reaches its limit for describing small-scale dynamics of the system.673

Therefore, we believe that a properly captured multi-scale theory as that has been done in674

salt-fingering staircase ([16]) is the key for us to make further deep understanding for the675

diffusive-convection staircases.676
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Appendix A: Influences of resolution on the direct numerical simulations677

As we have discussed in the main text, the long integration time needed for the system to678

develop into the staircase state exerts a strong constraint on the resolution available for our679

numerical simulations. In order to understand the influences of resolution in our numerical680

system, we performed two control experiments for simulation number 1 and number 2 with681

the same numerical settings except for a coarser resolution that has half the number of grid682

points in each of three spatial dimensions (175 × 175 × 175 grid points). In what follows,683

we will use low-res, mid-res and high-res to refer to the resolution of 175× 175× 175 grids,684

350× 350× 350 grids and 700× 700× 700 grids separately.685

In Figure 11(a-c) we compare the evolution of vertical spectrum of salinity for the critical686

layering mode between low-res simulation and mid-res simulation (spectrum evolution of687

midres has been shown and discussed in the main text) for Rρ = 2, 5 and 8 with P = 0.01.688

Although the systems take a different path and different time periods towards the equilibrium689

as we switched the resolution, the equilibrium states for the vertical structure they reach are690

almost identical. This can be seen in Figure 11(d-f), which shows the comparison of vertical691

profiles for temperature and salinity between low-res simulation and mid-res simulation in692

the equilibrium state. These vertical profiles show almost the same structure except for the693

fact that the interface gradients for low-res simulation are slightly smaller for Rρ = 2. This694

suggests that the formation of the staircase state in our numerical system is a robust result695

instead of a numerical artifact.696

Although the variation of resolution doesnt influence the final equilibrium staircase state697

of our numerical simulations, the vertical heat flux and salt flux in the equilibrium state are698

found to be sensitive to the resolutions. To see this, we evaluate the Nusselt numbers for699

heat and salt, which are the commonly used non-dimensional numbers that reflect the ratio700

of convective flux over diffusive flux defined as:701

NuΘ = RePr〈w′Θ′〉

NuS = ReSc〈w′S ′〉
(24)

In Figure 12, we plot the variation of the Nusselt numbers as a function of three different702

resolutions applied in the equilibrium layered stage in our simulations with Rρ = 2, 5703

and 8 separately. Both NuΘ and NuS increases with the increased resolution for all our704

simulations, especially for the increase of NuS from low-res simulation to mid-res. The fact705
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FIG. 11. (a-c): Comparision of vertical spectrum of salinity between low-res simulation and mid-

res simulation for Rρ=2 (a), Rρ=5 (b) and Rρ=8 (c) separately. (d-f) Comparison of vertical

profiles of Θ(z) and S(z) in the equilibrium staircase state between low-res simulation and mid-res

simulation

that only mild increase of fluxes occur during the improvement of resolution from mid-res706

to high-res suggests that further increase of resolution will not bring significant variation to707

the equilibrium transport we have simulated. However, it still needs to be remembered that708

these values of fluxes we have obtained is under limited resolution and should be viewed709

with caution.710
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