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Abstract6

The Arctic Ocean’s main thermocline may be characterized by a series of fine-scale thermohaline7

staircase structures that are present in a wide range of regions, the formation mechanism of which8

remains unclear. Recent analysis has led to the proposal of a theoretical model which suggested that9

these staircase structures form spontaneously in the ocean when the turbulent intensity determined10

by the buoyancy Reynolds number Reb is sufficiently weak. In the current work, we have designed a11

series of Reb controlled direct numerical simulations of turbulence in the Arctic Ocean thermocline12

to test the effectiveness of this theory. In these simulations, the staircases form naturally when13

Reb falls in the range predicted by the instability criterion. The exponential growth rate of the14

layering mode matches well with the prediction of the theoretical model. The staircases formed15

in our simulations are further compared with the classical diffusive interface model, which argues16

that stable staircase structures can only form when the density ratio Rρ is smaller than the critical17

value of Rcrρ = τ−1/2. Here τ is the ratio of haline diffusivity over thermal diffusivity. We show18

that the staircase structure can stably persist in our model regardless of whether or not Rρ < Rcrρ19

is satisfied.20

INTRODUCTION21

Thermohaline staircases are strikingly organized structures in the oceans which are char-22

acterized by a series of vertically well-mixed layers of both heat and salt separated by sharp23

interfaces (see chapter 8 of [1] for a recent review). Depending on whether the relatively24

warmer and saltier waters are lying above or below the relatively colder and fresher waters,25

the thermohaline staircases can be classified into salt-fingering staircases which are usually26

observed in low and mid-latitude oceans (e.g. [2], [3]) and the diffusive-convection staircases27

which are mainly observed in the polar oceans (e.g. [4], [5]). The first observations of these28

two types of thermohaline staircases were reported in the late 1960s ([6], [7]) and their ori-29

gins were quickly connected with the two types of double-diffusive convection: salt-fingering30

and diffusive-convection. However, half a century later, we are only “halfway” towards a31

complete understanding of their formation mechanisms. While we have already gained the32

ground-breaking understanding of the detailed mechanism for the salt-fingering staircases,33

it’s still unclear what the key mechanism is that is responsible for the formation of the34

diffusive-convection staircases.35
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On the salt-fingering side of the story, the formation of the staircases has been explained36

using the instability of the flux-gradient laws, initially discussed in the work of [8]. In this37

work, the author used the parametrized diapycnal diffusivities for heat KΘ and salt KS to38

describe the large-scale effect of the stochastic field of salt-fingers and assumed that KΘ and39

KS are determined solely on the density ratio RSF
ρ ≡ Θz/Sz (here Θ and S are the potential40

temperature field and salinity, both in density units). Following this assumption, the author41

analyzed the linear stability of the parametrized mean-field model and derived the criterion42

for the layering instability. The dependence of KΘ and KS on RSF
ρ has been calibrated using43

direct numerical simulations (DNSs) (e.g. [9],[10], [11] and [12]) and accumulating evidence44

has established that layers will spontaneously form from homogeneous salt-fingering field45

once this criterion is satisfied, which includes DNSs (e.g. [13]), basin-scale model simulation46

(e.g. [14]), mean-field model simulations (e.g. [15], [16], [17]). Most importantly, the multi-47

scale version of the flux-gradient model proposed by [16] successfully solved the ultraviolet48

catastrophe problem that existed in the original theoretical framework of [8]. The growth49

rate of the instability in this new model is shown to decrease to a very small value after Rρ50

reaches the value of 1.8, which perfectly explains why nearly all the salt-fingering staircases51

observed in the ocean have the density ratio RSF
ρ smaller than 2 (see [18] or [1] for a review).52

The above theory for salt-fingering staircase formation suggests that the salt-fingering53

fluxes formed from salt-fingering instability are sufficient to drive the system into a layered54

state. However, this simple picture does not suffice to provide an explanation of staircase55

formation in the diffusive-convection regime. While most diffusive-convection staircases have56

been found to exist in a large range of density ratio 2 < Rρ < 9 (see [5], [19] for example,57

here Rρ ≡ Sz/Θz is the density ratio for the diffusive convection system), the linear diffusive-58

convection instability is only active in a tiny window of the parameter space 1 < Rρ < 1.1659

(see [1]). This mismatch strongly suggests that the linear diffusive-convection instability60

can not be regarded as the origin of diffusive-convection staircases, for example, that are61

observed in the Arctic Ocean. At least another critical element has to be introduced to62

“react” with the diffusive-convection to explain the observations. One of the most promising63

candidates for the explanation has been that associated with thermohaline-shear instability64

theory initially proposed by [20], and in this case this critical element is “shear”. In this65

work and the following work of [21], [22], it is demonstrated that a flow that is stable to66

both shear instability and diffusive-convection instability might become unstable under the67
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joint action of diffusive-convection and different forms of shear. It has been further shown68

that these instabilities are able to develop into layered structures in the non-linear evolution69

of DNSs ([20]). While the thermohaline-shear instability perfectly solves the problem of the70

mismatch between the different ranges of density ratio, the development for the instability is71

still currently dependent on some specific form of the shear (e.g., a vertically sinusoidal form72

is considered [20] and the time-dependent form is considered in [21], [22]). Another candidate73

explanation for the diffusive-convection staircases is the thermohaline intrusion mechanism74

discussed by [23] and [24] where the critical element added to the picture is the “horizontal75

gradient”. This theory was first discussed to explain the formation of salt-fingering staircases76

in [23] and it has been extended to explain the diffusive-convection staircases by [24]. While77

the coexistence of thermohaline intrusion and double-diffusive staircases are often apparent78

in the observational data as shown in [24], it remains a challenging question as to whether79

the presence of horizontal gradients is a necessary condition for staircases to form in the80

diffusive-convection regime, considering that salt-fingering staircases have now been shown81

to be able to form without horizontal gradients (e.g. [8]).82

While these two candidate theories described above may significantly contribute to our83

understanding of the problem, we believe that a more general theory should exist for the84

formation of diffusive convection staircases which is also based on the instability of certain85

flux-gradient laws. Recently, such a new theory for the formation of staircases in the diffu-86

sive convection regime was proposed in [25] (hereafter referred to as MP21), in which the87

critical element added to the picture is the “stratified turbulence”. In this paper the ef-88

fective turbulent diapycnal diffusivities for heat KΘ and salt KS in the diffusive-convection89

regime are parametrized as being solely dependent upon the buoyancy Reynolds number90

Reb = ε/(νN2) (here ν is the kinematic viscosity, ε is the viscous dissipation rate and91

N =
√
−g/ρ0〈dρ/dz〉 is the buoyancy frequency). By analyzing the linear stability of the92

parametrized mean-field model and assuming the specific functional dependence of KΘ(Reb)93

and KS(Reb) described by [26], MP21 demonstrated that the system will be susceptible94

to layering instability if the turbulence intensity characterized by the buoyancy Reynolds95

number is at an intermediate level. The key idea underlies this theory is that the formation96

of the diffusive-convection staircases originates from the background stratified turbulence97

instead of diffusive convection instability. One mechanism that leads to layer formation98

from stratified turbulence is the “Phillips mechanism” previously proposed by [27], which99
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has been extended most recently by [28]. These analyses apply to a fluid in which density is100

determined by only a single advecting and diffusing species. Since Arctic Ocean staircases101

involve perfectly correlated steps in both temperature and salinity it is clear that no analysis102

based upon the assumption of a single component fluid can suffice the solution to the prob-103

lem. Nevertheless, as explicitly discussed in MP21, the Phillips mechanism for the staircase104

in the salinity component of Arctic staircases is “lurking” in the background of the results105

for the two-component system. Because the theory described in MP21 is based on stratified106

turbulence parameterization that involves both temperature and salinity, we will refer to107

this theory as the thermohaline-turbulence instability theory in what follows for simplicity.108

There are three lines of evidence that strongly support the thermohaline-turbulence insta-109

bility theory as a highly plausible mechanism for the formation of staircase structures in the110

diffusive convection environment. First, the critical assumption employed in MP21 that KΘ111

and KS can be parametrized based on the [26]’s parametrization scheme is confirmed to be112

highly accurate by the DNSs of Kelvin Helmholtz engendered turbulence simulations of [29].113

Second, the mean-field model simulation performed in MP21 confirmed that the initially114

fastest growing mode developed from the thermohaline-turbulence instability mechanism115

does grow into the layered state in the non-linear stage of evolution. Third, the criterion116

in MP21, which states that the formation mechanism is strongly determined by Reb and117

weakly dependent on Rρ, is consistent with a series of oceanographic measurements (e.g.118

[19], [30]), as discussed in detail in MP21.119

Despite the supporting evidence there remain two critical questions upon which we will120

focus in the present paper. First, we will test whether the development of the thermohaline-121

turbulence instability will inevitably lead to the formation of a thermohaline staircase struc-122

ture in a DNS of a three-dimensional fully developed turbulent flow. It needs to be kept123

in mind that the current form of thermohaline-turbulence instability theory described in124

MP21 is a linear stability theory that relies on a series of idealized assumptions. Therefore125

it is crucial for us to evaluate its effectiveness using simulations that resolve the smallest126

scales of fluid dynamics. Second, we want to understand whether the thermohaline stair-127

cases formed from the thermohaline-turbulence instability will remain as stable structures128

and what mechanism is responsible for keeping such interfaces robust. In the early literature129

a comprehensive theoretical analysis of the diffusive interfaces was developed by [31], here-130

after LS. The model developed in LS has been widely used as the basis for the analyses on131
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the diffusive interface structure by researchers in this field (e.g. [32] , [33]). An important132

prediction of LS’s theory is that no steady interface structure can exist when Rρ > τ−1/2
133

(τ = κs/κθ is the ratio of molecular diffusivities for salt and heat, τ−1/2 ≈ 10 in the Arctic134

Ocean). In contrast, the thermohaline-turbulence instability theory predicts that the system135

can be unstable to the layering mode at any Rρ that is larger than 1. Therefore, the second136

major goal of this paper is to explore the conditions under which stable staircase structure137

can persist in our DNSs and compare them with the classical theory of LS. It should be no-138

ticed that although most of the diffusive interfaces have been found in regions with Rρ < 10139

in the measurements of ocean and lakes (see review of [34] for example), observed diffusive140

staircases with Rρ > 10 do exist occasionally (e.g. [35], [36]).141

In addressing this paper’s primary goals, we will conduct a series of body-forced DNSs142

driven by the stochastic forcing of large-scale vortical modes. Vortical mode body-forcing143

has been implemented in previous work to study homogenous stratified turbulence (e.g. [37],144

[38], [39], [40]). It is well suited for the exploration of layer formation occurring through145

thermohaline-turbulence instability since it allows us to properly control the energy input146

into the system that is required to control the averaged Reb of the system. As we will147

demonstrate in what follows, if and only if the averaged Reb lies in the unstable regime148

predicted by MP21 will the system develop into a layered state.149

The remainder of the paper will be arranged as follows. In section 2 we will briefly review150

the derivation of the thermohaline-turbulence instability theory. The settings of the DNSs151

employed in this work will be presented in section 3. In the following section 4 we will152

describe the time evolution of the system and illustrate how the layered structure forms in153

the system. These simulation results will be analyzed and compared with the theoretical154

prediction of MP21 in various different ways. In section 5 we will analyze the interface155

structure formed in our numerical system in detail to illustrate how the stable staircase156

state is maintained and compare it with the classical theory of LS. Finally we summarize157

our conclusions in section 6.158

SUMMARY OF THERMOHALINE-TURBULENCE INSTABILITY THEORY159

In this section, we will briefly review the original formulation of the thermohaline-160

turbulence instability theory discussed in MP21 in order to provide context for the discussion161
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to follow that begins in section 3.162

The theory of MP21 considers the evolution of the stratified turbulence that develops163

in a background state in which the stratifications of temperature and salinity lie in the164

diffusive-convection regime. In this circumstance it is assumed that the average effect of165

micro-scale stratified turbulence on the larger scale background can be adequately captured166

by the effective turbulent diapycnal diffusivities for temperature KΘ and salinity KS. It is167

then further assumed that both KΘ and KS are only dependent upon the buoyancy Reynolds168

number Reb of the system so that the governing mean-field equations for the 1D averaged169

temperature profile Θ(z, t) and salinity profile S(z, t) have the forms:170

∂Θ

∂t
= − ∂

∂z
FΘ =

∂

∂z
(KΘ(Reb)

∂Θ

∂z
),

∂S

∂t
= − ∂

∂z
FS =

∂

∂z
(KS(Reb)

∂S

∂z
).

(1)

In the above equations, Θ and S are defined in density units so that the equation of state171

can be written as: ρ = ρ0 + S − Θ. The system is initialized with uniform gradients172

Θ(z, t = 0) = −Θz0z and S(z, t = 0) = −Sz0z (here Θz0 > 0 and Sz0 > 0) which determines173

a background density ratio Rρ = Sz0/Θz0. Θ(z) and S(z) at later times are decomposed174

into a combination of background fields Θ = −Θz0z, S = −Sz0z and weak perturbations Θ′,175

S ′, as:176

Θ(z) = Θ(z) + Θ′(z),

S(z) = S(z) + S ′(z).
(2)

These perturbations Θ′(z) and S ′(z) will then lead to a variation of Reb(z) by the amount177

Re′b(z) =
∂Reb
∂ρz

∂ρ′

∂z
= − ρ0

νg

ε0
∂ρ
∂z

∂ρ′

∂z
∂ρ
∂z

≡ −Reb
∂S′

∂z
− ∂Θ′

∂z
∂ρ
∂z

. (3)

In the above equation, the viscous dissipation ε0 in the system is assumed to be a constant178

which determines the background buoyancy Reynolds number of the system Reb. Re′b(z)179

feeds back on the time-evolution of Θ(z) and S(z) through the governing equations (1).180

Positive feedback for certain modes will lead to the general instability of the system. By181

expanding the perturbations in normal modes (Θ′, S ′) = (Θ̂, Ŝ) exp(λt) exp(ikz) and keeping182

only the first-order terms, the original equation set (1) will be transformed to an eigenvalue183

problem with the growth rate λ as the eigenvalue of the resulting 2 by 2 matrix. The value184
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of λ is then determined by solving the quadratic equation resulting in:185

λ2 + k2(Kθ +Ks +
∂Ks

∂Reb

∣∣∣∣
Reb

Reb
Rρ

Rρ − 1
− ∂Kθ

∂Reb

∣∣∣∣
Reb

Reb
1

Rρ − 1
)λ

+ k4(KθKs +
∂Kθ

∂Reb

∣∣∣∣
Reb

KsReb
1

Rρ − 1
− ∂Ks

∂Reb

∣∣∣∣
Reb

KθReb
Rρ

Rρ − 1
) = 0.

(4)

A positive value of λ, which represents instability of the system, will be obtained if and only186

if the following criterion is satisfied:187

KθKs +
∂Kθ

∂Reb

∣∣∣∣
Reb

KsReb
1

Rρ − 1
− ∂Ks

∂Reb

∣∣∣∣
Reb

KθReb
Rρ

Rρ − 1
< 0. (5)

If we assume that KS and Kθ have a local power law dependence on Reb as KS ∼ Reβsb and188

KΘ ∼ Reβθb , the above criterion will be simplified to:189

βs − 1 >
βθ − 1

Rρ

. (6)

Therefore the precise criterion for the instability depends on the details of the parameteri-190

zation scheme employed to describe the dependence of the turbulent diffusivities upon the191

buoyancy Reynolds number in the stratified turbulent flow. Parameterization of the diapy-192

cnal diffusivities (or mixing efficiency) of stratified turbulence has remained a significant193

scientific challenge. Various forms of such turbulence parameterization have been proposed194

based on different combinations of non-dimensional parameters in the past two decades. The195

list of these contributions would include [41] who proposed a parameterization of diapycnal196

diffusivities that was solely based on Reb; [42] discussed a multi-parameter parameterization197

that depends on Reb and gradient Richardson number Ri. [39] found that at large Reb the198

mixing efficiency is sensitive to horizontal Froude number Fr. Although all these parame-199

terization schemes highlight some aspects of the turbulent mixing, that in the Arctic Ocean200

is special in the sense that it is weak energetically so that the diapycnal diffusivities for heat201

and salt become dramatically different due to their different values of molecular diffusivity202

(see e.g. [43])). To take this effect into account, the parameterization scheme employed in203

the Arctic Ocean environment must depend explicitly on the molecular Prandtl number Pr.204

To our knowledge, the only parameterization that explicitly discusses the dependence on Pr205

comes from the work of [26]. In MP21 we employed the empirically calibrated parameter-206

ization scheme for single-component fluids of [26] as the candidate parameterization. This207

is based on the somewhat bold assumption that the temperature and salinity field will be208
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relatively independent in the state and therefore this pair of single-component parameteri-209

zations should provide an accurate description of the doubly diffusive turbulent system. The210

effectiveness of this description has been confirmed in our recent work [29] and it will also211

be tested in the current numerical model in section 4.2 below. The specific functional form212

of [26]’s parameterization scheme is as follows:213

KBB
ρ (Reb, P r) =



κ, if Reb < 10
2
3Pr−

1
2 ,

0.1

Pr
1
4
νRe

3
2
b , if 10

2
3Pr−

1
2 < Reb < (3ln

√
Pr)2,

0.2νReb, if (3ln
√
Pr)2 < Reb < 100,

2νRe
1
2
b , if Reb > 100 .

(7)

If we substitute Pr = 700 and Pr = 7 (typical Prandtl values for salinity and temperature in214

sea-water) into the above equations to obtain the forms of KS(Reb) and KΘ(Reb) separately,215

the criterion described in (6) can be evaluated to obtain the following condition:216

0.17 < Reb < 97. (8)

Once this criterion is satisfied, the layering mode of instability will continually grow until217

diffusive-convection staircases form, as demonstrated by the non-linear mean-field model218

simulation in MP21. However, as will be discussed in detail in what follows, we will employ219

a smaller value of Schmitt number (Prandtl number for salinity) Sc = 70 for salinity in220

the DNSs to be discussed herein due to the constraints on computational resources. In this221

circumstance, equation (7) gives a different formula for the salinity diffusivities which will222

lead to a revised Reb criterion of:223

0.55 < Reb < 41. (9)

While (8) is still the criterion that should be applied to the real oceanographic environment224

(upper-bound and lower-bound values may change slightly in regions where Schmitt number225

deviates from 700), the effectiveness of the theory should be tested based on criterion (9)226

under the choice of parameters in our DNSs.227
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DIRECT NUMERICAL SIMULATIONS228

In this section we discuss the design of DNS analyses to be employed to study the devel-229

opment of the layering structures that form from the thermohaline-turbulence instability.230

In what follows, we will first discuss the governing equations and critical physical quantities231

in section 3.1. Then, in section 3.2 we will discuss the detailed numerical settings of our232

DNSs.233

Governing equations and physical quantities234

In order to develop a state of homogeneous stratified turbulence in the diffusive-convection235

regime, we consider the temperature Θ(x, y, z, t) and salinity S(x, y, z, t) fields that are236

composed of background temperature and salinity fields characterized by negative vertical237

gradients −Θz0 and −Sz0 and perturbation fields Θpt(x, y, z, t) and Spt(x, y, z, t), namely:238

Θ(x, y, z, t) = −Θz0z + Θpt(x, y, z, t),

S(x, y, z, t) = −Sz0z + Spt(x, y, z, t).
(10)

Subject to the Boussinesq approximation, the scalar fields Θpt(x, y, z, t), Spt(x, y, z, t) and239

the velocity field u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) are governed by the240

Navier-Stokes equations as in:241

∂u

∂t
+ u · ∇u = −∇p− J(

Rρ

Rρ − 1
Spt − 1

Rρ − 1
Θpt)ez +

1

Re
∇2u + F,

∇ · u = 0,

∂Θpt

∂t
+ u · ∇Θpt =

1

RePr
∇2Θpt + w,

∂Spt

∂t
+ u · ∇Spt =

1

ReSc
∇2Spt + w.

(11)

In the above equations, ez is the unit vector in the positive vertical direction. The “+w”242

terms on the right-hand side of the latter two equations come from the vertical advection243

of the background vertical gradients −Θ0z and −S0z. We have non-dimensionalized above244

equations using the length scale L0, velocity scale U0, temperature scale ∆Θ = Θz0L0, salin-245

ity scale ∆S = Sz0L0 and density scale ∆ρ = ∆S −∆Θ. Here L0 and U0 are characteristic246

scales of the shear modes we employ to initialize the system, which will be discussed in detail247
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in the next subsection.248

The critical non-dimensional parameters are the Reynolds number Re, bulk Richardson249

number J , inverse density ratio Rρ, Prandtl number Pr and Schmitt number Sc, which can250

then be defined explicitly as:251

Re =
U0L0

ν
,

J =
g∆ρL0

ρ0U2
0

,

Rρ =
∆S

∆Θ
,

P r =
ν

κθ
,

Sc =
ν

κs
,

(12)

where ν is the kinematic viscosity, κθ and κs are molecular diffusivities for heat and salt and252

ρ0 is the reference density. We also assume that the system is subject to an external body253

forcing F whose specific form will be discussed in detail in the next subsection.254

Based on (11), we can straightforwardly derive the time-derivative of the volume-averaged255

kinetic energy of the system KE ≡ 1/2〈|u|2〉 as (here and below 〈·〉 represents the volume256

averages):257

dKE

dt
= P − (Fbθ + Fbs)− ε, (13)

where258

P = 〈u · F〉,

ε =
2

Re
〈sijsij〉,

Fbθ = − J

Rρ − 1
〈w′Θ′〉,

Fbs =
JRρ

Rρ − 1
〈w′S ′〉

(14)

are defined to be the energy input from external forcing, viscous dissipation ratio, buoyancy259

flux associated with temperature and salinity separately. sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is260

the strain rate tensor. In the last two equations and in the rest of the paper, we decomposed261

a given field f(x, y, z, t) into f = f + f ′ so that f represents the horizontal average of that262

field (except for Reb which represents the backrgound buoyancy Reynolds number as will263

be introduced below) and f ′ represents perturbation to it. It should be noticed that the264

unstably stratified background temperature field continues to release energy to the system265
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through the heat flux (Fbθ < 0), meanwhile the energy of the system continues to be invested266

in mixing the stably stratified salinity gradient through the salt flux (Fbs > 0).267

When the system remains in a quasi-steady state, the right-hand side of (13) should be268

approximately 0. Considering that the absolute value of buoyancy fluxes Fbθ and Fbs are269

usually much smaller than the viscous dissipation ε in our system (as will be demonstrated270

below), the balance of the KE budget is mainly kept by the first and last term of the271

right-hand side of (13), namely:272

P ∼ ε. (15)

The background buoyancy Reynolds number Reb, which are controlled directly by ε, can273

then be estimated through:274

Reb ≡
Re

J
ε ∼ Re

J
P. (16)

By controlling the energy input rate P , we can control the value of Reb of the system. This275

allows us to test our criterion for staircase formation in thermohaline-turbulence instability276

theory which is based solely on Reb.277

Numerical Methods278

Governing equations (11) are integrated in a triply-periodic cubic domain of length 2π279

using the open-source computational fluid dynamics software Nek5000 ([44]). Nek5000 was280

developed at Argonne National Laboratory based on the spectral element method (e.g. [45],281

[46]) which is a useful tool for simulating transitional and turbulent flow.282

For the system to achieve a quasi-steady state, we choose to apply very similar initial283

fields and forcing with the settings of the recent body-forced simulations [40]. Specifically the284

initial fields are defined as a superposition of randomly phased horizontal shear modes ushear285

and randomly phased three-dimensional internal wave modes (uinternal,Θinternal, Sinternal).286

The shear modes are confined to large-scale modes m ≤ mc = 7 only and the amplitude for287

a mode with vertical wavenumber m is allocated to be proportional to 1/m in order to follow288

the initial energy spectrum of m−2. The detailed functional form of ushear is as follows:289

(ushear, vshear, 0) =
1
√
mc

mc∑
m=1

1

m
(cos(φm +mz), sin(φm +mz), 0), (17)
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where φm is the phase chosen randomly for each vertical mode. It should be noticed that290

these shear modes have been non-dimensionalized by their characteristic velocity scale U0291

and length scale L0, in such a way that the velocity amplitude of these shear modes has292

a non-dimensional scale of O(1) and the volume-averaged non-dimensional squared shear293

〈S2〉 = 〈(∂ushear/∂z)2 + (∂vshear/∂z)2〉 is equal to 1. The form of the internal wave modes294

(uinternal,Θinternal, Sinternal), on the other hand, is initialized based upon the algorithm dis-295

cussed in Appendix b of [47] to satisfy the three-dimensional Garrett-Munk Spectrum. These296

internal wave modes contribute 10% of the initial energy and they are only non-zero for297

modes with |k| ≤ 7. For recent discussions of the Garrett-Munk spectrum of internal waves298

in the oceans and the ability of high-resolution ocean models forced by both the atmosphere299

and the astronomical tidal potential to replicate this spectrum see [48] and [49].300

We first integrate the system without body-forcing to 20-time units in order for the301

energy contained in the initial larger scale modes to cascade to the small scales, a strategy302

previously employed in [40]. Then we begin to introduce body-forcing with an appropriate303

form to represent the stochastic forcing of the large-scale modes. As employed in previous304

DNSs (e.g. [38], [39], [40]), these vortical modes of forcing only act on the horizontal305

component of the velocity and can be written in the following form:306

(Fx, Fy) = A
∑
(k,l)

Ak,l(l,−k)ei(kx+ly), (18)

where k and l are the wave numbers in the x and y directions respectively. The forcing307

is only non-zero for modes whose horizontal wavenumber kh =
√
k2 + l2 lies in the small308

parameter window of 2.5 ≤ kh ≤ 3.5, as optimized in [40]. The complex action for each309

mode Ak,l is chosen randomly at each time step, after which a normalization constant A is310

determined such as to control the energy input rate P at each time-step to be a constant311

(we used the method proposed by [39] to avoid accidental energy inputs due to the finite312

time-steps).313

We have performed six different simulations that will be discussed in this paper, whose314

governing parameters are summarized in Table 1. While fixed values of Re = 1000, J = 1,315

Pr = 7 and Sc = 70 were employed for all these simulations, we vary the density ratio Rρ for316

simulations 1-4 to investigate how Rρ will influence the dynamics of the system’s equilibrium317

state. In these simulations, we set energy-input rate P = 0.01 so that the Reb ∼ 10 of each318
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# Lz P Rρ Pr Sc Re J

1 2π 0.01 2 7 70 1000 1

2 2π 0.01 5 7 70 1000 1

3 2π 0.01 8 7 70 1000 1

4 2π 0.01 ∞ N.A. 70 1000 1

5 2π 0.1 2 7 70 1000 1

6 4π 0.01 5 7 70 1000 1

TABLE I. Governing parameters for the direct numerical simulations performed in this paper.

simulation is within the instability criterion of (6). It will be important to note that Rρ →∞319

for simulation 4 is achieved by integrating the system in the single-component stratification320

case with Sc = 70. For the control simulation number 5, we switched P to the value 0.1 which321

leads to a larger value of Reb ∼ 100 that is well beyond the upper limit of the instability322

criterion. We could not afford to test our theory for Reb � 10 by making simulations with323

P � 0.01 because the layering mode is predicted to grow too slowly for small Reb to be324

verified in the numerical simulations. For the control experiment number 6, we double the325

vertical extent of the domain with Rρ = 5 to investigate how the layer formation process is326

dependent upon this characteristic of the model.327

For simulation number 1-5 in the current paper, we first apply an intermediate resolution328

of 350× 350× 350 grid points in the simulation domain (for simulation number 6 in which329

the vertical domain is doubled, the vertical resolution is always doubled for consistency).330

From a theoretical perspective this resolution cannot reach the requirement of DNS as the331

mesh could not reach the Batchelor’s scale for the slower diffusing salinity. However, in332

order to represent the layer formation process, both the large domain size and the long333

integration time are necessary for our simulations, which restricts the resolution that can be334

applied. In Appendix A, we compared simulations with different resolutions to show that the335

layer formation we report in this paper is resolution-independent. Once the steady layered336

structure forms in the numerical simulations (the corresponding time is marked as t = t1),337

we then double the resolution in each direction to 700× 700× 700 grid points for simulation338

number 1-5, which allows us to better resolve the structure of the staircase state that forms.339

This system is then integrated for a short time until the system stabilizes again at t = t2.340
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In what follows, we will first analyze the layer formation process characterized by the long341

integration of intermediate resolution in section 4. Then we will analyze the staircase states342

in detail by focusing on the subsequent high-resolution evolution to be discussed in section343

5.344

SPONTANEOUS FORMATION OF THERMOHALINE STAIRCASES IN THE DI-345

RECT NUMERICAL SIMULATIONS346

In this section, we will focus on discussing the process of spontaneous formation of layered347

structures in our system. In section 4.1 we will first describe the layer formation process348

in simulations with different Reb and Rρ. Then in section 4.2 we will provide a detailed349

comparison between the layer formation rate in the simulations and the linear growth rate350

derived from section 2. By doing this, we will be able to evaluate whether the thermohaline-351

turbulence instability theory is indeed dominating the non-linear evolution process of our352

DNSs. The discussion in this section is confined to the layer-formation phase of the evolution353

that is characterized by time t ≤ t1.354

Thermohaline layering state in the direct numerical simulations355

In our simulations, well-defined layered structures form spontaneously in all simulations356

except for simulation number 5 in which a stronger forcing is applied. As an example, the357

layer formation process for simulation number 1 is illustrated in Figure 1, in which we show358

the state of the temperature and salinity fields in pseudo-color plots (a-f) and the horizontally359

averaged vertical profiles (g-i). At t = 100 (Figure 1(a,d,g)), the constant energy input360

from the vortical modes keeps the system in a homogeneously stratified turbulent state in361

which the temperature and salinity fields remain in the linear-gradient configuration. After362

a long integration time, the first sign of the formation of the vertical structure occurs at363

approximately ti = 1000 (ti represents the time that the initial layered structure forms).364

As shown in Figure 1 (b,e,h), the system develops into a four-step staircase state at this365

time of its evolution. These four-step staircases then gradually merge to form a well-defined366

two-step layered state at approximately tm=2100 (tm represents the time that the layers367

merge into higher steps in our system), which is then retained in the system until the end of368
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the simulation at t1 = 3098. The layered state at t = t1 is illustrated in Figure 1 (c,f,i). By369

comparing Figure 1(h) and Figure 1(i), we can notice that the merged two-layer state has370

much sharper interfaces and more homogenized mixed layers than the four-layer state. In371

what follows, we will use the phrase “staggered layered state” to describe the layered state372

that is not very well shaped, as in Figure 1(h).373

FIG. 1. In Figures (a-f) we show the pseudo-color plots of the salinity field Spt(x, y, z, t) (a-c)

and the temperature field Θpt(x, y, z, t) (d-f) at three different time slices t = 100, t = ti = 1000,

t = ti = 3098 for simulation number 1. In Figures (g-i) we plot the horizontally averaged profiles

of salinity S(z) (blue) and temperature Θ(z) (red) as a function of depth for the same time slices.
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These different phases of the layer formation process can also be viewed in the time374

variation of Fbθ and Fbs depicted in Figure 2. In this figure, three different phases, namely375

the initial staircase formation stage, layer merging stage and equilibrium stage are separated376

by three characteristic times (ti, tm, t1) which are denoted using the vertical lines. Generally377

speaking, both |Fbθ| and |Fbs| experience a continuous increase during the layer formation378

stage and layer merging stage until they become stabilized in the final equilibrium stage379

of evolution. This trend of increasing |Fbθ|, |Fbs| as layers form and merge is consistent380

with previous numerical simulations of thermohaline staircases of the salt-fingering system381

([13]) and the low-Pr diffusive-convection system ([50]). Meanwhile, the net buoyancy flux382

Fb = |Fbs| − |Fbθ| keeps decreasing from positive values to negative values in the entire383

evolution process. As we will discuss in the next subsection, this increase of energy flow to384

the kinetic energy reservoir will increase viscous dissipation in the system.385

The above-described evolution process generally applies also for simulation number 2-4386

(whose Rρ is changed to Rρ = 5, Rρ = 8 and Rρ = ∞ separately). In these simulations,387

however, the firstly formed staggered layered state has two steps, which then merge into388

the single-step layered state and the mixed layer occupies almost the entire domain. An389

example of such evolution can be seen in the pseudo-color plot in Figure 3 (a,b), where we390

showed the salinity field at the initially formed staggered layered stage (t = ti = 1500) and391

merged layered stage (t = tm = 5000) for simulation number 2. In order to test whether the392

layer formation process in the simulations is dependent upon the height of the domain, we393

compare the staircase state formed in simulation number 2 (this will be referred to as the394

“normal box”) with that in simulation number 6 that has twice the vertical domain height395

(this will be referred to as the “tall box”) while all other conditions remain the same. In396

the tall box simulation shown in Figure 3(c,d), the staircases formed are somewhat unevenly397

distributed with step sizes varying at different vertical levels. There are 5 steps formed at398

time t = 1500 which later merged into 3 steps at t = 5000. This makes the averaged step399

sizes slightly lower but comparable with that of the normal box simulation at both these400

time slices. Furthermore, the turbulence characteristics also appear similar for the normal401

box domain and the tall box domain as can be seen in Figure 3. Therefore we conclude402

that the time scale and the length scale of the staircase formation are not sensitive to the403

vertical domain height we have chosen. For this reason we will only discuss the normal box404

simulation of Rρ = 5 in what follows to be consistent with other simulations. It is worth405
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FIG. 2. Evolution of the temperature-induced buoyancy flux Fbθ (red) and salinity-induced buoy-

ancy flux Fbs (blue) in the evolution of simulation number 1. Temperature-induced buoyancy flux

is plotted with the absolute (negative) value for comparison. The three characteristic times ti, tm

and t1 represent the time that the first layered structure forms, the time that well-defined lay-

ers form and the end of the intermediate resolution simulation respectively (their definitions are

discussed in detail in the text).

mentioning that although the 3-step configuration shown in Figure 3(d) is stable within our406

integration time of 6500 time units, we don’t rule out the possibility that these staircases407

will eventually merge if this simulation is integrated much longer.408

The important quantities for the layer formation and layer merging process are summa-409

rized in dimensional units in Table II. The unit transformation is made by relating the410

controlled non-dimensional viscous dissipation rate with the typical value of viscous dissi-411

pation ε = 5 × 10−9 W/kg (see [30] for example) in the Canada Basin. Using the typical412

value of molecular viscosity of ν = 1.8 × 10−6 m2/s in the Arctic Ocean, we calculate the413

characteristic length-scale for simulation number 1-4 to be approximately L0 = 0.33 m and414

the time scale to be approximately L0/U0 = 60 s. After transforming the characteristic times415
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FIG. 3. Pseudo-color plots of the salinity field Spt(x, y, z, t) for simulation with Rρ = 5 at time

slices t = ti = 1500 (a,c) and t = tm = 5000 (b,d). Figure (a,b) shows the normal box simulation

(simulation number 2) and Figure (c,d) shows the tall box simulation (simulation number 6).

(ti, tm, t1, t2) to physical units as shown in Table II, we can see that it takes a timescale of416

several days for the layered structure to develop and merge into an equilibrated staircase.417

In our simulations, the step sizes L of these equilibrium staircase structures have a physical418

length scale of approximately 1 m. This is consistent with the measurements of the stair-419

cases in the Arctic Ocean, whose step sizes typically range from 1m-5m (e.g. [5]). This also420

shows that the choice of our vertical domain height in the numerical simulations is capable421

of capturing the real staircases formed in the Arctic Ocean. The interfacial thicknesses hIθ422
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# P Rρ Reb Layer Steps ti(day) tm(day) t1(day) t2(day) L(m) hIθ(m) hIs(m)

1 0.01 2 9.5 Yes 4→2 0.7 1.5 2.15 2.26 0.6 0.07 0.05

2 0.01 5 8.8 Yes 2→1 0.9 3.6 5.05 5.27 1.3 0.11 0.08

3 0.01 8 8.8 Yes 2→1 0.8 3.1 3.16 3.38 1.3 0.12 0.09

4 0.01 ∞ 8.7 Yes 2→1 1.4 6.6 6.94 7.10 0.6. N.A. 0.10

5 0.1 2 83.0 No N.A N.A N.A 1.81 N.A N.A. N.A. N.A.

TABLE II. Basic simulation results summarized for the five simulations performed. In this table,

layering with “yes” or “no” indicates whether layered structure observed to form in the system. ti,

tm represents the time that the initially (staggered) layered state form and the well-merged layered

state is observed in the simulation respectively. L is the step size in the finally merged layering

state, hIθ and hIs are the interfacial thicknesses of the temperature profile and salinity profile in

the equilibrium layered state.

and hIs formed in our simulations have been evaluated as the depth-range within which423

|Θz| > 1 and |Sz| > 1 are satisfied separately. The interfacial thicknesses have the order of424

0.1 m, with the temperature interfaces generally thicker than the salinity interfaces due to425

the higher molecular diffusivity at the interface. These values match well with the interfacial426

thicknesses measured in the Canada Basin by [51], who found that the temperature inter-427

facial thicknesses are approximately 0.15 m. These consistencies in physical scales of the428

staircase structures suggest that the layered structures formed in our numerical simulations429

not only provide guidance for theoretical studies of the layer formation mechanism, but are430

also physically relevant for the actual staircases observed in the Arctic Ocean.431

Comparison between the layer formation process in DNS analyses and theoretical432

predictions of thermohaline-turbulence instability433

While we have shown that the thermohaline staircase structures do form naturally in434

our numerical system, in this subsection we will provide the analyses required to answer the435

question as to whether these layered structures form because of the thermohaline-turbulence436

instability discussed in MP21. In this process we will provide three tests on the basis of437

which to compare our numerical simulations with the predictions of thermohaline-turbulence438
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instability theory in what follows. Firstly we will investigate whether the stability criterion439

derived from the theory is consistent with the layer formation process observed in our nu-440

merical simulations. Secondly we will analyze whether or not the assumption of the [26]441

parameterization scheme that lies at the heart of the thermohaline-turbulence instability is442

operating in the current numerical system. Third we will investigate whether the growth rate443

of the layering mode in our system is consistent with the growth rate predicted by the linear444

stability analysis. As we will demonstrate in what follows, the thermohaline-turbulence in-445

stability theory of MP21 provides rather good predictions for all these three aspects of the446

layer formation process.447

We will start by evaluating the instability criterion of the thermohaline turbulence in-448

stability. As we have reviewed in section 2, the thermohaline-turbulence instability theory449

predicts the layering instability of the system to occur only when the buoyancy Reynolds450

number satisfies the criterion 0.55 < Reb < 41 (shown in (6)) for Pr = 7 and Sc = 70.451

In order to evaluate whether the instability criterion is satisfied, in Figure 5 we show the452

evolution of Reb in the five different simulations we have performed. As expected, Reb of453

the system self-adjusts to the level of approximately ReP/J = 1000P (as discussed in (16))454

soon after the introduction of the vortical modes forcing at t = 20. The fact that Rebs of455

simulation number 1-4 satisfy the criterion and Reb of simulation 5 exceeds the criterion is456

consistent with our observations described in the last subsection that the layered structure457

forms in simulation number 1-4 but not in simulation number 5. Another interesting thing458

to notice in Figure 5 is that the level of Reb is slightly higher for Rρ = 2 than for the other459

simulations with P = 0.01. This is a consequence of the buoyancy flux becoming negative in460

this case (shown previously in Figure 2) which provides an additional net energy source to461

be dissipated. The time-averaged value of Reb for the layer growing stage of each simulation462

is averaged over time periods of t = 50 to t = ti to be shown in Table II.463

Next we turn to evaluate the effectiveness of the parameterization scheme described464

in (7) in the current numerical system. To do this we need to compute the diapycnal465

diffusivities KΘ and KS at different vertical depths of our system and evaluate whether466

they are strongly correlated with the local buoyancy Reynolds number Reb. To reduce the467

influence of advection that varies strongly with time, we evaluate the time-averaged one-468

dimensional buoyancy Reynolds number R̃eb(z) and diapycnal diffusivities K̃Θ(z) and K̃S(z)469
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FIG. 4. Evolution of the volume averaged buoyancy Reynolds number Reb in simulation number

1-5.

following470

Θ̃z(z) ≡ 〈∂Θ(z, t)

∂z
〉t,

S̃z(z) ≡ 〈∂S(z, t)

∂z
〉t,

Ñ2(z) ≡ − 1

J
(

Rρ

Rρ − 1
S̃z −

1

Rρ − 1
Θ̃z),

ε̃(z) ≡ 〈2sijsij(z, t)〉t,

R̃eb(z) ≡ ε̃(z)

Ñ2(z)
,

F̃Θ(z) ≡ 〈w′Θ′(z, t)〉t −
1

RePr
Θ̃z(z),

F̃S(z) ≡ 〈w′S ′(z, t)〉t −
1

ReSc
S̃z(z),

K̃Θ(z) ≡ − F̃Θ(z)

Θ̃z(z)
,

K̃S(z) ≡ − F̃S(z)

S̃z(z)
.

(19)

In the above equations and throughout the rest of the paper, 〈·〉t represents the time averages471
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over the chosen time-intervals and the tilde symbol over a physical quantity represents that472

it is averaged in (x, y, t) but not in z. F̃Θ and F̃S represent time-averaged vertical heat and473

salt fluxes which include the contribution from both the convective fluxes and the diffusive474

fluxes.475

In order to focus on the layer formation stage of the evolution, we evaluated K̃Θ(z),476

K̃S(z) and R̃eb(z) over 40 non-dimensional units of time-intervals centered at t = 0.5ti477

for simulation number 1-4 and at t = t1 − 20 for simulation number 5. These depth-478

dependent data are further averaged into 50 small depth-intervals for the correlation study.479

In Figure 5(a,b), we plot the depth-variations of dissipation ratio ε̃(z) and R̃eb(z) defined480

in (19) above. By comparing these two figures, we conclude that the variations of R̃eb(z) =481

ε̃/Ñ2 are mainly contributed from Ñ2(z) instead of ε̃(z) since ε̃(z) shows very small vertical482

variations. This fact suggests that the assumption we made in the derivation of (3) described483

in section 2, namely the viscous dissipation is a constant and onlyN2(z) feeds back onReb(z),484

is a fair assumption in describing the current numerical system. In Figure 5(c) and (d) we485

further plot K̃Θ(z), K̃S(z) and R̃eb(z) in the (Reb, K) parameter space to be compared with486

the [26]’s parameterization evaluated from (7). It can be clearly seen in this figure that the487

distribution of R̃eb(z) at different depths spans approximately an order of magnitude due488

to the growth of perturbations in the system (also shown in Figure 5(b)). In such a wide489

range of R̃eb(z) the diapycnal diffusivities K̃Θ(z), and K̃S(z) follow the predictions of [26]490

very well, except for slight deviations of KΘ in the small Reb regions. Most importantly491

the key element of the [26] parameterization needed to support the thermohaline-turbulence492

instability theory, namely the existence of the buoyancy-controlled regime for KS that scales493

as Re
3/2
b is well captured in the current system as shown in Figure 5(b). This strongly494

implies that the theoretical derivations in MP21 are based on reasonable assumptions which495

are confirmed in our current numerical system.496

Finally, we will perform a detailed analysis of the vertical wavenumber spectrum for497

temperature/salinity to compare the theoretical predictions of MP21 with the growth rate of498

the layering mode of instability. Specifically, we perform the vertical Fourier transformation499

of the horizontally averaged salinity field (or temperature field) following:500
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FIG. 5. (a,b): Depth-dependence of ε̃ (a) and R̃eb (b). (c,d): Scatter plot of (R̃eb, K̃Θ) (c) and

(R̃eb, K̃S) (d) in (Reb,K) parameter space at different vertical coordinates. The black solid line

shows the parameterization scheme of (7) for temperature (c) and salinity (d). The vertical dashed

lines represent the critical Reb values that separate different parameterization regions in (7). All

physical quantities are evaluated at the time interval (0.5ti − 20, 0.5ti + 20) for simulation number

1-4 and at (t1 − 40, t1) for simulation number 5.

Sm(t) =
1

V

∫
V

S(x, y, z, t)eimzdV,

Θm(t) =
1

V

∫
V

Θ(x, y, z, t)eimzdV,

(20)

where m must take integer values as constrained by our triplet periodic domain with size 2π.501

In Figure 6(a-d) we show the evolution of the vertical wavenumber spectrum of salinity Sm502

(temperature spectrum looks similar) for the simulation number 1-4. The evolution of the503

spectrum confirms our observations described in the last subsection concerning the different504

stages of the evolution: for simulation with Rρ = 2 shown in Figure 6(a), the system is first505

dominated by the m = 4 mode until the growth of the m = 2 mode finally dominates the506

system and stays steady. We can also see the formation of the two-layer state for Rρ = 5,507

Rρ = 8 and Rρ =∞ before the final formed single-layer staircase in Figure 6(b)(c)(d). For508
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comparison simulation number 5, however, there is no sign of layer formation in Figure 6(e).509
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FIG. 6. Evolution of the vertical spectrum of salinity for various mode Sm as a function time in

simulation number 1-5. The dash-dotted line (in (a)-(d)) represents the growth rate λ for each

mode predicted from the linear stability analysis calculated from formulae (4). The vertical dashed

line (in (a)-(d)) marks the characteristic time ti and tm sequentially.

The evolution of the vertical wavenumber spectrum can be compared with the growth rate510

predicted by the theory described in section 2. The linear growth rates are calculated based511

on (4) using Reb and Rρ for each simulation and they are represented as the dashed lines in512

Figure 6 (a-d). It can be seen from the figure that the thermohaline-turbulence instability513

theory offers a fairly good prediction for the growth of the first two vertical modes m = 1514

and m = 2 before saturation. This fact further supports the effectiveness of the theory of515

MP21.516

To summarize the results of this section, we have demonstrated the effectiveness of the517

25



thermohaline-turbulence instability theory from three perspectives. First we showed that518

the instability criterion provided correct predictions of whether the layers would form in519

the system. Secondly we justified the key assumption made in the theory, namely the520

parameterization scheme of [26] provides an accurate description of our system. Finally521

we have demonstrated that the growth of the governing layering mode is consistent with522

the prediction of the linear stability analysis. Therefore, we conclude that the spontaneous523

formation of the layered structure in our system is indeed triggered by the thermohaline-524

turbulence instability theory described by MP21.525

It should also be clear on the basis of the previous discussions that while Reb solely526

determines whether the layered structure will form in the DNS system, it seems that Rρ527

plays a role in determining the step size of the initially formed layering mode, considering528

that the number of layers formed in our simulations varies with Rρ. The explanation of529

the depth of the firstly formed layers in the system is not predictable on the basis of MP21530

and goes beyond the scope of the current paper. In order to fully understand this problem,531

we need a multi-scale model that captures the response of gradients at smaller scales, an532

example of which is provided in the work of [16] that focused upon the salt-fingering regime533

of double diffusive convection.534

DIFFUSIVE CONVECTION STAIRCASE STRUCTURE IN THE DIRECT NU-535

MERICAL SIMULATIONS536

As we have demonstrated above, the thermohaline staircase structures form sponta-537

neously in our continuously forced system. A natural and critical further objective of the538

present work is to analyze the detailed steady structure of the formed diffusive convection539

staircases. In order to achieve this, we have integrated the staircase state of the system540

(t = t1) with the doubled resolution for an additional short period until the system reaches541

its steady state with this high resolution at t = t2 (the values of t2 has been summarized in542

Table 2). The better resolved domain allows us to look closely at the morphology and the543

vertical transport, which will be discussed in section 5.1. In the following section 5.2, we will544

compare our simulated interfaces with the existing theory of diffusive interfaces proposed545

by LS.546
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Staircase Structure547

In Figure 7, we show the vertical cross-sections of the density field at the equilibrium548

state of the high-resolution run for simulations with Rρ = 2, 5, 8 separately. As discussed549

previously, while the two-step layered state forms with Rρ = 2 at the end of our numerical550

simulation, simulations with Rρ = 5 and Rρ = 8 have the single layer structure across the551

vertical domain. In all these simulations, very sharp interface(s) and be observed to separate552

well-mixed convective layers below and above. Thin plumes can be observed in these fields553

to rise from the interfaces to transport scalars into the mixed layers. These plumes have554

also been observed in the previous numerical simulations of diffusive interfaces (e.g. [32],555

[52]) and they have been argued as the crucial structure in transporting scalars from the556

interface into the mixed layers ([53]).557

FIG. 7. Density fields for the equilibrium staircases at t = t2 for simulation with Rρ = 2 (a),

Rρ = 5 (b), Rρ = 8 (c) separately. The pseudo-color plot is performed for the x− z plane at the y

midpoint of the 3D domain.

In order to facilitate a further quantitive analysis of the layered structure, in Figure 8558

we show the vertical distribution of heat/salt fluxes (F̃Θ(z), F̃S(z)), vertical gradients of559

temperature/salinity (Θ̃z(z), S̃z(z)) as well as the effective vertical diffusivities for temper-560

ature/salinity (K̃Θ(z), K̃S(z)) of the system, all evaluated at the non-dimensional time-561

interval of (t2−40, t2) in the steady state of the high-resolution run for our simulations with562

Rρ = 2, 5, 8 separately. As shown in Figure 8 (c,f,i), the vertical diffusivities are significantly563

different in the mixed layers compared with the interface regions, suggesting entirely dif-564

ferent dynamics in those regions: in the mixed layers, mixing is driven by strong turbulent565
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convection which leads to the same values of diffusivities for heat and salt. In the inter-566

face region(s), however, the turbulent diffusivities for heat and salt are the same order as567

the molecular diffusivities for temperature and salinity, suggesting the absence of turbulent568

motions at the interface region. Furthermore, the turbulent diffusivities at the interfaces569

are lower for Rρ = 5, 8 compared with Rρ = 2. This is possibly because the scalar vari-570

ations across the interfaces are higher for Rρ = 5, 8 compared with Rρ = 2 (as shown in571

Figure 7), which makes it more difficult for the turbulences in the mixed layers to penetrate572

the interfaces.573

Even though the vertical diffusivities in the mixed layer regions are 2-3 orders of magni-574

tude higher than in the interface regions, the vertical scalar gradients in the mixed layers575

are 2-3 orders of magnitude lower than in the interface regions (shown in Figure 8 (b,e,h)),576

which leads to the crude balance of vertical fluxes shown in Figure 8 (a,d,g). The main-577

tenance of flux balances between the mixed layers and interface regions suggested that the578

staircase structures formed in our system can stably persist.579

Comparison with the classical diffusive interface model580

While we have illustrated how the steady staircase structure is maintained by the bal-581

ance of heat and salt flux between interface regions and mixed layers, we will compare these582

structures with the classical theoretical model of diffusive interfaces of LS. LS presented a583

time-independent model of diffusive interfaces, which provides significant insights concerning584

the following theoretical and numerical simulations of diffusive interfaces studies (see review585

of [34], [50]). In this model, the interface consists of two boundary layers from which fluctu-586

ations arise on the outer edge of the interfaces and a diffusive core cross in which transport587

takes place only by molecular diffusion. This theoretical model describes a diffusive-interface588

structure that can only remain stable when the density ratio Rρ is smaller than the critical589

value of Rcr
ρ = τ−1/2. The LS model has later been extended by [54] and [55] to include590

the run-down evolution of the diffusive-interfaces in the Rρ > Rcr
ρ regime. As the diffusive591

interface structure is spontaneously formed and kept stable in our numerical simulations,592

the run-down model of [54] and [55] will be irrelevant to our current discussions. Therefore593

we will focus on comparing our interface structures only with the original time-independent594

model of LS.595
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FIG. 8. Time-averaged vertical fluxes for heat and salt F̃Θ(z), F̃S(z), vertical gradients for temper-

ature and salinity Θ̃z(z), S̃z(z) and diapycnal diffusivities for heat and salt K̃Θ(z), K̃S(z) evaluated

at the non-dimensional time interval (t2−40, t2) for simulation with Rρ = 2 (a,b,c), Rρ = 5 (d,e,f),

Rρ = 8 (g,h,i) separately. In this figure, we use red color to represent the temperature-related

physical quantities and blue color to represent the salinity-related physical quantities.

In our system, Rcr
ρ = τ−1/2 = 3.16 so that the small Rρ simulation Rρ = 2 satisfies the596

criterion while the large Rρ simulations with Rρ = 5 and 8 are outside of the criterion. To597

investigate whether the unstably stratified boundary layers described in the LS theory are598
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formed in these simulations, we plot in Figure 9 the time-averaged and horizontally averaged599

buoyancy frequency Ñ2 defined in (19) for Rρ = 2, 5 and 8. As shown in Figure 9(b,c), the600

unstably stratified boundary layers, which are characterized by N2 < 0 region above and601

below the interface, don’t exist for the large Rρ staircases Rρ=5 and Rρ=8. For Rρ = 2, on602

the other hand, N2 takes negative values in a wide range of depth regions. While this fact603

shows that the boundary layer structure is not special in keeping the staircases stable in our604

model, it does not contradict the LS theory considering that the water columns do become605

unstably stratified below and above the interface core.606
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FIG. 9. Time-averaged buoyancy frequency Ñ2 in the mixed layers as a function of depth evaluated

at the non-dimensional time interval (t2 − 40, t2) for simulations with Rρ = 2 (a), Rρ = 5 (b), and

Rρ = 8(c) separately.

In order to further test whether our Rρ = 2 simulation is consistent with LS’s model,607

in Figure 10 we plot the time-averaged density ratio R̃ρ(z) ≡ S̃z/Θ̃z and γ̃(z) ≡ F̃S/F̃Θ608

in the steady state of our system. LS’s original theory predicted that the value of R̃ρ and609

γ̃ at the interface will be determined by 1/
√
τ and

√
τ separately. As later pointed out610

by [56] and developed in the recent work of [33], the molecular diffusivity ratio τ in LS’s611

original theory should be replaced by the ratio of effective diffusivity τ eff = KS/KΘ across612

the interface when the interface is influenced by turbulence. The predicted values from this613
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slightly revised theory are evaluated and plotted as the vertical dash-dotted line in Figure614

10. From this figure it can be observed that the predicted values of interface Rρ and interface615

γ are approximately 10% and 20% lower than the simulated values separately.616
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FIG. 10. Time-averaged density ratio R̃ρ(z) (a) and flux ratio γ̃(z) (solid lines) evaluated at the

non-dimensional time interval (t2 − 40, t2) for simulation number 1 (Rρ = 2), in comparison with

the predicted value of from LS’s theory (vertical dashed-dotted lines).

As discussed above, while our small Rρ simulation with Rρ = 2 is still more or less617

consistent with LS’s model, our simulations with Rρ = 5 and Rρ = 8 can not be explained618

by LS’s model. In order to understand this inconsistency, two important distinctions between619

our numerical model and the original theoretical model of LS should be recognized: firstly,620

the theoretical model of LS assumed perfectly homogenized mixed layers above and below621

the interfaces. As shown in Figure 8(b,e,h), however, a fully equilibrated staircase structure622

requires finite values (although small) of vertical gradients for both temperature and salinity623

in the mixed layers. In this circumstance, as discussed above, the balance between vertical624

fluxes in the mixed layers and those in the interfaces is the key to maintaining the staircase625

structure. This clearly goes beyond the description of the simplified LS model which only626

31



discussed the interface transportation. Secondly, the theoretical model of LS is a purely627

buoyancy-driven model which doesn’t include any effect of dynamically-driven stratified628

turbulence. Without stratified turbulence, the unstably stratified boundary layer becomes629

necessary for their model to transport the diffusive fluxes at the sharp interfaces into the630

mixed layers. However, when the effect of stratified turbulence is properly taken into account631

in our model, the flux balance between interface and mixed layers can be established (see632

Figure 8) without the presence of any unstably stratified boundary layer. Therefore the633

staircase structure can stably exist in our systems with Rρ > Rcr
ρ even though they are634

predicted to be unstable by LS’s theory.635

SUMMARY AND CONCLUSIONS636

In this paper, we have performed a series of DNS analyses of the continuously forced637

stratified turbulence system comprised of two different scalars stratified in the diffusive-638

convection configuration. We found that thermohaline layered structure forms spontaneously639

in the simulations. We then considered three different aspects of this process to show that640

it is indeed well explained by the theory of thermohaline-turbulence instability proposed641

by MP21. First we showed that the controlled parameter Reb in the layering simulations642

does satisfy the criterion derived by MP21. Secondly we have demonstrated that the key643

assumption of the thermohaline-turbulence instability theory of MP21, namely that the [26]644

parameterization scheme determines the vertical transports of the system, is indeed the case645

in the layer formation stage of the evolution of our system. Third we have found good646

consistency between the exponential growth of the layering mode and the predicted growth647

rate from the linear theory of MP21. These results strongly suggest that the thermohaline-648

turbulence instability theory is the highly plausible explanation of thermohaline staircase649

formation in the diffusive convection regime, for example, in the Arctic Ocean.650

The staircases formed in our DNSs were next examined and compared with the model651

proposed by LS. We explained how the vertical fluxes are kept balanced vertically in our652

model despite the fact that the boundary layer structure, which has been regarded as critical653

in stabilizing the interface structure, is missing in our model. We have argued that the654

reason for the discrepancies between the classic model and our simulations is that the effect655

of stratified turbulence at the boundary layers and mixed layers has not been considered in656
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this classic model.657

There are several limitations of the numerical simulations discussed in this paper. Firstly658

we have assumed a Schmitt number Sc = 70 in our simulations which is at least an order659

of magnitude smaller than the actual Schmitt number in the Ocean. This prevents us from660

directly comparing the values of fluxes obtained from our simulations with the empirical661

interface flux laws calibrated previously (e.g. [53], [57] [58]). Secondly we do not yet know662

whether the steady staircase state we observed is in its equilibrium. It is possible that after663

a much longer integration time (and higher domains) the current stable stabilized staircases664

will continue to merge. Observing such trends in DNSs requires a considerable number of665

computational resources.666

From the theoretical perspective, the current thermohaline-turbulence instability is still667

based on the mean-field equation (1) which suffers from the ultraviolet catastrophe (same668

caveats as [8]) in the small-scale limits. This fact restricts our ability to predict the step669

sizes that initially form in our system (as we have mentioned previously at the end of section670

4.2). It also prevents us from applying [26]’s parameterization directly to the thin diffusive671

interface structure to infer its vertical fluxes. Therefore, we believe that a properly captured672

multi-scale theory as that has been done in the salt-fingering staircase ([16]) is the key to a673

deeper understanding of the diffusive-convection staircases.674

Appendix A: Influences of resolution on the direct numerical simulations675

As discussed in the main text, the long integration time needed for the system to develop676

into the staircase state exerts a strong constraint on the resolution available for our numerical677

simulations. In order to understand the influences of resolution in our numerical system,678

we performed three control experiments for simulation number 1-3 with the same numerical679

settings except for a coarser resolution with half the number of grid points in each of three680

spatial dimensions (175 × 175 × 175 grid points). In what follows, we will use “low-res”,681

“mid-res” and “high-res” to refer to the resolution of 175× 175× 175 grids, 350× 350× 350682

grids and 700× 700× 700 grids separately.683

In Figure 11(a-c) we compare the evolution of the vertical spectrum of salinity for the684

critical layering mode between “low-res” simulation and “mid-res” simulation (spectrum685

evolution of “mid-res” has been shown and discussed in the main text) for Rρ = 2, 5686
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and 8 with P = 0.01. Although the systems take a different path and different periods687

towards the equilibrium as we switched the resolution, the equilibrium states for the vertical688

structure they reach are almost identical. This can be seen in Figure 11(d-f), which shows the689

comparison of vertical profiles for temperature and salinity between “low-res” simulations690

and “mid-res” simulations in the equilibrium state. These vertical profiles show almost the691

same structure except for the fact that the interface gradients for “low-res” simulation are692

slightly smaller for Rρ = 2. This suggests that the formation of the staircase state in our693

numerical system is a robust result instead of a numerical artifact.694

Although the variation of resolution doesn’t influence the final equilibrium staircase state695

of our numerical simulations, the vertical heat flux and salt flux in the equilibrium state are696

found to be sensitive to the resolutions. To see this, we evaluate the Nusselt numbers for697

heat and salt, which are the commonly used non-dimensional numbers that reflect the ratio698

of convective flux over diffusive flux defined as:699

NuΘ = RePr〈w′Θ′〉,

NuS = ReSc〈w′S ′〉.
(21)

In Figure 12, we plot the variation of the Nusselt numbers as a function of three different700

resolutions applied in the equilibrium layered stage in our simulations with Rρ = 2, 5 and 8701

separately. Both NuΘ and NuS vary with the increased resolution for all our simulations,702

especially for the strong increase of NuS from low-res simulation to mid-res simulation. The703

fact that only mild variations of fluxes occur during the improvement of resolution from704

“mid-res” to “high-res” suggests that further increase of resolution will not bring significant705

variation to the equilibrium transport we have simulated. However, it still needs to be706

remembered that these values of fluxes we have obtained are under limited resolution and707

should be viewed cautiously.708
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