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ABSTRACT

Computational Oceanography is the study of ocean phenomena by numerical simulation, especially

dynamical and physical phenomena. Progress in information technology has driven exponential

growth in the number of global ocean observations and the fidelity of numerical simulations of the

ocean in the past few decades. The growth has been exponentially faster for ocean simulations,

however. We argue that this faster growth is shifting the importance of field measurements and

numerical simulations for oceanographic research. It is leading to the emergence of Computational

Oceanography as a branch of marine science on par with observational oceanography. Although

some specific limits and challenges exist, many opportunities are identified for the future of Compu-

tational Oceanography. Most important is the prospect of hybrid computational and observational

approaches to advance understanding of the ocean.
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Capsule summary. Computational oceanography is an emerging discipline that asserts that high-23

resolution numerical ocean circulation models have the potential to be equally valuable as data24

from the natural ocean.25

1. Introduction26

The number of observations of the global ocean has grown tremendously over the last several27

decades. Oceanography has been transformed by this growth, particularly, knowledge of ocean28

circulation and dynamics, and the ocean’s role in Earth’s climate. Meanwhile, the fidelity of ocean29

general circulation models (OGCMs) has also grown tremendously. We are reaching the point that30

someOGCMsolutions are essentially indistinguishable from observations (see Fig. 1). In thewords31

of Ed Lorenz, we should anticipate that numerical “experiments will...duplicate the circulation to32

any desired degree of accuracy” (Lorenz 1967).1 This essay explores the history of this growth33

and its prospects. We show that ocean observations and OGCMs have grown at different rates. We34

argue therefore that OGCMs are becoming equally important as ocean observations in advancing35

oceanography. We call this the coming of age of Computational Oceanography.36

2. Unequal Exponential Growth37

Two examples illustrate the growth of ocean observations. First, consider temperature observa-38

tions in the global deep ocean over the last half century. Fig. 2a shows the cumulative number39

of temperature observations deeper than 1000m. They have grown exponentially (notice the H40

axis is logarithmic). Averaged over the last century, the exponential growth has a doubling period41

of 10.5 years, giving an approximately 50-fold expansion in the deep temperature database since42

1960. Technology transitions have maintained this exponential growth, specifically, advances43

1The prescient Lorenz was writing about atmospheric models in the late 1960s, but the message applies to OGCMs today.
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in micro-electronics and information technology. In the 1990s conductivity-temperature-depth44

(CTD) sensors on autonomous profiling floats took over from ship CTD sampling, for example,45

leading in the 2000s to the transformative Argo global float network (Argo 2020).46

Second, consider the history of sea level observations from satellite altimeters. Sea level data47

have revolutionized physical oceanography by providing information on the surface circulation,48

mesoscale eddies, tides, and sea level change. Fig. 2b shows the sequence of altimeter missions49

(coloured bars) and the cumulative number of observing days (black line). The number of observing50

days reveals the growth in sea level observations (although there is great variety between missions).51

The number of sea level observations has grown nearly exponentially since the mid 1980s with a52

doubling time of about 8.2 years and a ≈ 20-fold expansion in the sea level database since 1985.53

Again, micro-electronic and information technology advances have maintained this growth.54

Technology advances have also fueled growth in the fidelity of OGCMs. For example, Fig. 2c55

shows the history of global OGCM resolution. We use the global ocean models from the Inter-56

governmental Panel on Climate Change (IPCC) reports and measure the model resolution with the57

total number of grid points. The peak resolution of the ocean OGCMs in the first IPCC report58

was 2.7o with 9 vertical levels. The peak resolution in the latest (sixth) IPCC report is 0.067o
59

with 75 vertical levels. The growth in OGCMs is exponential with a doubling time of 2.8 years60

and a 1700-fold increase since 1990. For the most highly-resolved models in each assessment, the61

doubling time is even faster at 2.1 years.62

Now compare the horizontal resolution of ocean measurements with OGCM resolution. The63

Argo profiling float network operates about 4000 floats at any one time. Each float makes a vertical64

profile from 2000m depth to the surface every ten days. The global average spacing of profiles65
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is therefore 300km.2 The spacing between altimeter tracks for the TOPEX/Poseidon and Jason66

satellite altimeters is also about 315km (at the equator), with a repeat period of ten days. The67

present day peak OGCM resolution of 0.067o ≈ 7km is therefore 40 times higher.68

3. Prospects for Future Growth69

Looking ahead, the future is bright for the Argo network. The reason is that Argo is part of70

the Global Ocean and Global Climate Observing System, which implements the Paris Agreement71

on climate change and United Nations sustainable development goals. New capacities, like deep72

profiling floats, and new technologies, like biogeochemical sensors, are planned over the next few73

years (GCOS 2016). It is unclear how the network can double in size in the next decade and74

maintain long term exponential growth, but it is plausible.75

The future is also bright for sea level measurements. The Surface Water and Ocean Topography76

(SWOT)mission, scheduled for launch in 2022, will start a new era of sea level observation. SWOT77

will observe sea level over a swath, rather than over a single patch. It will have 15km resolution,78

or better, covering most of the global ocean every 21 days (Morrow et al. 2019). It will improve79

the spatial resolution of sea level data by a factor of about ten. Therefore, the prospects for the80

altimetry record to continue growing exponentially in the 2020s are good.81

For OGCMs, resolution improves as supercomputer technology advances. Historically, that82

follows Moore’s “law,” which says that transistor density in microprocessors doubles every two83

years (Moore 1975). For instance, machines first achieved petaflop speeds (1015 floating point84

operations per second) in 2008 and exaflop speeds (1018) in March 2020, a doubling every 1.185

years (see Fig. 2d). On this basis, the OGCM resolution will probably continue to double every 2.886

2The vertical resolution of Argo profile data is about 5m, which is about 7 times higher than the best AR6 OGCMs and about 3 times higher

than the Poseidon Project run mentioned below.
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years, at least for another few years. It is reasonable to expect exascale IPCC OGCMs by the mid87

2020s with horizontal resolutions of a few kilometers. After that, with widespread anticipation88

that Moore’s law will end (Waldrop 2016), future growth is uncertain. Exploiting new application-89

specific hardware accelerators and new OGCM software architectures, like lower precision (Palem90

2014), will be crucial.91

4. Regime Shift92

This evidence shows that information technology advances are driving exponential growth in93

ocean observations and exponential growth in OGCM resolution. But the OGCM growth rate94

is faster. Therefore, OGCM resolution is also growing exponentially faster than the growth in95

ocean field data. This faster growth points to a regime shift in the scientific importance of96

OGCMs. In 1990, OGCMs were obviously biased compared to measurements, for example, of97

deep temperatures or sea level. In 2020, OGCMs are achieving resolutions that are substantially98

greater than the gaps between measurements, at least for some regimes, like deep and abyssal ocean99

currents.100

We should expect this trend to continue for the foreseeable future. Therefore, physical oceanog-101

raphy is leaving the era in which most knowledge came from observations of the real ocean.102

It is entering an era in which numerical circulation models are as important as observations103

for advancing knowledge. The ascending methodology in this new era we call Computational104

Oceanography. We argue that it is emerging as a new branch of marine science.105
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5. Emergence of Computational Oceanography106

What are the criteria to claim that OGCM solutions should be treated, in some cases, as seriously107

as realmeasurements? Realizing themwouldmark the emergence ofComputationalOceanography.108

These criteria are on our checklist:109

1. Confidence in the fidelity of the basic tools and methods. Consider two types of tool:110

First, consider the theoretical definition of the ocean circulation problem. Computational111

Oceanography relies on software to compute approximations to the incompressible rotating-112

stratified Navier Stokes equations, with equations for the conservation of dissolved salts and113

heat (McWilliams 1996; Fox-Kemper et al. 2019). There is little doubt that these are the right114

equations for ocean circulation. The software is mature, stable, and diverse. The issue of115

unresolved processes, and parametrizing their effects remains an important area of research.116

For example, it is still unclear how to represent unresolved submesoscale processes on the117

larger scale flow. Although much progress has been made on this problem in the last 30 years118

(Gent 2011; Fox-Kemper et al. 2019), we believe that resolution improvements have beenmore119

important (Fig. 2d). In other words, we believe that the problem of parametrizing unresolved120

scales is not so pathological that it contaminates all of the resolved scales. A corollary is121

that OGCMs are less complicated than the real ocean, meaning that OGCM variability is a122

lower bound on the variability in the real system. These are de facto working hypotheses of123

all theoretical and numerical approaches to understanding the ocean circulation.124

Second, we need tools to adjust OGCM solutions to agree with observations; that is, to125

solve the data assimilation and state estimation problem (Bennett 1992; Wunsch 1996, 2006;126

Kalnay 2002). For example, state estimation is used to produce retrospective reanalyses of127

the time-evolving ocean state and data assimilation is used to initialize prospective forecasts128
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of the future. Although many questions remain open, these methods are also now mature,129

stable, and diverse.130

2. The number of OGCM degrees of freedom exceeds the number of observational con-131

straints. This criterion concerns the state estimation and data assimilation problems. In132

essence, it is about whether it is possible (in principle) to adjust an OGCM solution to fit the133

observations exactly or not. If the OGCM can be adjusted to fit the data exactly, the state esti-134

mation problem is under-determined. Otherwise, it is over-determined.3 For example, fitting135

a straight line through three distinct data points is over-determined because no line exists that136

passes through all three points (in general). But fitting a quadratic curve through two data137

points is under-determined because an infinite number of quadratic curves will pass through138

the points. The number of OGCM degrees of freedom scales as the number of grid points.139

The number of observational constraints scales as the number of distinct measurements. Fig. 2140

shows evidence that the number of OGCM grid points per observational constraint exceeds141

one because, loosely, the peak OGCM resolution is now 40 times higher than the Argo and142

Jason data spacing. This gap is growing exponentially because OGCM resolution is growing143

exponentially faster than data density. Therefore, the state estimation problem is moving from144

(in principle) being over-determined to under-determined.145

Crossing this threshold has interesting implications: First, OGCMs pass Turing or Feigen-146

baum tests (Turing 1950; Feigenbaum 2003; Harel 2005). That is, OGCM solutions become147

indistinguishable from observations of the real ocean and a subject-matter expert cannot tell148

them apart. In our regional OGCM simulations of the Denmark Strait Overflow (DSO) at149

resolutions of 0.5–2km, we are approaching this point (Fig. 1, Magaldi and Haine 2015;150

3Ignoring the atypical case of the problem being exactly determined.
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Almansi et al. 2020). Similarly, our high-resolution, regional state estimates are nearly151

under-determined (Lea et al. 2006; Dwivedi et al. 2011).152

Second, the OGCM solutions make accurate, testable predictions about the real ocean. His-153

torically, advances from theoretical and numerical research in dynamical oceanography have154

lagged advances from observational research. Once OGCMs become under-determined by155

data, it will be common for them to make predictions that can be tested by field programs.156

For example, our DSO simulations show exchange of dense water out of the overflow onto157

the east Greenland continental shelf, and vice versa (Magaldi et al. 2011). They also show158

entrainment of near-surface waters south of Iceland into the DSO within a few months, at159

least during hard winters (Saberi et al. 2020). It remains to be seen if these predictions occur160

in the real ocean.161

6. Limits to Computational Oceanography162

Although these opportunities are exciting, there are clear limits to Computational Oceanography.163

Specifically, direct numerical simulation (DNS) of the global ocean circulation is inconceivable164

today. DNS in this context means running OGCMs that resolve all scales of motion; from the165

planetary scale to the dissipation scale (around 1mm), and from centuries to seconds. DNS would166

avoid the challenge of parametrizing the effects of the unresolved scales, but at vast computational167

cost. Fig. 3 shows why. It shows the full range of space and time scales relevant to the ocean168

general circulation, about ten orders of magnitude in both. It also shows the space time volumes169

accessible to present-day supercomputers, including the best AR6 OGCMs shown in Fig. 2, the170

Poseidon Project run, and turbulence simulations (DNS and large eddy simulations, LES). To span171

the entire space time plane, super computers would need to resolve about 1025 grid points and172

1010 time steps. That is about 16 orders of magnitude more grid points than is possible today.173
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Extrapolating the doubling time of 2.8 years in Fig. 2c, it would take 150 years to achieve this174

increase, which is impossible to envision. Clearly, OGCM simulations cannot replace observations175

of the natural ocean.176

7. Opportunities for Computational Oceanography177

The opportunities for Computational Oceanography to advance marine science include:178

• Migration from the study of specific instances of phenomena to the study of statistics of these179

phenomena. The DSO is one of many currents that is affected by rotation, stratification,180

and bathymetry. It is inconceivable to observe all of them, but they can all be simulated181

in an exascale OGCM. Empirical characterization of these numerical overflows would be an182

important step forward.183

• Discovery and characterization of intermittent, time-dependent, three-dimensional phenom-184

ena, which are hard to observe. Submesoscale currents are in this class, which occur at185

horizontal scales shorter than several kilometers (Thomas et al. 2008). Diapycnal mixing is186

another example, which occurs at scales shorter than meters (MacKinnon et al. 2017).187

• Comprehensive and illuminating analyses of ocean mass, heat, salt, momentum, energy, and188

vorticity budgets, in a way that is nearly impossible with direct observations.189

• Discovery and characterization of ocean circulation regimes that cannot be observed. Ex-190

amples include the circulation during the last glacial maximum (paleo-oceanography) or in191

extra-terrestrial oceans (exo-oceanography). For these ocean circulation problems, the data-192

sparseness challenge is much worse than for the modern ocean (LeGrand and Wunsch 1995;193

Amrhein et al. 2018; Way et al. 2017). Criterion 2 was achieved with smaller computational194

10



resources for these fields, and therefore they have already entered the era of Computational195

Oceanography by the rationale in section 5.196

• Robust observing system design using OGCM solutions as synthetic data. These Observing197

System Simulation Experiments (Errico et al. 2012) should become the best-practice standard198

for fieldwork design. There are implications for making the OGCM output accessible and199

easy to work with (see below), but the payoff from engaging observational oceanographers is200

great.201

• Insight fromOGCMstate estimation to support fieldwork, ideally in real time. The community202

should embrace the fact that the under-determined state estimates imply an infinite number203

of OGCM solutions that match the data exactly. This means that techniques are needed to204

characterize and handle the OGCM null space (indeterminacy). For example, observational205

oceanographers at sea could make decisions about where, when, and how to observe using206

OGCM information that captures the range of possible circulation states consistent with data.207

This practice is common in atmospheric science already.208

• More efficient identification of interesting phenomena using automatic methods, like artificial209

intelligence and data mining (Kutz 2017; Lguensat et al. 2019). In fact, such automatic meth-210

ods will become essential as the size of OGCM output grows exponentially and overwhelms211

manual feature identification (see below).212

• Increasing transition of dynamical oceanography to an experimental (computational) science.213

It has long been recognized that idealized models isolate physical mechanisms relevant to214

the general circulation and thereby build dynamical understanding. We still require idealized215

models; in particular, we need a hierarchy of models that span the gap between geophysical216

fluid dynamics problems and realistic simulations of the circulation. This hierarchy will217
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ensure that the increasing OGCM realism does not outpace understanding of the basic physics218

(Held 2005; Vallis 2016; Emanuel 2020).219

8. Prospects for Computational Oceanography220

How can these priorities be achieved and what are the prospects for Computational Oceanogra-221

phy? We should focus on these issues in the next several years:222

• OGCM simulation output must be “democratized” to lower barriers to dissemination. The223

output should be freely available, including to non-professional users. Traditionally, effort224

has focused on the challenges of calculating OGCM solutions with supercomputers. The225

OGCM output has become increasingly harder to use, because of the massive data volume,226

and the technical complexities that attend the high-performance computation. Access to227

high-resolution OGCM output is restricted to a few experts in practice.228

The remedy is to build high-performance data science infrastructure to match the high-229

performance compute infrastructure. These data portals must be open and have low thresholds230

to getting started. We must be able to sample the simulations the way that we sample the real231

ocean. For example, it should be easy for an observational oceanographer to plot a synthetic232

hydrographic section or mooring timeseries. The data portals must include open software233

and significant compute resources to process and analyze the simulation data. We must avoid234

the inefficient practice in which users are forced to download voluminous data to their local235

machines and then write their own code to analyze them. Technologies and infrastructure236

to achieve these goals are under development, such as the OceanSpy OGCM data analysis237

package (Almansi et al. 2019), the Pangeo community in geoscience big data (pangeo.io),238

the SciServer big data science platform (Medvedev et al. 2016), and other cloud analysis239

clusters.240
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• “Benchmark”OGCMreference solutions should be computed using the best available compute241

resources and served to the public. For example, we are computing global OGCM solutions242

at (nominally) 1km horizontal resolution as part of the Poseidon Project (poseidon.idies.243

jhu.edu).4 Such benchmark solutions are of intrinsic value to all oceanographers, not244

just ocean modellers, for the reasons stated above. Benchmark solutions for regional ocean245

circulation problems are valuable for the same reasons, as are idealized simulations of specific246

ocean dynamical processes. The track record of other fields using this approach is impressive.247

For instance, the Johns Hopkins Turbulence Database exposes large-scale turbulent data to248

researchers and provides easy-to-use interfaces to retrieve and interactwith the data using novel249

metaphors like immersing virtual sensors into the 4-D data (turbulence.pha.jhu.edu;250

Perlman et al. 2007; Li et al. 2008).251

• OGCMs will migrate to exascale compute resources in the next few years. This migration will252

involve new paradigms to access the data. For example, with today’s petaflop supercomputers253

only about 0.1% of the OGCM solution can be permanently stored for analysis. The problem254

arises because of the prohibitive time needed to transfer the massive output volume to long-255

term storage media, and the prohibitive expense of the media. This loss of OGCM data will256

be much worse on exaflop machines.257

To mitigate this problem consider the strategy adopted by the Large Hadron Collider (LHC),258

the world’s most sophisticated experimental facility. The LHC provides a single source of data259

on subatomic particle collisions. Several experiments tap the data stream in so-called “beam-260

lines.” Within each experiment, customized hardware monitors the stream. Only about one261

event in ten million is retained for storage and detailed analysis. In exascale oceanography the262

analogous idea (see section 3.3.5 in Asch et al. 2018) is to enable automatic identification of263

4The Poseidon Project is unrelated to the TOPEX/Poseidon altimeter.
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selected circulation events and trigger storage while the OGCM runs. For example, we could264

target intermittent intense mixing events, plus their antecedents and fates. An implication is265

that wemust build a software interface for community-supplied software plugins to implement266

the custom triggers. Also, we need to enable posterior re-computation of small space-time267

chunks of the full solution, with customized diagnostics, and possibly at higher resolutions.268

Computational Oceanography promises powerful new tools to address previously intractable269

problems. It does not aim to supplant observational oceanography. Indeed, observing the natural270

ocean must never cease. Instead, the greatest opportunity lies in merging these hitherto disparate271

branches of our field. Lasting progress will require that we trust computational insights, verify272

them with real world observations, and understand them with fundamental theory.273
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Fig. 1. OGCM Turing test. The two timeseries show Denmark Strait Overflow (DSO) volume flux (Sv, 1Sv

= 106m3s−1, negative means equatorwards). The DSO is an important deep current between Greenland and

Iceland. One timeseries is from in situ measurements, the other is from a high resolution OGCM. The question

is: which is which? The timeseries are different, but the difficulty in answering the question reflects the small

systematic error in the OGCM and therefore its realism. The two timeseries have been processed similarly.

Adapted from Haine (2010).
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Fig. 2. Unequal exponential growth. (a) History of deep (deeper than 1000 m) ocean temperature mea-

surements. The coloured dots show different instruments and observing platforms. (b) History of sea level

measurements from satellite altimetry expressed by the cumulative number of days of measurement. The satel-

lite missions and their durations are indicated with the coloured bars. (c) History of IPCC ocean model resolution

expressed by the number of model grid points. Each coloured dot represents one ocean model: the colour in-

dicates the IPCC assessment. (d) History of top supercomputer speeds (FLOPS = floating point operations per

second). The red lines show best fit exponential growth in each panel.
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Fig. 3. Characteristic space and time scales of the ocean general circulation. Various geophysical and

theoretical scales are shown with gray patches and coloured lines (for a discussion, see Klinger and Haine 2019).

The four coloured rectangles show state-of-the-art circulation models (direct numerical simulation of turbulence,

large eddy simulation, the Poseidon Project run and AR6 HighResMIP OGCMs). The black dot shows the

sampling characteristics of the Argo profiling floats, and the TOPEX/Poseidon-Jason altimeters. The diagram

is indicative, not definitive, because it suppresses the anisotropies and inhomogeneities present in the general

circulation.
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