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ABSTRACT

Supplementary material on theory and numerical methods.5
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S1. Model Solution6

Adding the mass, salt, and heat equations together yields (from (12) and moving the known7

parameters to the right hand side):8

*........
,

ρ2 ρ3 ρi

ρ2S2 ρ3S3 ρiSi

cpρ2T f cpρ3T3 −ρi L′

+////////
-

*........
,

U2

U3

Ui

+////////
-

=

*........
,

F − ρ1U1

−ρ1U1S1

Q− cpρ1U1T1

+////////
-

. (S1)

This system is three equations in five unknowns {U2,U3,Ui,T3, S3}. The five independent parameters9

are {F ,Q,U1,U1T1,U1S1}. However, the entrainment model specifies T3 as a function of Φ only10

from (18) (as Ta is known from (13)). The entrainment model also specifies S3 as a function of Φ11

and Ss from (19). And (16), (17) and (19), (21) boil down to two more (nonlinear) equations for Φ12

and Ss in terms of U3 and S3. The system is therefore closed. It is solved as follows:13

1. Select trial values for Φ and Ss ≤ Ss
max, and compute T3, S3 from (18) and (19).14

2. Compute ρs and ρ3 from (16) and (20) using the Gibbs Seawater (GSW) Oceanographic15

Toolbox (IOC, SCOR, and IAPSO 2010). Skip statically unstable cases from (26).16

3. Solve (S1) for {U2,U3,Ui}, and only retain solutions that satisfy the sign constraints (23) and17

(24).18

4. Compare the trial Φ with the theoretical value from (17) and (21), and only retain good fits19

(within a threshold δΦ).20

These steps produce sets of candidate {U2,U3,Ui, Ss} solutions that satisfy the entrainment model21

within δΦ. For fixed parameters {F ,Q,U1,U1T1,U1S1} there may be zero or many solutions. If22

there are many solutions, they sample the continuum of solutions that exist due to continuous23

variations of Φ and Ss (which is discretely sampled in step 1).24
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For these candidate solutions to be valid, they must also satisfy the shelf system of equations.25

From (12) they read:26

*........
,

ρ1 ρi

ρ1S1 ρiSi

cpρ1T1 −ρi L′

+////////
-

*...
,

u1

ui

+///
-

=

*........
,

Fs − ρsus

−ρsusSs

Qs − cpρsusT f

+////////
-

. (S2)

Given a candidate us solution from (21), this is an overdetermined linear system for two variables27

{u1,ui} with three equations. In addition the constraints u1 > 0 and ui < Ui apply from (23). We28

seek 0 ≤ Qs ≤ Q and F ≤ Fs ≤ 0 values that satisfy this problem. There may be zero, one, or a29

one-parameter infinity of solutions (where Qs and Fs tradeoff).30

This system is solved in two further steps. For each candidate {U2,U3,Ui, Ss} solution:31

5. Write one constraint on {Qs,Fs} by requiring that the right hand side of (S2) lies in the range32

of the matrix33

Es =

*........
,

ρ1 ρi

ρ1S1 ρiSi

cpρ1T1 −ρi L′

+////////
-

. (S3)

Call the range vector associated with the singular value of this matrix s = (s1, s2, s3)T , which34

depends on the parameters in Es. Therefore,35

s1
(
Fs − ρsus

)
− s2ρsusSs + s3

(
Qs − cpρsusT f

)
= 0, (S4)

which is a linear relationship between Qs and Fs. Consider it in the form36

Fs =
ρsus

s1

(
1 Ss T f

)
s−

s3
s1
Qs, (S5)

where37

s3
s1
=

S1− Si

L′S1+ cpT1Si
(S6)
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is positive so that increasing positiveQs means increasing negative Fs. We require 0 ≤ Qs ≤ Q38

and F ≤ Fs ≤ 0. To test these inequalities, compute the Fs (Qs) values from (S5) at the39

Qs ∈ {0,Q} limits. This allows calculation of the {Fs,Qs} pairs, call them {Fs
a,Qs

a}, that40

bound the line segment of acceptable values, if they exist.41

6. If they do exist, compute the corresponding {u1,ui} solutions from42

*...
,

u1

ui

+///
-

=
(
ET

s Es
)−1

ET
s

*........
,

Fs
a − ρsus

−ρsusSs

Qs
a − cpρsusT f

+////////
-

. (S7)

The line segment {Fs
a,Qs

a} maps to a line segment in {u1,ui} space. Finally, the inequalities43

on {u1,ui} from (23) and (25) must be satisfied. Again, that yields, in general, zero, one, or an44

infinite number of {Qs,Fs} pairs that qualify. Corresponding to every valid {Qs,Fs} pair is a45

unique {u1,ui} pair. If there is an infinite number, then it is a one parameter infinity.46

This strategy finds solutions that exactly satisfy the conservation equations and inequalities, but47

that approximate the entrainment parameterization formula (17), within threshold δΦ. For each48

set of parameter values, there are zero, one, or many valid solutions for {U2,U3,Ui, Ss}. For each49

one of these solutions, there are zero, one, or an infinite number of {u1,ui} solutions.50

S2. Theory for tradeoff between entrainment and shelf circulation51

The entrainment/shelf salinity tradeoff is described as follows (from (17) and (21)):52

Φ = 1−γ
|us |

1/3(
ρs − ρa

)2/3 ,
U3 =

us

1−Φ
. (S8)

Now ρs− ρa ≈ ρ0 β∆Ss, where ∆Ss = Ss− Sa
∗, where Sa

∗ is the salinity of the water at the freezing53

temperature with the same density as the aW: ρa = ρ(T f , Sa
∗). So for fixed U3 (which is an54
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approximation; see below):55

Φ = 1−
γ3/2

ρ0 β∆Ss
|U3 |

1/2, (S9)

which is (28). In practice, U3 varies a little from this theoretical curve because S3 and T3 depend56

on Φ and Ss too. Fig. 7 shows this variation is relatively weak.57

S3. Theoretical arguments for degeneracy of forcing parameters58

Here we justify the statement that acceptable model solutions forU2 (for example) in the space of59

flux parameters, {F ,Q,U1,U1T1,U1S1} (for fixed φ), typically lie along the lineQ+LF − ρ0cpU1T1.60

This degeneracy is a great simplification because it points to the importance of a single compound61

parameter, rather than the full five dimensional parameter space. It thereby provides insight into62

the dominant processes in the model. Two lines of reasoning are shown:63

First, consider the following approximation: The seawater freezing temperature, sea ice temper-64

ature, and sea ice salinity are zero T f = Ti = Si = 0 (which implies that L′ = L) and the densities are65

identical ρ1 = ρ2 = ρ3 = ρi = ρ0. The equations for the system (S1) as a whole now read:66

*........
,

1 1 1

S2 S3 0

0 0 −L

+////////
-

*........
,

U2

U3

Ui

+////////
-

≈

*........
,

F /ρ0−U1

−U1S1

Q/ρ0− cpU1T1

+////////
-

. (S10)

In the final equation assume that |cpU3T3 | � |LUi | too. This approximation is not wholly supported67

by the heat budgets shown in Figs. 4 and 5, although the AW term is smaller than the sea ice term68

in both cases (see below). Physically, the approximation means that the freezing rate to form sea69

ice Ui is proportional to the difference between ocean heat loss Q and AW heat flux cpρ0U1T1. It70

is important because it reduces the rank of (S10) by one. Therefore, Ui ≈
(
Q− cpρ0U1T1

)
/
(
ρ0L
)

71
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and72

*...
,

1 1

S2 S3

+///
-

*...
,

U2

U3

+///
-

≈
*...
,

F /ρ0−U1+Q/(ρ0L)− cpU1T1/L

− ρ0U1S1

+///
-

. (S11)

The volume budget therefore reads73

U1+U2+U3 ≈ F /ρ0+Q/(ρ0L)− cpU1T1/L (S12)

The inverse of the matrix in (S11) is74

1
S3− S2

*...
,

S3 −1

−S2 1

+///
-

(S13)

and therefore the OW flux U2 is75

U2 ≈

[
Q + LF − ρ0cpU1T1

]
+ ρ0L (S1/S3−1)U1

ρ0L (1− S2/S3)
. (S14)

The second numerator term, which is proportional to (S1/S3−1)U1, is smaller in practice than the76

first term in brackets, which dominates the numerator. Therefore, this formula says that the OW77

flux U2 is essentially proportional to Q + LF − ρ0cpU1T1.78

Second, the exact formula for U2 ≡ N /D is79

U2 =
(1− Si/S3)Q +

(
L′+ cpT3Si/S3

)
F + L′ρ1 (S1/S3−1)U1+ cpρ1 [(S1/S3− Si/S3)T3+ (Si/S3−1)T1]U1

ρ2
{
L′ (1− S2/S3)+ cp

[
(Si/S3− S2/S3)T3+ (1− Si/S3)T f

]} ,

(S15)

which results from solving (S1). Notice that the flux parameters appear exclusively in the numerator80

N as a linear combination of F ,Q,U1,U1T1 and U1S1, from the right hand side of (S1). This81

property depends on the matrix form of the equations. Vanishing of U2 (loss of the estuarine cell)82

is therefore controlled by N vanishing. The coefficients in N depend on T3, S3, however, which83

vary, and the denominator D also depends on them. This is the reason that solving exactly for U284

is hard (sections S1 and S5). Now consider what can be said about N and U2 without knowing T385
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and S3: Approximate S3 with S1 and drop the uncertain T3 terms to give:86

N ≈N ∗ ≡ (1− Si/S1)Q + L′F + ρ1cp (Si/S1−1)T1U1,

≈ Q + LF − ρ0cpU1T1,

≈ ρi L′U1 (1+U2/U1+U3/U1) , (S16)

which is (29)–(31). Plotting the distribution of U2 against N ∗ for various forcing parameters tests87

these assumptions by quantifying what can be said about U2 without knowing T3 and S3, as in88

Fig. 8.89

S4. Theory for parametric locations of PW crises and OW emergency90

Consider first the edge of the salt crisis hatched region in Fig. 6 near experiment 2, indicating91

U2 = 0. From (S15) that Q limit, Q+, is92

Q+ =max



(
L′+ cpT3Si/S3

)
F + L′ρ1 (S1/S3−1)U1+ cpρ1 [(S1/S3− Si/S3)T3+ (Si/S3−1)T1]U1

Si/S3−1



,

(S17)

which is controlled by the variation ofT3, S3. For the salt crisis,T3 =T f and S3 = S−s , where S−s is the93

shelf salinity for vanishing entrainmentΦ= 0, given implicitly by ρ(T f , S−s ) = |U1 |
1/2γ3/2+ ρ(Ta, Sa)94

from (17), (21), and U2 = 0. Therefore,95

Q+ =

(
L′S−s + cpT f Si

) (
ρ1U1−F

)
− ρ1
(
L′+ cpT f

)
U1S1

S−s − Si
+ cpρ1U1T1. (S18)

All the terms in this expression can be computed with knowledge of the system parameters. See96

Fig. 9.97

Consider next the parametric location of the OW emergency in Fig. 6, given by Q∗, for which98

U3 = 0. By solving (S1) for U3 = 0:99

Q∗ =

(
L′S2+ cpT f Si

) (
ρ1U1−F

)
− ρ1
(
L′+ cpT f

)
U1S1

S2− Si
+ cpρ1U1T1. (S19)
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Notice the similarity with (S18) and that all these terms can be computed with knowledge of the100

system parameters. See Fig. 9.101

Consider finally the edge of the heat crisis in Fig. 6, similar to experiment 1, given by Q−. Like102

the salt crisis103

Q− =

(
L′S3+ cpT3Si

) (
ρ1U1−F

)
− ρ1
(
L′+ cpT3

)
U1S1

S3− Si
+ cpρ1U1T1. (S20)

Predicting the values of T3 and S3 without solving the model is tricky, however. Fig. 9 shows three104

hierarchical approaches to estimate T3 and S3: (i) The patch shows upper and lower bounds for105

Q− (plotted using the related N ∗ parameter in Fig. 9). These bounds derive from the range of106

possible (T3, S3) values for which the OW density equals the AW density. Furthermore, the Q−107

upper bound cannot exceed the Q∗ value associated with the OW emergency (because the OW108

emergency and the heat crisis exclude one another). These criteria guarantee static stability of AW109

and OW, regardless of the details of the entrainment process or the shelf water properties. In this110

sense, they make minimal assumptions. (ii) The group of points labelled “Q− heat crisis mid 2”111

use (T3, S3) values that assume ρ(T3 = Ta, S3) = ρ(T1, S1). The assumption T3 = Ta corresponds to112

no upper limit on Ss or therefore on ρs. (iii) The group of points labelled “Q− heat crisis mid 1”113

estimates the maximum entrainment with114

Φmax ≈ 1−
γ3/2 |U1 |

1/2

ρ(T f , Ss
max)− ρa

, (S21)

from (17) assuming that us ≈U3 ≈ −U1. Given Φmax, T3 and S3 follow from (18) and (19).115

S5. Theory for selection of OW properties T3, S3 from budget equations116

The OW properties T3, S3 are essential for understanding solutions to the model, and specifically117

the controls on the strength of the estuarine cell U2. Here we extend sections S3 and S4 to discuss118
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how these properties are selected, in particular, how the basin-wide budget (S1) interacts with the119

sign constraints on the volume fluxes (23) and (24).120

Consider again the formula for U2 =N /D (S15):121

S3N = (S3− Si)Q +
(
L′S3+ cpT3Si

)
F + L′ρ1 (S1− S3)U1+ cpρ1 [(S1− Si)T3+ (Si − S3)T1]U1,

S3
ρ2
D = L′ (S3− S2)+ cp

[
(Si − S2)T3+ (S3− Si)T f

]
. (S22)

Both the numeratorN and denominatorD depend onT3 and S3, as previously discussed. Therefore,122

consider the functions N (T3, S3) and D (T3, S3) in the temperature/salinity (TS) plane. We know123

that −U1 / U2 < 0 for valid solutions, so the signs of N and D must be different and D cannot124

be very small. Valid T3, S3 points are therefore constrained by theN (T3, S3) = 0 and D (T3, S3) = 0125

contours because N (T3, S3) = 0 defines the locus of U2 = 0 points and D (T3, S3) = 0 defines the126

locus of |U2 | =∞ points in TS space. What are these loci of points? For N (T3, S3) = 0,127

T3 =
QSi − ρ1

(
L′S1+ cpSiT1

)
U1+ S3

[
ρ1U1

(
L′+ cpT1

)
−Q− L′F

]

cp
[
F Si + ρ1 (S1− Si)U1

] , (S23)

which is a line. The line intercepts the freezing temperature at salinity S∗128

S∗ =
cpT f

[
F Si + ρ1 (S1− Si)U1

]
+ ρ1
(
L′S1+ cpSiT1

)
U1−QSi

ρ1U1
(
L′+ cpT1

)
−Q− L′F

, (S24)

and has slope129

ρ1U1
(
L′+ cpT1

)
−Q− L′F

cp
[
F Si + ρ1 (S1− Si)U1

] ≈ L
cpS1

. (S25)

This line is entirely determined by the flux parameters {Q,F ,U1,T1U1, S1U1} and constants. Think130

of it as having (nearly) fixed slope and an intercept S∗ that changes with the flux parameters: it131

slides left and right in TS space, for instance as Q decreases and increases. Figure S1 illustrates132

this behaviour. For D (T3, S3) = 0,133

T3 =
−L′S2− cpT f Si + S3

(
L′+ cpT f

)
cp (S2− Si)

, (S26)
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which again is a line. The line intercepts the freezing temperature at salinity S2 and has slope134

L′+ cpT f

cp (S2− Si)
≈

L
cpS2

. (S27)

This line is entirely determined by S2 and constants. Think of it as being fixed to the PW properties135

(T f , S2) with (nearly) fixed positive slope (nearly) parallel to theN = 0 line. For validU2 solutions,136

OW properties T3 and S3 cannot lie in the TS gap between the N = 0 and D = 0 lines because in137

this gap the signs of N and D are the same and U2 ≮ 0. Also, as OW properties approach the138

D = 0 line, for instance as S∗→ S2, U2 becomes very sensitive to small changes in T3 and S3.139

Consider also the formulae for U3 and Ui from solving (S1):140

−
ρ3D

ρ2
U3 = (S2− Si)Q +

(
L′S2+ cpT f Si

)
F + L′ρ1 (S1− S2)U1+ cpρ1

[
(S1− Si)T f + (Si − S2)T1

]
U1

(S28)

−
ρiD

ρ2
Ui = (S3− S2)Q + cp

(
T3S2−T f S3

)
F − cpT f ρ1 (S1− S3)U1+ cpρ1 [(S1− S2)T3+ (S2− S3)T1]U1.

(S29)

Notice that the expression for U3 resembles (S22) with S3 replaced by S2 and T3 replaced by T f141

in the numerator. This formula only depends on T3 and S3 via the denominator D, unlike (S22).142

Similarly, the expression for Ui resembles (S22) with Si replaced by S2 and L′ replaced by −cpT f143

in the numerator. The denominator D is unchanged, however, because it is proportional to the144

determinant of the matrix E in (S1):145

|E| = −ρ1ρ3S3D = ρ2ρ3ρi
{
L′ (S2− S3)+ cp

[
(S2− Si)T3+ (Si − S3)T f

]}
. (S30)

Therefore, the arguments above about the D = 0 line apply unchanged. The requirement that146

Ui < 0 implies the existence of a third line in the TS plane corresponding to the N = 0 line (S23):147

T3 =
QS2+ cpρ1

(
T f S1− S2T1

)
U1+ S3

[
cpρ1U1

(
T1−T f

)
−Q + cpT fF

]

cp
[
F S2+ ρ1 (S1− S2)U1

] (S31)
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(again, changing Si → S2 and L′→−cpT f ). This line depends on the flux parameters and S2. Its148

slope can change sign, but it passes through the PW properties (T f , S2), like the D = 0 line. The149

requirement that Ui < 0 means that valid (T3, S3) points cannot lie between the D = 0 and this150

second N = 0 line. Thus, the joint requirements that Ui < 0 and U2 < 0 require that (T3, S3) points151

cannot lie between the two N = 0 lines defined by (S23) and (S31). (Because the D = 0 line152

lies between the two N = 0 lines.) Physically, this idea means that the OW temperature T3 must153

be relatively close to the AW temperature or freezing, and not in between. The requirement that154

U3 < 0 adds no new constraint because its numerator does not depend on (T3, S3): It implies an155

inequality on S2, but this restriction is automatically satisfied.156

These constraints combine with three other straightforward constraints to restrict possible OW157

properties, namely ρ3 ≥ ρ1, and T f ≤ T3 ≤ Ta. They are shown schematically in Fig. S1. The158

intersection of all these restrictions are plotted as the brown patches in Figs. 3, 4, 5, and S1. In159

practice, the solutions lie close to the N = 0 line given by (S23). Therefore, the selection of the160

strong (weak) shelf circulation mode with cold (warm) OW requires positive (negative) S∗ − S2.161

The additional requirement to satisfy the entrainment model (green patches, see section S6) selects162

a sub-region of these patches as valid solutions (plotted as the OW points in the solution figures).163

S6. Theory for selection of OW properties T3, S3 from entrainment model164

Consider T3, S3 constraints from the entrainment model. From (16)–(19) and (21),165

1−Φ =
γ3/2 |U3 |

1/2

ρs − ρa
,

=
Ta −T3
Ta −T f

,

=
Sa − S3
Sa − Ss

. (S32)
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Therefore,166

T3 = Ta −
(
Ta −T f

) γ3/2 |U3 |
1/2

ρs − ρa
,

S3 = Sa + (Ss − Sa)
γ3/2 |U3 |

1/2

ρs − ρa
. (S33)

The common fraction is proportional to the departure in OW properties from aW properties.167

Its maximum conceivable value is γ3/2 |U1 |
1/2/
(
ρ1− ρa

)
= 1−Φmin, which is associated with the168

minimum value of entrainment fractionΦmin. This minimum entrainment value can be greater than169

zero. Therefore, the lower limit for T3 is Ta −
(
Ta −T f

)
(1−Φmin). For S3 we seek the maximum170

value of (Ss − Sa) γ3/2 |U3 |
1/2/
(
ρs − ρa

)
. An estimate of this maximum value is γ3/2 |U1 |

1/2/ρ0 β,171

because ρs − ρa ≈ ρ0 β (Ss − Sa
∗) > ρ0 β (Ss − Sa) (from section S2, ρa = ρ(T f , Sa

∗)). Therefore,172

the upper limit for S3 is approximately Sa +γ
3/2 |U1 |

1/2/ρ0 β.173

These limits on T3 and S3 are computed and plotted in Figs. 3, 4, and 5. For warmer/fresher aW,174

the range of possible OW properties shrinks, because OW cannot be less dense than AW and also175

because Φmin decreases as ρa decreases. Note that the minimum value of Φ may not give a viable176

solution if the budget equations (S1) cannot also be satisfied. In other words, Φmin and the T3, S3177

limits from (S33), are necessary, but not sufficient to specify the OW properties.178
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LIST OF FIGURES183

Fig. S1. Schematic temperature salinity diagrams of the processes affecting OW properties for dif-184

ferent limiting cases (see also Fig. 12). (a) Heat crisis, (b) OW emergency, (c) Salt crisis,185

and (d) Entrainment emergency. The three lines are the contours of U2 = 0 (blue), Ui = 0186

(cyan), and denominator D = 0 (red). Plus and minus signs indicate the signs either side187

of these zero contours. The shaded brown patches show possible solutions that satisfy the188

mass, freshwater, and heat budgets, plus the sign constraints on U2,U3, and Ui . See Fig. 3189

and section S5 for further explanation. The shaded green patches show possible solutions190

that satisfy the entrainment model. See section S6 for further explanation. In practice, viable191

solutions lie in the green and brown patches near the blue U2 = 0 line. . . . . . . . 15192
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(a) Near heat crisis 
Small 𝒬

(b) Near OW emergency 
Intermediate 𝒬

(c) Near salt crisis 
Large 𝒬

(d) Near entrainment emergency 
Fresh PW/aW

Fig. S1. Schematic temperature salinity diagrams of the processes affectingOWproperties for different limiting

cases (see also Fig. 12). (a) Heat crisis, (b) OW emergency, (c) Salt crisis, and (d) Entrainment emergency. The

three lines are the contours of U2 = 0 (blue), Ui = 0 (cyan), and denominator D = 0 (red). Plus and minus signs

indicate the signs either side of these zero contours. The shaded brown patches show possible solutions that

satisfy the mass, freshwater, and heat budgets, plus the sign constraints on U2,U3, and Ui . See Fig. 3 and section

S5 for further explanation. The shaded green patches show possible solutions that satisfy the entrainment model.

See section S6 for further explanation. In practice, viable solutions lie in the green and brown patches near the

blue U2 = 0 line.
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