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Abstract12

Model error is one of the main obstacles to improved accuracy and reliability in state-13

of-the-art analysis and forecasting applications, both in Numerical Weather Predic-14

tion (NWP) and in Climate Prediction, conducted with comprehensive high resolution15

General Circulation Models. In a data assimilation framework, recent advances in16

the context of weak constraint 4D-Var have shown that it is possible to estimate and17

correct for a large fraction of systematic model error which develops in the strato-18

sphere over short-range forecast ranges. The recent explosion of interest in Machine19

Learning/Deep Learning technologies has been driven by their remarkable success in20

disparate application areas. This raises the question of whether model error esti-21

mation and correction in operational NWP and Climate Prediction can also benefit22

from these techniques. In this work, we aim to start to give an answer to this ques-23

tion. Specifically, we show that Artificial Neural Networks (ANN) can reproduce the24

main results obtained with weak constraint 4D-Var in the operational configuration25

of the IFS model of ECMWF. We show that the use of ANN models inside the weak-26

constraint 4D-Var framework has the potential to extend the applicability of the weak27

constraint methodology for model error correction to the whole atmospheric column.28

Finally, we discuss the potential and limitations of the Machine Learning/Deep Learn-29

ing technologies in the core NWP tasks. In particular, we reconsider the fundamental30

constraints of a purely data driven approach to forecasting and provide a view on how31

to best integrate Machine Learning technologies within current data assimilation and32

forecasting methods.33

Plain Language Summary34

Model error is one of the main obstacles to improved accuracy and reliability in35

current Numerical Weather Prediction and in Climate Prediction. Recent advances in36

Data Assimilation at ECMWF indicate that it is possible to estimate and correct for a37

large fraction of systematic model error in the stratosphere. The question we address38

is whether Machine Learning techniques can be used alone and in conjunction with39

standard Data Assimilation methods to improve on those results. We show that it is40

indeed possible to extend current Data Assimilation capabilities in operational state-41

of-the-art forecast systems using Machine Learning tools and we discuss the potential42

and limitations of future applications of these ideas to other core NWP tasks.43

1 Introduction44

Numerical Weather Prediction (NWP) can be seen as an initial value problem
where a numerical model is integrated in time to forecast the future state of the atmo-
sphere and, increasingly, of the other components of the Earth System that interact
with it. Like any other forecasting enterprise, NWP forecasts are affected by errors. In
the data assimilation community, forecast errors are traditionally partitioned between
errors from evolved erroneous initial conditions and model errors. This distinction is,
for example, formalised in the evolution equation of the state error covariance in the
Kalman Filter (Kalman, 1960)

Pb
t = MPa

t−1M
T + Qt, (1)

where the state error covariance matrix of the background forecast state Pb
t is written45

as the sum of the evolved analysis errors from the previous analysis update (MPa
t−1M

T
46

where M is the linear/linearised model) and a zero-mean stochastic model error of co-47

variance Qt. This distinction has proved useful, as most data assimilation algorithms48

in current use can be seen as variations/extensions of the Kalman Filter, but it is49

also limited by significant assumptions: a) model error is assumed additive; b) model50

error is assumed to be white in time and c) model error is assumed to be zero-mean.51
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Assumptions a) and b) are somewhat relaxed in operational settings. For example,52

at ECMWF the model error parameterisations used in the Ensemble of Data Assimi-53

lations (EDA) to simulate model error evolution are based on a multiplicative ansatz54

(Buizza et al., 1999) and spatial model error correlations are cycled from one assimi-55

lation update to the next (Leutbecher et al., 2017). The third assumption (zero-mean56

errors) is probably the most important as it effectively makes any Kalman Filter based57

data assimilation system blind to the presence of systematic model errors (Dee, 2005).58

Note that we here use the term bias in a wider sense than it is typically used in the59

meteorological literature: Biases are systematic errors that can vary in space, time and60

prevalent meteorological conditions. Thus, we can encounter different model biases in61

different locations, at different times of day or year, in different meteorological condi-62

tions and they can be also influenced by systematic errors arising from the interaction63

with other components of the Earth System64

In many data assimilation systems used in operational NWP, model bias is not ac-65

counted for explicitly. Rather, common strategies aim at reducing the impact of model66

biases on the performance of the assimilation system. Recognising that the impact of67

model biases on the assimilation algorithm mainly comes through the observation-68

minus-background (O-B) residuals, these strategies typically involve a combination69

of: a) debiasing the O-B residuals, for example through variational bias correction70

techniques (Auligné et al., 2007), and b) inflating the estimates of the background71

forecast errors sampled from an ensemble data assimilation system run in parallel72

to the main, higher resolution, analysis system (Bonavita et al., 2012; Whitaker &73

Hamill, 2012). Both techniques have proved effective in improving the performance74

of the data assimilation and forecast systems, but it is obvious that they are partial,75

sub-optimal solutions to the model bias problem. In fact, bias correction of the O-B76

residuals implicitly assumes that all the systematic components of these residuals are77

due to observation (and observation operator) biases. While this can be a reasonable78

working assumption for a large number of satellite radiances, the fact that we still79

see systematic O-B errors in largely unbiased observing systems (e.g., radiosondes,80

radio occultation observations from the Global Positioning System, a.k.a. GPS-RO)81

in operational data assimilation statistics shows that this is not the case in general.82

This effect is also visible in modern reanalyses (Hersbach et al., 2020) where long-term83

temperature trends in the stratospheric analysis show discontinuities connected to the84

introduction or withdrawal of specific observing systems. Inflating the background er-85

rors is a standard tool in ensemble data assimilation to deal with all components of the86

forecast error that are not properly sampled by the assimilation system (Houtekamer87

& Zhang, 2016). This technique has also proved effective in reducing the total analysis88

mean square error (Raanes et al., 2019), but it is clearly a blunt tool for dealing with89

model error. More importantly, any change to the Kalman Gain matrix in a bias-blind90

assimilation system will still result in a biased, sub-optimal analysis (Dee, 2005).91

Weak Constraint 4D-Var (WC-4DVar) is an extension of 4D-Var which explicitly
attempts to take model error into account in the solution of the 4D-Var assimilation
problem (Tremolet, 2006). In the forcing formulation of WC-4DVar implemented at
ECMWF, this is done by extending the 4D-Var control variable with a model error
tendency term which is evaluated during the 4D-Var minimisation and used in the
subsequent first-guess integration to de-bias the model trajectory:

xk = Mk,k−1(xk−1) + η, k = 1, .., N (2)

JWC(x0,η) =
1

2

(
x0 − xb0

)T
B−1

(
x0 − xb0

)
+

1

2

N∑
k=0

(
(H(xk)− yk)

T
R−1
k (H(xk)− yk)

)
+

1

2

(
η − ηb

)T
Q−1

(
η − ηb

)
, (3)
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where η is the model error forcing (this is kept constant over the assimilation window,92

which is the main approximation of the IFS implementation of WC-4DVar), ηb is the93

prior estimate of the model error forcing and Q is the model error covariance matrix.94

While this WC-4DVar formulation has been used at ECMWF since 2009, it is95

only very recently (IFS Cycle 47R1, scheduled to become operational from July 2020)96

that WC-4DVar has been shown to be effective at correcting stratospheric model biases97

(Laloyaux, Bonavita, Dahoui, et al., 2020). The key insight of this revised WC-4DVar98

implementation has been to impose scale separation between the error covariance ma-99

trices describing the spatial structures of background error B and of model biases Q100

(see Laloyaux, Bonavita, Dahoui, et al., 2020; Laloyaux, Bonavita, Chrust, & Gürol,101

2020, for a detailed explanation). The scale separation allows to successfully de-alias102

initial state and model error corrections during the 4D-Var minimisation, and is con-103

sistent with a view that model biases represent a type of errors that take place on104

larger spatial and longer temporal scales than background errors. It is also apparent105

from Equations (2) and (3) that WC-4DVar estimates a model error tendency term106

which is then applied as an additional forcing term in the prognostic equations of the107

model. Thus, it can be viewed as a data-driven algorithm to estimate (some of) the108

missing physical forcing in the model prognostic equations. In other words, WC-4DVar109

as described in Equations (2) and (3) is a type of on-line machine learning algorithm.110

Machine learning (ML) methods, and more specifically the Deep Learning (DL)
implementations of ML, have seen a remarkable resurgence over the past decade (Chol-
let, 2018). This was driven by the unrivalled results obtained through ML/DL tech-
nologies in a vast range of problems in computer vision, speech recognition, natural
language processing and translation, among others (Goodfellow et al., 2016). At a fun-
damental level, most of the successful ML applications in use today implement a type of
supervised statistical learning where we aim to learn from a dataset of examples (X,Y)
a (possibly) nonlinear mapping between “features” X = x1, . . . ,xm and a correspond-
ing set of observed targets (“labels”) Y. This is usually done by assuming a parametric
model for the conditional distribution of the observations, pmodel(Y|X, θ), and max-
imising the likelihood of the model over the empirical data distribution pobs(Y|X)

θML = arg max
θ

pmodel(Y|X,θ). (4)

Under standard i.i.d. (independent and identically distributed) conditions for the fea-
tures and observations distributions, Equation (4) can be transformed in the equivalent
optimisation problem of maximising the log-likelihood of the predictive model under
the observed distribution

θML = arg max
θ

m∑
i=1

log
(
pmodel(y

i|xi,θ)
)
, (5)

where i is the index running over the m members of the examples’ dataset. This is
equivalent to minimising the cross-entropy between the two distribution (Goodfellow et
al., 2016). For our purposes, we are interested in discovering a statistical regression law
between model error (or, to be precise, available estimates of model error) and a set of
predictors (features) to be defined based on physical intuition and experimental results.
The simplest approach is assuming a linear relationship between (Y,X) represented
by the affine transformation

Y = WX + b. (6)

This is equivalent to assuming a Gaussian predictive model of the form

pmodel(Y|X,θ) = N (Y|WX + b, I), (7)

where the general set of learnable parameters θ has been particularised to the sets of111

weights W and bias coefficients b of a generic neural network. Maximising the log-112

likelihood (or, more commonly, minimising the negative log-likelihood) of this model113
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leads to the standard “Normal” equations. Adding constraints on the size of the114

regression coefficients matrix W (known in different communities as Tikhonov regu-115

larisation, ridge regression, weight decay) or the sparsity of said matrix (Tibshirani,116

1996) can be seen as ways of improving the generalisation properties of the estimator117

by trading increased bias for reduced variance.118

The main limitation of the regression model in Equation (6) lies in its limited119

capacity. If the underlying relation between (Y,X) is nonlinear, then the maximum120

likelihood estimator in Equation (5) will be sub-optimal. In our problem of model121

error estimation, it is a priori unclear how much of an issue this is. The WC-4DVar of122

Equation (3) is implemented at ECMWF in an incremental formulation, so it can deal123

with moderate nonlinearities through repeated re-linearisation steps (Bonavita et al.,124

2018). In Deep Learning, the nonlinearity problem is solved by introducing multiple125

additional layers in the regression that implement nonlinear transformations between126

their inputs and outputs (hidden layers). Even in their simplest algorithmic form,127

these nonlinear regressors variously known as Feedforward Neural Networks, Artificial128

Neural Networks (ANNs), or MultyLayer Perceptrons (MLPs) have the remarkable129

property of being universal function approximators (Cybenko, 1989). Thus, an ANN130

of sufficient capacity can theoretically learn any nonlinear mapping to any desired level131

of accuracy, given a sufficiently large and representative training dataset.132

Attempts to use DL techniques to estimate and correct for model errors have133

already been documented in the geophysical literature. For example, Watson (2019)134

uses ANN to estimate model error tendencies in the Lorenz ’96 system and uses them135

to correct short and long range forecasts with significant improvements both in fore-136

cast skill and model climate statistics. In that work an approximate (coarser) version137

of the Lorenz ’96 model was still used for prediction, and the ANN was used to “fill138

in” the gaps with respect to the high resolution, “true” version of the model. This139

idea of hybridising machine learning methods with knowledge-based models is also ex-140

ploited in the influential paper of Pathak et al. (2018), where a different ML technique141

is employed (Jaeger, 2001), but also very good results are obtained in two low-order142

models. In a similar vein, Bolton & Zanna (2019) present an oceanographic applica-143

tion of hybrid forecasting using Convolutional Neural Networks (CNN) in a simplified144

Ocean model. Again, the goal was to reproduce the effects of unresolved physical145

processes in a coarser version of their reference model. More recently, Brajard et al.146

(2020) demonstrate a way to combine ML with data assimilation of noisy and partial147

observations. In their scheme, DA and ML alternate in producing progressively more148

accurate estimates of the state and of the surrogate predictive model. This idea has149

been framed into a unifying Bayesian formalism by Bocquet et al. (2020), which allows150

to develop approximations and alternative algorithms.151

In the works described above and, to the Authors’ knowledge, in other recent152

relevant literature in the geophysical domain, the application of ML techniques for153

model error inference and correction has been studied in the context of low-order,154

simplified models. Thus, while the reported results appear encouraging, questions155

remain about the extent to which those results are applicable and relevant for high156

resolution, operational level data assimilation and forecasting applications. These157

applications pose a new set of additional challenges. Firstly, in real world applications158

the true state is typically unknown. What is known are incomplete and noisy estimates159

of the true state, either directly through observations (which are affected by random160

and systematic errors of their own) or indirectly through analyses produced by a data161

assimilation system (which are themselves affected by model and observation errors).162

Secondly, and possibly more importantly, the dimensions of the analysis and forecast163

system in operational NWP are very large. In the current Integrated Forecasting164

System (IFS) used at ECMWF, the size of the model state vector is O(1010) and the165

size of the analysis control vector is O(108). These numbers are orders of magnitude166
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larger than those for typical low or intermediate complexity models discussed in the167

literature and they pose a new set of practical and conceptual questions. The aim168

of this work is to give some initial and, at this stage, necessarily tentative answers169

to these questions. The main conclusion that we derive from the results presented170

in the following is that, while a considerable amount of work still needs to be done,171

there is a concrete prospect to successfully integrate ML solutions inside the 4D-Var172

machinery of state-of-the-art operational NWP systems like the IFS and, by doing so,173

of significantly improving their analysis accuracy and their forecast skill.174

This paper is organised as follows. In Section 2 we describe the ML methodology175

used in this work and the results achieved in terms of the predictive properties of176

the ML model. In Section 3 we examine the structure of the model error tendency177

predictions of the ML model and compare them to the predictions of the forthcoming178

operational version of WC-4DVar. In Section 4 we examine the results of using the179

ML-derived model error tendency predictions in cycled 4D-Var experiments, both as180

a stand-alone replacement of the WC-4DVar estimates and in conjunction with WC-181

4DVar. In Section 5 we discuss these results further in terms of their implications for182

our future research and, more generally, in the context of the current research effort183

to integrate ML tools in the NWP chain. Conclusions are offered in Section 6.184

2 Machine Learning Methodology and Results185

2.1 Set-up of the regression problem186

The first task in a regression setting is to identify the set of predictors and187

predictands that are most relevant (in ML terminology, the examples (X,Y) of the188

supervised learning problem). As remarked in the introduction, in a real-world set-189

ting we do not have access to the true model error predictands (Y), thus we need to190

find suitable substitutes. Generally speaking, the fundamental sources of information191

about model error are observations. In a data assimilation context, we can access192

this information directly in observation space (through background, O-B, and analy-193

sis, O-A, departures) or mediated by an analysis (through analysis increments fields,194

A-B). In this work we have chosen the second option, mainly because it is technically195

easier to implement, the increments have global, homogeneous coverage and are al-196

ready available in the space of the IFS model variables: temperature (t), logarithm197

of surface pressure (lnsp), vorticity (vo), divergence (d), specific humidity (q)). We198

still think, however, that a direct use of observation departures would be a direction199

worth pursuing in the future. We remark here that this idea of using timeseries of200

analysis increments’ fields to estimate the predictable component of model error is not201

new in the meteorological literature. For example, one of the algorithms proposed in202

Dee (2005) for the correction of model bias in a cycled data assimilation framework203

explicitly involves using an online model error estimate based on a running mean over204

past analysis increments (e.g., Eqs (43, 44) in Dee, 2005).205

We can broadly consider two classes of predictors (X). The first, which we206

call “climatological”, comprises predictors that do not depend on the state of the207

flow. In this work, our climatological predictors are the set: (latitude, longitude,208

time of the day, month). This set of predictors aims at capturing that part of model209

error which is related to geographical location, to the diurnal cycle and to the seasonal210

cycle. The other class of predictors used in this work are called “state” predictors.211

These are predictors that are meant to represent the part of model error linked to212

the large scale state of the flow, e.g. oceanic stratocumulus areas, Intertropical Con-213

vergence Zone, extra-tropical cyclonic areas, etc. In this first implementation, and214

with an operational application in mind, we have chosen the vertical columns of the215

background forecast fields of the subset of state variables of the model whose analysis216

increments are also used as predictands (i.e., t, lnsp, vo, d, q). This choice is practical,217
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but it can be potentially extended to other state variables and also to the use of state218

variables valid at different times. An example of possible avenues for expanding the219

set of state predictors is discussed in Section 2.2.220

Connected with the choice of analysis and forecast fields as (a component of the)221

predictors and predictands, is the choice of horizontal spatial resolution for the fields222

whose vertical columns are used in the regression (see Figure 1 for a schematic of223

the ANN structure). In this work we have selected a resolution in spectral space of224

Triangular spectral truncation 21 (T21), which corresponds to an approximate grid225

spacing of 900 km on a reduced quadratic Gaussian grid. This choice is motivated by226

both practical and fundamental reasons. On the practical side, the coarse resolution227

chosen here facilitates the training phase of the ANN as it keeps its memory and com-228

putational requirements at a manageable level (in this work we did not have access to229

supercomputing resources for the training of the ANN). On the science side, this choice230

is motivated by the findings in Laloyaux, Bonavita, Dahoui, et al. (2020); Laloyaux,231

Bonavita, Chrust, & Gürol (2020) that only large scale model errors are predictable in232

a weak constraint 4D-Var framework. Additionally, there are fundamental arguments233

from ergodic dynamical systems theory that suggest that only large scale features of234

model error can be learned statistically. We will come back to these arguments in the235

discussion in Section 5.236

2.2 Training the ANN237

The training of the artificial neural networks (ANN) was conducted on a ded-238

icated dual GPU workstation (NVIDIA Quadro GV100) using the open source deep239

learning backend Tensorflow (version 1.14.0, Abadi et al., 2016) and its high-level240

Python interface Keras. Initial experiments were conducted on an Intel i5 CPU-based241

workstation. The relative speed-up in the training phase achieved on the GPU sys-242

tem was a factor of approx. 3. The training dataset consisted of operational analysis243

increments and background forecasts collected over the whole year of 2018 every 36h244

(i.e., using one every three of the available analyses of the ECMWF operational 12-245

hourly assimilation cycle) at T21 resolution. The climatological predictors defined in246

Section 2.1 were extracted from the grib headers of the state predictors fields. The247

validation dataset was composed in the same way using a short two-months period248

from 1 January 2019. This dataset was used to get an indication of appropriate hyper-249

parameters’ values. The test dataset used for verifying the performance of the ANN250

was composed by the analysis increments and background forecasts of a three and half251

month period starting on the 1 April 2019.252

The statistical regressions have been computed separately for the three set of
predictands and the related state predictors: mass (t, lnsp), wind (vo, d) and humid-
ity (q), leading to three separate ANN models. The reason was again to reduce the
computational and memory cost of the learning phase. This will be reviewed in the
future, but we do not expect to see large benefits from performing a combined regres-
sion on the whole set of predictands as the statistical signatures of mass-wind error
cross-correlations are typically small (Hamrud et al., 2015). We have tested two types
of regression models. One is a standard linear regression with full connections between
predictors and predictands. This implements the regression model in Equation 6. The
number of trainable parameters is the number of input predictors times the number
of output predictands (dimension of weight matrix W) plus the number of predic-
tands (bias vector b). Considering for example the case of the full neural network
for the mass variables (t, lnsp) with the current IFS number of vertical levels (137)
this implies a number of trainable parameters equal to 142× 138 + 138 = 19734. The
number of vertical profiles in the training dataset is O(106), which, as we will see, is
enough to prevent over-fitting. The other regression model is a nonlinear model where
a nonlinear transformation is applied element-wise to the output of Equation (6) on

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems

ANNs of increasing depth. The nonlinear transformation is modelled by the REctified
Linear Unit (RELU) function, expressed by the function:

Relu(x) = max(0,x) (8)

The nonlinear transformation in Equation (8) is applied to all layers of the ANN except253

the output layer. In the terminology we adopt in the following, relu one layer is the254

fully-connected ANN composed of two layers: an input layer where we use the nonlinear255

transform Equation 8 and a linear output layer. Similarly, relu two(three) layers refer256

to the fully connected ANN derived from relu one layer ANN through the addition of257

one (two) hidden nonlinear layer between input and output. In our terminology, the258

cardinality refers thus to the number of nonlinear layers in the ANN and not to the259

number of hidden layers of the model, as it is more common in the ML literature.260

The minimiser used in the training is Adam (Kingma & Ba, 2014), which is261

an adaptive version of stochastic gradient descent (SGD). We found it to be gener-262

ally able to show more monotonous convergence properties and require less tuning of263

its hyper-parameters (learning rate and decay rates) than standard SGD and other264

adaptive methods available in the Tensorflow toolbox. Regularisation is also an im-265

portant aspect of deep learning methodology. In our case we found regularisation to be266

only moderately helpful, mainly improving monotonicity of convergence and slightly267

improving generalisation power of the model. After some trials, we have settled on268

weight decay for the linear regression model and dropout (Srivastava et al., 2014) with269

a dropout rate of 20% for the nonlinear models. This relative lack of sensitivity to270

regularisation methods is likely due to the relative shallowness of the ANN we have271

used and the fact that the size of our training dataset is one to two orders of magnitude272

larger than the number of model parameters.273

As it is standard in regression settings, the Mean Square Difference between
predicted and actual model errors is minimised during training. In order to give a
more expressive view of the predictive capability of the ANN we present training
results in terms of the coefficient of determination, which represents the proportion of
total variance in the training sample that is explained by the model

R2 = 1− SSred
SStot

(9)

where SStot =
∑m
i=1(yi− ȳ)2 is the total Sum of Squares (proportional to the sample274

variance) and SSres =
∑m
i=1(yi−f i)2 is the residual Sum of Squares. In a perfect model275

scenario where the model is able to accurately predict every instance of the sampling276

dataset, R2 = 1. As our model error generating processes are inherently stochastic,277

even a perfect model, i.e. a model that makes predictions sampling from the true278

error generating distribution, will produce some error, so that R2 will in general be279

smaller than 1 (this irreducible error is sometimes called Bayes error (Goodfellow et280

al., 2016)). Note also that a baseline model that always predicts the average value of281

the sampled predictand ȳ has a R2 = 0 and models that do worse than this baseline282

will have negative R2. The R2 coefficient has also been used in this work as stopping283

criterion in the training to avoid overfitting (i.e., training is stopped when R2 has not284

increased over the previous 20 epochs). In Figures 2, we present the results of the285

ANN training for the three sets of model error tendency predictands: (t, lnsp), (vo,286

d) and q. State and climatological predictors are used which means that the column287

background forecast fields as well as the metadata (latitude, longitude, time of the288

day, month of year) are selected as the input of the neural network. From this set of289

training and test results we draw the following conclusions:290

• The mass errors (t, lnsp) are the most predictable: approximatelly 14% of the291

variance of the analysis increments of the test dataset is predicted by the best292

ANN model;293
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• The wind errors (vo, d) have lower predictability, with the best ANN accounting294

for ∼ 5% of the variance of the analysis increments of the test dataset;295

• The humidity errors (q) have the lowest predictability. Even the best ANN296

has a R2 not significantly larger than zero. This implies that it has no better297

predictive skill than a baseline model using the mean analysis increment of the298

training dataset;299

• The predictive power of the ANNs increases going from linear to nonlinear mod-300

els of increasing depth. The improvements are very large (∼ 100%) going from301

the linear to the nonlinear regression with one nonlinear layer and saturate with302

the relu three layers model. Adding more nonlinear layers does not produce303

further improvements in test dataset R2 (not shown).304

These results confirm that estimating model error in the IFS at the rather coarse305

scales we are considering here is a mildly nonlinear problem, which can partly explain306

the success of WC-4DVar in its current configuration (Laloyaux, Bonavita, Dahoui,307

et al., 2020; Laloyaux, Bonavita, Chrust, & Gürol, 2020). In the current WC-4DVar308

configuration only mass and (to a lesser extent) wind model errors are estimated and309

corrected, which also seems a good choice based on the results in Figure 2.310

An interesting aspect of any regression model is to understand which of the pre-311

dictors have the most predictive power. We have not looked into this aspect in great312

detail, but we have trained two separate regression models, one using only climatolog-313

ical predictors, the other only using state predictors. In Figure 3, we present results314

for the (t, lnsp) predictands. From this plot we can conclude that the state predictors315

are more informative than climatological predictors (R2state ∼ 10%, R2climat ∼ 8%)316

but both set of predictors contribute independent information to the final regression317

model (R2full ∼ 14%).318

2.3 Training the ANN with an Augmented State Predictor Set319

There are several possible avenues for extending the set of predictors in our320

regression problem. One way would be to use the whole set of state variables con-321

sidered in this work (t, lnsp, vo, d, q) as predictors in each regression problem. This322

would amount to try to leverage the cross-variable correlations in the model error esti-323

mates. In practice, mass-wind error cross-correlations are found to be small on average324

(∼ 10%, Hamrud et al., 2015), so a considerably larger training dataset would likely325

be required to estimate these small covariances. In a similar vein, the set of state pre-326

dictors could be augmented to include any other state variables that could potentially327

co-variate with the predictands, for example vertical velocity, precipitation rate, liquid328

water content, etc. Another option which we have started to investigate, is to extend329

the set of state predictors in time. The intuition here is to try to extract information330

on current errors not only from the forecast state valid at the same time but on its331

recent evolution. A simple and relatively inexpensive way of achieving this result is332

to augment the set of state predictors, which are 12-hour background forecast fields,333

with the analysis fields from which they were forecasted. This implies an approximate334

doubling of the size of the predictors (e.g., for (t, lnsp) from 142 to 280). An example335

of results from the training of ANNs using this flavour of augmented predictor set336

is shown in Figure 4. This plot suggests that the ANN trained on the augmented337

predictor set has more predictive power than the ANN trained on the standard set338

(R2 ∼ 15% vs 14%). A similar improvement is seen for the wind error predictands339

(R2 ∼ 6% vs 5%), while no improvement is visible in the humidity ANN results (not340

shown).341
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3 Predicting Model Error with Artificial Neural Networks342

In this section we present a series of diagnostic results in order to give a first343

impression of what the model error tendencies predicted by the trained ANNs look344

like and how they compare with those estimated by WC-4DVar and also visible in345

observation departures. The plots presented in the following refer to one week of data346

but are indicative of the ANN results over the test period. Results shown here refer347

to relu three layers ANNs trained with the standard set of climatological and state348

predictors, not with the extended set described in Section 2.2. For comparison, we349

show weak-constraint 4D-Var model error estimates for an experiment run over the350

same period and initialised from the operational IFS.351

In Figures 5a and 5b, we present a weekly average of the temperature model error352

tendencies estimated by the ANN (left) and by WC-4DVar (right). To be consistent353

with current IFS WC-4DVar practice, the ANN model error tendencies are derived354

from the ANN predicted analysis increments divided by the length (in hours) of the355

assimilation window. The current version of WC-4DVar is not active below model level356

60 (approx. 100 hPa); the ANN is active everywhere and in the troposphere (below357

100 hPa) it shows patterns of warm and cold error layers with larger intensities in the358

boundary layer. In the layer between model level 60 to 30 (approx. 100 to 10 hPa)359

both WC-4DVar and the ANN show a general tendency to warm the atmosphere, more360

noticeably in the tropics. This is consistent with the cold model bias seen in radiosonde361

temperature measurements in the lower troposphere (see below). Above model level362

30 both ANN and WC-4Dvar show a generally negative (cooling) tendency, which is363

also consistent with the warm model bias with respect to radiosonde measurements364

in this layer of the model atmosphere. In the vorticity and divergence model error365

plots (Figures 5c-f) the corrections estimated by the ANN and WC-4DVar are smaller366

and more homogeneous. It is difficult to see clear physically interpretable patterns367

apart from a general tendency to decrease both parameters and the hint of a coherent368

negative-positive-negative divergence pattern in the tropical troposphere (Figure 5e).369

This last pattern appears to be a robust feature of the ANN regression (it is present370

in all the weekly averages computed over the test period, not shown), and thus it371

likely points to local issues in the current parameterised convection scheme, the data372

assimilation system, or both.373

To obtain further insight in the spatial variability of the model error tendencies374

predicted by the ANN, we present in Figure 6 the weekly averaged plots of temperature375

model error tendencies from the ANN and WC-4DVar at model level 24 (approx. 5376

hPa) and 50 (approx. 50 hPa). While the globally averaged values agree, the spatial377

structures are different: in particular, the ANN tendencies are larger scale and less378

intense than those of WC-4DVar. This is to be expected, as the WC-4DVar estimates379

are online estimates, and thus more sensitive to existing flow conditions than the ANN380

estimates.381

It is also interesting to see the geographical distribution of the ANN-derived382

model error tendencies for model levels where the current WC-4DVar does not produce383

an estimate (i.e., below 100 hPa). An example is given in Figure 7 where the ANN384

estimates are shown for model levels close to 100 (a), 500 (b) and 850 hPa (c). From385

these plots one can see clear signatures of errors connected to downstream flow from386

the main mountain ranges (Rockies (b), Himalayas (a)), to convectively active areas387

(Amazons (b), Maritime Continent (b)), to storm tracks regions (south hemisphere388

storm tracks (b)) and to marine stratocumulus areas off the western seaboards of389

continental land masses (c). These features all point to predictable, flow-dependent390

errors in the model which the ANN regression tries to correct and they can be viewed391

as an additional model diagnostic tool.392
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Surface pressure is another component of the state vector whose model errors393

are not estimated by the current version of WC-4DVar but is an output of the ANN394

regression. Two examples of the ANN estimates of surface pressure errors are presented395

in Figure 8, one from a weekly average in July 2019 (a), the other from a week in396

November 2019 (b). It is interesting that while some features of the estimated surface397

pressure error appear stationary (e.g., oceanic western boundaries, convective areas398

like the maritime continent and the Amazons, etc.), seasonal variability is visible in399

other parts of the Globe where the underlying meteorology is significantly different400

and more sensitive to the seasonal cycle (e.g., Antarctic region, Siberian landmass).401

Again, each of these signals can provide potentially valuable diagnostic indications402

as they point to systematic problems in the short-range forecast and/or the use of403

observations in those areas. How these diagnostics produced by the applications of404

ANN and WC-4DVar compare with those derived from more traditional approaches405

based on the accumulation of data assimilation statistics (Rodwell & Jung, 2008) is406

an interesting line of research that we defer to future work.407

4 Testing ANN in the IFS 4D-Var408

While the analysis of model error predictions produced by an ANN can pro-409

vide useful diagnostics of model error patterns and hint at their underlying drivers, a410

more stringent test of the ANN potential is whether its model error predictions can411

be gainfully used in a data assimilation context. We recall from Equations (2) and (3)412

that the current ECMWF WC-4DVar works by estimating a constant in time model413

error correction during the 4D-Var minimisation and then using that correction as a414

model forcing during the successive first guess trajectory integration. As explained in415

Section 2, the ANN used in this study has been trained to predict the analysis incre-416

ments (A-B) of the operational IFS, whose systematic component can be viewed as an417

estimate of the cumulated model error over the 12 hour integration from one analysis418

update to the next. By dividing this quantity by the number of timesteps used in419

the 12 hour integration we obtain an estimate of the model error tendencies, under420

the same assumptions of time constancy over the assimilation window length of the421

ECMWF operational WC-4DVar. There are at least two main ways in which one can422

use the offline model error tendencies produced by the ANN. The first option, called423

NN SC in the following, is based on a strong-constraint 4D-Var where the model first424

guess trajectories are corrected by the ANN model error tendencies (see Algorithm 1).425

The second option, called NN WC, is based on the weak-constraint 4D-Var presented426

in the Equations (2) and (3) where the model forcing η is initialised by the ANN427

tendency (see Algorithm 2). The model forcing that comes out of the minimisation428

of Equation (3) which contains the ANN tendency updated by the weak-constraint429

4D-Var minimisation is not carried forward in time. In the successive assimilation430

window, the model forcing η is initialised with the corresponding ANN tendency valid431

12 hours later. It is also important to note that since current WC-4DVar is active only432

above 100 hPa, the model error tendencies below 100 hPa derive entirely from the433

ANN estimates in both NN SC and NN WC experiments. The results shown in the434

following come from assimilation and forecast experiments conducted with the latest435

available IFS cycle at the time of writing (Cycle 47R1, May 2020) and at the opera-436

tional configuration for both the 4D-Var analysis step and the forecast step (TCo1279437

spectral truncation, approx. 9 km grid spacing), over the period 16-07-2019 to 24-08-438

2019. The two experiments making use of the ANN model error estimates (NN SC439

and NN WC) are compared with an experiment using the standard operational weak440

constraint configuration (denoted “WC”) and a strong-constraint 4D-Var used as a441

baseline.442

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Algorithm 1 NN SC

Loop over the assimilation cycles from 16-07-2019 to 24-08-2019 :
Loop over the physical variables (T,lnsp), (vo,d) and q :

Compute the model error forcing with the trained ANN at valid times
Concatenate the outputs in a vector ηb

Minimise the strong constrain 4D-Var

JSC(x0) =
1

2

(
x0 − xb0

)T
B−1

(
x0 − xb0

)
+

1

2

N∑
k=0

(Hk(xk)− yk)
T

R−1
k (Hk(xk)− yk)

where the model trajectories are computed as

xk =Mk,k−1(xk−1) + ηb for k = 1, . . . , N

Algorithm 2 NN WC

Loop over the assimilation cycles from 16-07-2019 to 24-08-2019 :
Loop over the physical variables (T,lnsp), (vo,d) and q :

Compute the model error forcing with the trained ANN at valid times
Concatenate the outputs in a vector ηb

Minimise the weak-constrained 4D-Var

JWC(x0,η) =
1

2

(
x0 − xb0

)T
B−1

(
x0 − xb0

)
+

1

2

N∑
k=0

(Hk(xk)− yk)
T

R−1
k (Hk(xk)− yk)

+
1

2

(
η − ηb

)T
Q−1

(
η − ηb

)
where the model trajectories are computed as

xk =Mk,k−1(xk−1) + η for k = 1, . . . , N
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4.1 Time evolution of the model error estimates443

Figure 9a shows the timeseries of the global mean model error correction esti-444

mated with weak-constraint 4D-Var between 15 and 24 August 2019. The model error445

is initialised at the beginning of the experiment from operations and is then cycled446

over the 12-hour assimilation windows. Weak constraint 4D-Var corrects the warm447

bias in the upper stratosphere and the cold bias in the mid/lower stratosphere. It448

correctly captures the transition layer (20 to 10 hPa) where the model bias changes449

from cold to warm. Figures 9b and 9c present the same diagnostic for NN SC and450

NN WC respectively. The transition level between the cold and the warm bias lay-451

ers is estimated at the same pressure level as in weak-constraint 4D-Var. The main452

difference is in the upper stratosphere where the neural network produces a positive453

correction around 2hPa as this signal is present in the analysis increments used to454

train the neural network.455

4.2 Evaluation of mean errors456

One of the main successes of the new WC-4DVar introduced in IFS Cycle 47R1457

has been the drastic reduction (up to 50%) of temperature biases in the ECMWF458

stratospheric analyses (Laloyaux, Bonavita, Dahoui, et al., 2020). The first set of459

diagnostics presented in Figure 10 aims at understanding if and in what measure these460

results can be achieved using an ANN (alone or as a first guess). The general impression461

from these plots is that the two ANN-driven WC-4DVar experiments produce similar462

results to one another and manage to broadly replicate the effects of current IFS463

WC-4DVar (though a closer look points to a relative better behaviour of WC-4DVar464

at certain heights/pressure levels, e.g. radiosonde temperature at 5 hPa). Apart465

from temperatures, current WC-4DVar also corrects for wind model errors in the466

stratosphere. The mean wind observation departures presented in Figure 10c confirm467

that WC-4DVar is able to correct for systematic wind model errors above 50 hPa,468

where it is fully active, while results are mixed in the transition layer between 100 and469

50 hPa. The two ANN driven experiments show similar results in the layer above 50470

hPa, but are also able to substantially reduce model biases in the atmospheric column471

down to approx. 700 hPa. In Figure 10e we present results for surface observations.472

The only significant differences are seen here in the departures for surface pressure473

observations. For these pressure observations, background departures for strong and474

weak constraint 4D-Var are almost identical, which is not surprising since the mass475

adjustments that current WC-4DVar performs in the stratosphere have small impact on476

the total column weight. On the other hand, the ANN driven WC-4DVar experiments477

show an approximate halving of the surface pressure observed biases, which confirms478

that the ANN derived corrections are also effective in the troposphere and for the479

surface pressure field.480

4.3 Evaluation of random errors481

The ability of WC-4DVar and its ANN-driven variants to effectively debias the482

first guess trajectories should in principle improve the successive analyses and fore-483

casts by allowing the assimilation to make better use of the available observations. To484

investigate this aspect of the assimilation system performance we start by showing in485

Figure 11 the normalised standard deviation of analysis (O-A) and background (O-B)486

departures for AMSU-A radiances (a) and radiosonde temperature observations (b).487

The AMSU-A radiometer on board multiple operational and research meteorological488

satellites is a microwave radiometer whose channels are sensitive to deep layers of489

the atmosphere. The channels used in the experiments have weighting functions that490

peak in the troposphere (ch. 5 to 8) and the stratosphere (ch. 9 to 14). From the491

AMSU-A plot it is apparent that current WC-4DVar is more effective in the strato-492

sphere and upper troposphere than either of the ANN-driven 4DVars, and equivalent493
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to the NN WC set-up in the middle to lower troposphere (the NN SC setup performs494

consistently worse). The picture is more nuanced for radiosonde observations, where495

the ANN 4DVars appear to perform significantly better than current weak and strong496

constraint 4DVar in the lower troposphere and comparably above. The results from497

other independent observing systems sensitive to atmospheric temperature not shown498

here (e.g., hyperspectral sounders) appear to confirm the advantage of the current WC-499

4DVar in the middle and lower stratosphere and suggest an improved performance of500

NN WC in the middle and lower troposphere. We note, additionally, that the results501

from the stratospheric-peaking satellite radiances need to be taken with some caution,502

as they are influenced by the evolution of the corresponding bias correction coeffi-503

cients. For the experiments reported in this work the bias correction coefficients have504

been initialised by a long-running pre-operational WC-4DVar, and thus are likely to505

be sub-optimal for the other configurations over most or all of the test period. In fact,506

no degradations are apparent for the ANN driven experiments when the verification507

is conducted against non-bias corrected observing systems (radiosondes, GPS-RO).508

For conventional wind observations (Figure 11c) there is hardly any significant dif-509

ference among the four experiments. For satellite atmospheric motion vector winds510

(Figure 11d) the differences are clearer: the two ANN driven experiments improve511

results over standard weak and strong constraint 4D-Var in the boundary layer and512

in the Upper Troposphere Lower Stratosphere (UTLS) layer. This is consistent with513

results seen in the mean wind errors plots (Figure 10c 10d). The statistics for random514

errors affecting humidity sensitive observations are not presented as they generally515

do not show appreciable differences among the experiments. This is to be expected516

because neither the current WC-4DVar nor the two ANN-driven versions apply any517

additional model forcing for humidity, thus any change in behaviour would only be an518

indirect effect of changes to temperature/wind evolution.519

On the other hand, there are significant changes in the diagnosed background520

error standard deviations for surface pressure observations (Figure 11e). Consistently521

with the results for the mean errors, the NN WC version of ANN-driven 4D-Var sig-522

nificantly reduces random errors for surface pressure observations with respect to the523

reference strong and weak constraint 4D-Var. It is also to be noticed that NN WC524

uses 6% more Dribu (Drifting Buoys) observations than the reference SC, due to the525

fact that more observations pass first guess quality control checks (This is what the526

red caption in the plot refers to). This is an indication that the surface pressure model527

error correction is particularly useful in the Ocean, where the observing system is528

significantly sparser than over land and thus model errors play a bigger role in the529

forecast error budget.530

4.4 Evaluation of forecast skill531

Here we concentrate on two aspects of the forecast performance of the ANN532

driven WC-4DVar experiments. The first aspect is whether they are able to replicate533

the improvements in stratospheric temperature reductions of forecast bias produced534

by the recent version of WC-4DVar (Laloyaux, Bonavita, Dahoui, et al., 2020). 10-535

day forecasts are initialised using the analysis from strong-constraint 4D-Var, weak-536

constraint 4D-Var, NN SC and NN WC between 10 and 24 August 2019. The model537

used to compute these forecasts is not corrected by any forcing estimated in weak-538

constraint 4D-Var or neural networks. Given the possible problems of correlated anal-539

ysis and forecast errors that a standard own-analysis verification is likely to cause,540

we present forecast verification results against independent GPS-RO derived temper-541

ature profiles. Figure 12 shows the difference in temperature forecast RMSE after 72542

hours between forecasts initialised by NN SC and strong-constraint 4D-Var (a) and543

by NN WC and strong constraint 4D-Var (b) and by weak-constraint 4D-Var and544

strong-constraint 4D-Var (c). The improvements obtained by weak-constraint 4D-Var545

are replicated by the two neural networks to a large extent. Degradations observed546
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at different pressure levels and latitudes are mainly not statistically significant. Com-547

paring the two neural network approaches, one can see that weak-constraint 4D-Var548

used in NN WC mitigates the degradation observed in NN SC. Longer experiments549

are currently running to improve the statistical robustness of these results.550

The other main question that we would like to answer is whether the introduc-551

tion of model error forcing in the troposphere in the ANN driven 4DVar experiments552

is beneficial or not in terms of synoptic performance of the forecast. This is of par-553

ticular interest in light of the fact that previous attempts to extend the current WC-554

4DVar formulation to the full atmospheric column resulted in significant degradations555

of various aspects of tropospheric forecast skill for the reasons explained in Laloyaux,556

Bonavita, Dahoui, et al. (2020). In Figure 13, we present two standard measures of557

synoptic performance for the mass field. Both 500 hPa geopotential (a-b) and Mean558

Sea Level Pressure (c-e) forecast errors for either of the ANN configurations appear559

slightly better than the reference strong and weak constraint 4D-Var, though statis-560

tical significance is only reached sporadically in the relatively short test period used561

here. Forecast performance for the wind field (not shown) is similar to that of the mass562

field presented earlier: No significant degradation is apparent, and some localised im-563

provements consistent with the positive indications coming from the observation space564

assimilation diagnostics presented in Section 4.1 and 4.2 are also visible.565

5 Discussion and research perspectives566

The work presented in this paper and recent developments in 4DVar methodol-567

ogy (Laloyaux, Bonavita, Dahoui, et al., 2020; Laloyaux, Bonavita, Chrust, & Gürol,568

2020) are based on the idea that an effective strategy to deal with model error in569

NWP is to partition it in two components: a) a stochastic, small scale (temporally570

and spatially) component and b) a predictable component active on larger and longer571

spatial/temporal scales. The random component of model error is typically represented572

with physically-based model error simulation models (Leutbecher et al., 2017) which573

are derived from an understanding of the approximations done in the development574

of the forecast model and an attempt to sample from those sources of uncertainties.575

These stochastic models of model error are then applied both in an ensemble data as-576

similation framework (Bonavita et al., 2012; Bowler, 2017) and ensemble forecast mode577

(Leutbecher et al., 2017). In ensemble data assimilation, their net effect is to produce578

a flow-dependent increase of ensemble spread and an associated improvement in the579

ensemble forecast reliability budget, which is usually under-dispersive (Houtekamer &580

Zhang, 2016; Bonavita et al., 2012; Bowler, 2017). These model error parameterisa-581

tions are targeted at improving the ensemble estimate of the second order moment582

of the forecast error pdf. They might also be able to indirectly affect the ensemble583

forecast mean due to nonlinear effects arising during the model integrations, but these584

effects are small in a data assimilation cycling context (and often explicitly discarded585

through re-centring techniques). The second component of model error, which we586

have considered in this work, is the large scale error that evolves slowly over the time587

scale of the assimilation window length. We posit that this error is predictable, i.e.588

we can estimate the first moment of its distribution through statistical estimation589

techniques. Weak constraint 4DVar is an on-line example of a statistical estimation590

technique for dealing with the systematic errors of the model. The machine learning591

models described in this paper are examples of off-line statistical models aimed at592

achieving similar goals. A variety of hybrid configurations with a combination of on-593

line and off-line estimators are also possible: the WC-4DVar configuration where the594

ANN model error estimate is used as first guess and background for the WC-4DVar595

minimisation (NN WC) is just an initial, proof-of-concept attempt. Similarly to the596

stochastic model error parameterisations, the use of WC-4DVar or its ML hybrids can597

improve reliability in an ensemble assimilation and forecasting system, but through598
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a different mechanism, namely reducing the total error budget by reducing/removing599

the systematic error components.600

5.1 Research perspectives601

The preliminary results presented in the previous section show that combining602

ANN models and WC-4DVar holds promise of improving on each technique used in603

isolation. In particular, it appears that a hybrid ANN–WC-4Dvar setup can be con-604

figured to effectively reduce model error throughout the atmospheric column and not605

only in the stratosphere. The specific configuration of this hybrid ANN-WC-4DVar606

is being currently investigated and the findings of this research will be reported in a607

follow-up paper. Other aspects of the methodology presented in this work can be fur-608

ther improved. Of fundamental importance is the choice of predictands and predictors609

for the model error regression problem. In terms of model error predictands, we have610

chosen to use analysis increments in state space. This idea is not new in NWP (Dee,611

2005) and stems from the somewhat obvious consideration that only observations can612

(directly or indirectly) tell us something useful about model error with respect to the613

real atmosphere. This idea has been more recently revived in an ensemble data assim-614

ilation and forecasting context by Bowler (2017), following earlier work by (Piccolo615

& Cullen, 2015). With respect to these later works, our application differs in two616

important aspects: a) it can also be applied in a deterministic, perfect model assim-617

ilation and forecasting system, and b) its estimates are derived from flow-dependent618

regressions. This second property is important not only because the flow-dependent619

component adds more predictive power than that coming from climatological predic-620

tors (Section 2), but because it opens the perspective of using ANN models as an621

online, flow-dependent model error correction forcing term. This will be potentially622

interesting for improving predictions at longer forecast ranges than those considered623

in this work, as the accuracy and reliability of ensemble forecast predictions at long624

forecast scales are notoriously affected by the model systematic errors. At the current625

stage of research it is unclear whether this application of ANN, WC-4DVar or their626

hybrids will be practically successful. This is also in view of the complex and typically627

non-linear model error interactions that arise between the various components of a628

coupled Earth System model during extended integrations. We note however, that629

recent results in both medium range NWP (Laloyaux, Bonavita, Dahoui, et al., 2020)630

and seasonal prediction (Ham et al., 2019) have already shown that the introduction of631

pure or hybrid ML/DL models can lead to significant improvements in specific aspects632

of forecast performance.633

The choice of analysis increments as model error predictands was mainly dic-634

tated by reasons of convenience and practicality. Another option is to directly use635

observation departures. This would have the advantage of avoiding another source of636

errors from the data assimilation system. On the other hand, one is limited to the637

relatively small subset of observations which are thought not to be affected by signifi-638

cant systematic errors themselves (e.g., radiosondes, GPS-RO), issues connected with639

their spatial and temporal homogeneity and more complex relations of the observed640

to the state variables. Still, we believe these issues can be addressed to some extent641

and a separate research effort is ongoing in this direction at ECMWF. Another area642

of development regards the type and choice of predictors used for our regression prob-643

lem. As shown in Section 2.2 a judicious choice of additional predictors can further644

improve the predictive power of the ANN model and, likely, its impact on the IFS anal-645

yses and forecasts. Additional predictors can be envisaged which exploit additional646

sources of predictability of the atmospheric flow, especially those coming from fixed647

or slow-evolving boundary conditions (e.g., orography, land use, sea surface tempera-648

tures, etc.). In the context of choosing appropriate sets of predictors and predictands,649

their geometry and spatial resolution, the issues connected to overfitting and the so-650
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called “curse of dimensionality” become prominent. We discuss them in the following651

sub-section.652

5.2 Statistical regression and the curse of dimensionality653

As a type of statistical learning, machine learning is exposed to the problem of
the “curse of dimensionality”. Loosely speaking, this means that for systems with a
large number of degrees of freedom, the number of available training examples will
always be much smaller than the number of possible configurations in state space.
Standard results from ergodic theory of dynamical systems (Cecconi et al., 2012) show
that, for a dissipative nonlinear dynamical system like the atmosphere (or a state of
the art NWP model), the minimum length M of the time series of past observed states
(i.e., the size of the training dataset) necessary to find an analogue of the current state
within an error distance measure ε has a scaling law of the form:

M ∼
(
L

ε

)Da

(10)

where L represents a measure of the variability of the system and Da is the654

effective dimension of the system attractor, which can be a non integer number (i.e.,655

a strange attractor). The exponential dependence of the training dataset size on the656

effective attractor dimension makes a fully statistical approach to forecasting unfeasible657

(Van den Dool, 1994). For machine learning applications to NWP and climate they658

indicate that an acritical application of ML tools is not likely to give good results659

unless effective mitigating strategies are put in place. There are at least two possible660

avenues to combat the curse of dimensionality. One is obviously to try to reduce661

the size of the regression or classification problem. This has motivated our choice to662

deal with the model error estimation problem, which can be framed as the problem663

of trying to identify a residual model which fills the gap between the actual forecast664

model and reality (cp. Eq. 2). It is reasonable to assume that the attractor dimension665

of the residual model is much smaller than that of the full model, as suggested, for666

example, in studies using reduced order models (Watson, 2019). The applicability667

of this assumption is further strengthened by the choice of using a coarse spatial668

resolution for the training dataset. This limits the modes of variability allowed in669

the regression and allows to train the ML model on a relatively small dataset and670

achieve good generalisation performance. The other standard tool to beat the curse671

of dimensionality is to use prior knowledge about the data generating distribution to672

suitably restrict the choice of the model space in which the machine learning algorithm673

is allowed to search for solutions citep(this is called the “hypothesis space” in machine674

learning literature). This is where expert knowledge of the problem at hand becomes675

valuable as there is no machine learning algorithm that is universally better on all676

possible tasks (The so-called “No free lunch” theorem Wolpert, 1996). With this in677

mind, we have chosen the avenue of training a fully connected ANN over atmospheric678

columns of predictor and predictand examples. The insight here is that it is important679

for the regression model to learn vertically balanced increments to avoid introducing680

spurious unphysical instabilities in the model evolution. This is also consistent with681

the way standard NWP and Climate Prediction models are currently formulated: the682

equations governing the model physical tendencies are typically formulated over model683

columns. Other approaches are possible, e.g. use Convolutional Neural Networks of684

the type that are currently popular in image recognition applications to try to learn685

spatial patterns on model levels. We leave this for future investigation. An additional686

advantage of our choice of predictors and predictands geometry is that it helps to687

drastically reduce the number of learnable parameters of the ANN model and thus the688

risk of overfitting the training dataset.689
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6 Conclusions690

Machine Learning and Deep Learning technologies have been applied success-691

fully in many disparate fields. These remarkable success stories have in the past few692

years generated interest in the NWP and climate communities to understand whether693

there is scope to apply ML/DL techniques in their respective fields. However, while694

a number of visionary, speculative papers have been published explaining the case for695

the application of ML/DL to NWP and climate, and an even greater number have696

investigated the use of ML/DL techniques in a variety of low-order models, very little697

work seems yet to have been undertaken to apply ML/DL methods to state-of-the-698

art, high resolution global circulation models such as those used in operational global699

NWP and climate. The work presented here aims at starting to fill this gap. The700

results presented in this paper show a first application of ML/DL tools to the problem701

of model error estimation and correction in a data assimilation context. Building on702

recent results obtained in a weak constraint 4D-Var framework (Laloyaux, Bonavita,703

Dahoui, et al., 2020; Laloyaux, Bonavita, Chrust, & Gürol, 2020) we show that the704

use of ANN-derived model error forecasts potentially allows to extend the benefits705

of the weak constraint formulation of 4D-Var to the troposphere, which had been an706

intractable problem since the introduction of WC-4DVar at ECMWF more than ten707

years ago. While these results need to be validated over longer testing periods and the708

technical infrastructure is not yet fully in place for reliable operational use, we believe709

these results to be promising enough to warrant actively pursuing this line of research710

further.711

From the vantage point of data assimilation in the geosciences, ML/DL do not712

introduce completely new or revolutionary ideas. In fact, ML/DL techniques and713

their theoretical underpinnings have much in common with the standard toolbox of714

variational data assimilation, though these similarities are partly obfuscated by the715

different nomenclature (Geer, 2020). What the most recent ML/DL wave of interest716

has brought about is the availability of a set of powerful, easy to use, open source717

libraries which greatly facilitate the application of these techniques to disparate fields;718

and a renewed awareness of the effectiveness of these techniques in many different con-719

texts. These newly available tools are undoubtedly helping the adoption of ML/DL720

techniques in the NWP community beyond already well-established areas such as e.g.721

NWP output post-processing and nowcasting (McGovern et al., 2017; Gagne et al.,722

2017; Rasp & Lerch, 2018). As discussed in Section 5, enthusiasm for adopting these723

new tools in core NWP tasks needs to be tempered by a careful appreciation of their724

fundamental limitations. Even with the huge increase in modern computational re-725

sources and the size of available training datasets, it is unlikely, for example, that a726

fully ML/DL-based forecast model will supersede the current knowledge-based fore-727

cast models. On the other hand, it is possible and even probable that knowledge-based728

models of the not-too-distant future will integrate ML/DL components for reasons of729

computational efficiency and possibly improved performance. At the same time, it is730

likely that ML/DL tools for model error estimation and correction like those presented731

in this work will play a major role in a variety of data assimilation and forecasting732

applications.733
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Figure 1. Diagram representing how the relu three layers ANN is built for the regression

over temperature and logarithm of surface pressure. Single columns plus metadata (latitude,

longitude, time of the day and month of the year) are extracted from the first guess and analysis

increment gridded fields to produce the input and the target of the neural network. Climato-

logical neural network uses only the metadata as input while state neural network uses only the

temperature and logarithm of surface pressure values as input. The full neural network com-

bines both information. All neural networks used in this work contain a certain number of fully

connected nonlinear layers and an output linear layer.
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Figure 2. Evolution of the R2 coefficient against the number of epochs during the training

of different ANN for the (t, lnsp) predictands (a), for the wind (vo, d) error set of predictands

(b) and for the humidity (q) error set of predictands (c). Dashed lines refer to R2 values over the

training dataset, continuous lines to R2 values over the test dataset.
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Figure 3. R2 coefficients computed during the training phase of the relu three layers ANNs

using only climatological predictors (green curves); only state predictors (blue curves); both sets

of predictors (red curves). Dashed curves show R2 coefficients for the training dataset, continu-

ous curves for the test dataset.
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Figure 4. R2 coefficients computed during the training phase of a relu three layers ANN for

the prediction of (t, lnsp) model errors using the standard set of predictors (red lines) and the

augmented set (blue lines). Dashed lines for the training dataset, continuous lines for the test

dataset.
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Figure 5. Vertical profiles from model level 15 (approx. 1 hPa) to model level 137 (bottom

model level) of longitudinal average of the temperature (a-b), vorticity (c-d) and divergence (e-f)

model error tendencies estimated by the ANN described in the text (left panels) and by WC-

4DVar from a pre-operational version of IFS cycle 47R1 (right panels). IFS model levels (20, 30,

60, 96, 137) correspond approx. to pressure levels (2 hPa, 10 hPa, 100 hPa, 500 hPa, surface).

Values are averaged over a one week period starting on 2019-07-20. The thick black line separates

negative tendencies (shades of blue) to positive tendencies (shades of red).
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Figure 6. Geographical maps at model level 24, approx. 5 hPa (a-b) and model level 50, ap-

prox. 50 hPa (c-d) of the temperature model error tendencies estimated by the ANN (left panels)

and by WC-4DVar from a pre-operational version of IFS cycle 47R1 (right panels). Values are

averaged over a one week period starting on 2019-07-20. Units in kelvin/h. The thick black line

separates negative tendencies (shades of blue) to positive tendencies (shades of red)
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Figure 7. As in Figure 6 for model level 60, approx. 100 hPa (a), model level 96, approx. 500

hPa (b) and model level 115, approx. 850 hPa (c).

–29–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 8. Geographical maps of the surface pressure model error tendencies estimated by the

ANN. Values are averaged over two one-week periods starting on 2019-07-20 (a) and on 2019-11-

16 (b). Units in hPa/hour. The thick black line separates negative tendencies (shades of blue) to

positive tendencies (shades of red)
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Figure 9. Time series of the global mean model error correction estimated with weak-

constraint 4D-Var (top), NN SC (middle) and NN WC (bottom) from 15 to 24 August 2019.
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Figure 10. Mean background departures for radiosonde temperature (a), radio occultation

bending angles (b), conventional wind observations (c), atmospheric motion vectors (d) and sur-

face observations (e) for the four experiments described in the main text (SC: blue; WC: green;

NN SC: black; NN WC: red). Values averaged over the 16-07-2019 to 24-08-2019 period. The

legend entries SYNOP P, METAR P and DRIBU P stand for surface pressure observations from

Synop stations, Metar stations and Drifting Buoys.
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Figure 11. Normalised standard deviation of background departures and background depar-

tures for AMSU-A radiances (a), radiosonde temperatures (b), conventional wind observations

(c), atmospheric motion vectors (d) and surface observations (e) for the four experiments de-

scribed in the main text (SC: reference 100%; WC: green; NN SC: black; NN WC: red). Values

averaged over the 16-07-2019 to 24-08-2019 period. The legend entries SYNOP P, METAR P

and DRIBU P stand for surface pressure observations from Synop stations, Metar stations and

Drifting Buoys).
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Figure 12. Difference in temperature forecast RMSE after 72 hours between forecasts ini-

tialised by NN SC and strong-constraint 4D-Var (a) and by NN WC and strong constraint

4D-Var (b) and by weak-constraint 4D-Var and strong-constraint 4D-Var (c). RMSE is computed

using radio occultation temperature retrievals and averaged between 10 and 24 August 2019. A

negative (positive) difference means that the new system reduces (increases) the forecast error

with respect to strong-constraint 4D-Var. Black dots indicate areas where the signal is significant

at the 95% confidence level.
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Figure 13. Left panel: Normalised forecast root mean square error of the 500 hPa geopoten-

tial in the southern (a) and northern (b) hemisphere, as well as normalised forecast root mean

square error of the mean see level pressure field in the southern hemisphere (c), tropics (d) and

northern hemisphere (e). Reference zero line is the strong constraint 4DVar experiment error

level. Values averaged over the 16-07-2019 to 24-08-2019 period. Verification is against own

analysis. Error bars denote 95% confidence levels.
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