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14CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France26

15Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology27

(JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan28

Corresponding author: Tatiana Ilyina, tatiana.ilyina@mpimet.mpg.de

–1–



manuscript submitted to Geophysical Research Letters

Key Points:29

• Predictive skill of the global ocean carbon sink due to initialization is up to 6 years,30

with longer regional predictability in single models.31

• Predictive skill due to initialization for the land carbon sink of up to 2 years is pri-32

marily maintained in the tropics and extra-tropics.33

• Anomalies of atmospheric CO2 growth rate are predictable up to 2 years and are34

limited by the land carbon sink predictability horizon.35
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Abstract36

Inter-annual to decadal variability in the strength of the land and ocean carbon sinks37

impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth38

rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduc-39

tion measures. Using a multi-model framework comprising prediction systems based on40

Earth system models, we find a predictive skill for the global ocean carbon sink of up41

to 6 years. Longer regional predictability horizons and robust spatial patterns are found42

across single models. On land, a predictive skill of up to 2 years is primarily maintained43

in the tropics and extra-tropics enabled by the initialization of the physical climate vari-44

ables towards observations. We further show that anomalies of atmospheric CO2 growth45

rate inferred from natural variations of the land and ocean carbon sinks are predictable46

at lead time of 2 years and the skill is limited by the land carbon sink predictability hori-47

zon.48

Plain Language Summary49

Variations of the natural land and ocean carbon sinks in response to climate vari-50

ability strongly regulate year-to-year variations in the growth rate of atmospheric car-51

bon dioxide (CO2). Information on the near-term evolution of the carbon sinks and CO252

in the atmosphere is necessary to understand where the anthropogenic carbon would go53

in response to emission reduction efforts addressing global warming mitigation. Predic-54

tions of this near-term evolution would thus assist policy-relevant analysis. Here we use55

a set of prediction systems based on Earth system models to establish predictive skills56

of the ocean and land carbon sinks and to infer predictability of atmospheric CO2 growth57

rate. We show predictability horizons of up to 6 years for the globally integrated ocean58

carbon sink in individual models with even higher predictive skill in some models and59

regions. Variations of the land carbon sink are predictable up to 2 years and limit pre-60

dictability of changes in atmospheric CO2 growth rate at lead time of 2 years. Our study61

demonstrates an emerging capacity of the initialized simulations for skillful predictions62

of the global carbon sink and atmospheric CO2 variations.63

1 Introduction64

On interannual to decadal time-scales, atmospheric CO2 growth rates exhibit pro-65

nounced anomalies driven by varying strengths of the land and ocean carbon sinks; these66
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anomalies are linked to climate variability (Peters et al., 2017; Friedlingstein et al., 2019;67

Landschützer et al., 2019). Variability in ocean carbon uptake is associated with major68

carbon uptake regions such as the Southern Ocean and the North Atlantic (Landschützer69

et al., 2019). Inter-annual variations of the land carbon sink are primarily driven by the70

terrestrial biosphere response to El Niño Southern Oscillation (ENSO) (Ropelewski &71

Halpert, 1987; Jones et al., 2001; Zeng et al., 2005; Kim et al., 2016). Year-to-year vari-72

ations of the air-land carbon flux are about one order of magnitude higher than varia-73

tions in the air-sea CO2 fluxes (Doney et al., 2006). Hence, predicted El Niño variabil-74

ity has been used, in combination with an average CO2 growth rate due to anthropogenic75

CO2 emissions, to predict, from a simple linear regression, the atmospheric CO2 growth76

at Mauna Loa for the subsequent year (Betts et al., 2016). Predicting changes in atmo-77

spheric CO2 growth rate beyond this horizon remains a major challenge. Such informa-78

tion will be essential for the evaluation of mitigation efforts in real-time in the presence79

of internal climate variability in support of policy-relevant analysis for the UNFCCC global80

stocktakes (UNFCCC, 2015).81

Recent initialized predictions of near-term future climate have proven successful82

(Marotzke et al., 2016; Smith et al., 2007) with predictive power of carbon sinks also emerg-83

ing. Li et al. (2019) established a predictive skill of the globally aggregated air-sea CO284

fluxes of up to 2 years assessed against an observational product. Longer predictability85

in regions like the North Atlantic and the Southern Ocean is suggested (Li et al., 2016;86

Lovenduski, Yeager, et al., 2019; Fransner et al., 2020). ESM-based initialized predic-87

tion systems also demonstrate predictability of other marine biogeochemical properties88

such as net primary production, export production, and seawater pH (Park et al., 2019;89

Séférian et al., 2014; Yeager et al., 2018; Brady et al., 2020; Fransner et al., 2020; Krumhardt90

et al., 2020). On the land side, a potential prediction skill of 2 years was established for91

terrestrial net ecosystem production (Lovenduski, Bonan, et al., 2019), but only of 9 months92

for tropical land-atmosphere carbon flux (Zeng et al., 2008). Perfect-model frameworks93

based on idealized simulations suggest analogous predictability horizons for the carbon94

sinks (Séférian et al., 2018; Spring & Ilyina, 2020). However, previous studies were ei-95

ther limited to internally consistent model environments of perfect models (Séférian et96

al., 2018; Spring & Ilyina, 2020; Frölicher et al., 2020) or single initialized models (Li et97

al., 2019, 2016; Lovenduski, Yeager, et al., 2019; Yeager et al., 2018; Fransner et al., 2020;98
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Krumhardt et al., 2020). Furthermore, they did not address predictability of variations99

in atmospheric CO2 growth.100

Here, we assess how well different ESM-based initialized prediction systems cap-101

ture variations of the global land and ocean carbon sinks and their predictability. We102

make a step further and for the first time examine the resulting predictability of vari-103

ations in the growth rate of atmospheric CO2 that is driven by the response of carbon104

sinks to climate variability. As predictions of carbon sink evolution still remain a cutting-105

edge activity of only a few modeling groups, a common protocol is not yet available (Merryfield106

et al., 2020). Our multi-model framework comprises ESM-based prediction systems that107

contributed to the Decadal Climate Prediction Project (DCPP; Boer et al. (2016)) within108

the Coupled Model Intercomparison Project Phase 6 (CMIP6), as well as those which109

run with the CMIP5 forcing. This enables us to establish predictive skills in a larger num-110

ber of models, whilst performance of CMIP5 and CMIP6 model versions with respect111

to different aspects of the carbon cycle has been addressed in recent studies (Arora et112

al., 2019; Séférian et al., 2020; Kwiatkowski et al., 2020). Prediction systems follow some-113

what different initialization techniques and data assimilation methods based on the ”best114

effort” of the different modeling centers. This approach arises from the overall DCPP115

philosophy of not specifying single details of the implementation and design of the multi-116

model predictions and thereby encompass aspects of the inherent uncertainty of climate117

predictions (Boer et al., 2016).118

2 Materials and Methods119

We use a multi-model framework comprising several ESM-based prediction systems,120

including CanESM5 (Swart et al., 2019), CESM-DPLE (Yeager et al., 2018), GFDL-ESM2121

(Park et al., 2018), IPSL-CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Watanabe122

et al., 2020), MPI-ESM-LR (Giorgetta et al., 2013), MPI-ESM1.2-HR (Mauritsen et al.,123

2019), and NorCPM1 (Counillon et al., 2016). Details of each prediction system are given124

in Supporting Information. Simulations with CanESM5, IPSL-CM6A-LR, MIROC-ES2L,125

MPI-ESM1.2-HR, and NorCPM1 contributed to CMIP6 DCPP following historical forc-126

ing until 2014 and climate change scenario SSP2-4.5. Simulations with CESM-DPLE,127

GFDL-ESM2, and MPI-ESM-LR were performed under CMIP5 historical forcing un-128

til the year 2005 and followed either RCP4.5 (GFDL-ESM2, MPI-ESM-LR) or RCP8.5129

(CESM-DPLE) climate change scenario thereafter.130
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The ensemble size in single prediction systems ranges between at least 10 members131

for most of the models up to 40 for CESM-DPLE (Table S1), enabling us to demonstrate132

the added value of a larger ensemble. For NorCPM1, we merged the two decadal hind-133

cast products with 10 members each, producing one ensemble of 20 members. In the MPI-134

ESM based systems, only the lower resolution MPI-ESM-LR included both the land and135

the ocean biogeochemistry components. MPI-ESM1.2-HR was configured with a higher136

resolution in the atmosphere and ocean, but did not integrate the land biogeochemistry137

component.138

In all models the carbon cycle components are only indirectly initialized with the139

data assimilative physics. Hence, we assess observed variability in carbon sinks captured140

through initialization of prediction systems by the observed state of the physical climate.141

All simulations ran with prescribed evolution of atmospheric CO2 concentrations and142

land use change.143

We present three types of simulations. Reconstruction simulations include observed144

signals of climate variability introduced by assimilative observed and reanalysis prod-145

ucts over a hindcast period. Uninitialized simulations are based on continuous histor-146

ical simulations following CMIP6 or CMIP5 forcing (not the observed signals), i.e. the147

model physics evolves independently and the resulting climate variability does not nec-148

essarily match the observed one. Initialized simulations are retrospective prediction sim-149

ulations that start from a respective reconstruction simulations and develop internal cli-150

mate variability that may be out of phase with observed climate variability. We com-151

pare the initialized simulations against the uninitialized ones to assess predictive skill152

that is established due to initialization. This predictive skill is characterized by the anomaly153

correlation coefficients (ACC) between the model simulations and different reference data154

products. The anomalies are calculated by removing the climatological mean for the re-155

construction and uninitialized simulations, and for the initialized simulations with ad-156

ditionally respect to the lead time. Note that we present the improved predictive skill157

due to initialization based on the comparison of ACC in the initialized predictions rel-158

ative to that in the uninitialized simulations. We use a bootstrapping resample method159

to quantify the significance of the improved predictive skill (Li et al., 2019). The spa-160

tial map of predictive skill and the corresponding significance is generated by the cen-161

tral evaluation system MurCSS, which is a commonly used evaluation tool in decadal162

predictions (Illing et al., 2014). The focus time period of this study is from 1982-2013,163
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when the global carbon cycle experienced large internanual to decadal variations. The164

time series are all linearly detrended to emphasize the predictability in interannual to165

decadal variability. The global time series are integrated based on the original model grid.166

For the spatial pattern of ACC calculation, the variables are conservatively interpolated167

into 5 degree.168

For land carbon uptake, direct observational estimates capturing the regional and169

global temporal variability are not available, hence we use the Global Carbon Budget170

2019 (GCB; Friedlingstein et al. (2019)) carbon sinks estimate as a benchmark. Under-171

going annual updates, GCB offers a comprehensive and temporally consistent time-series172

of stand-alone land and ocean carbon cycle model simulations forced with observed cli-173

mate data or climate reanalysis and additional observational products (atmospheric CO2,174

land cover change, etc.). For ocean carbon uptake, we additionally use the SOM-FFN175

(Landschützer et al., 2015) observationally based product. In addition, the HadISST data176

(Rayner et al., 2003) is used to compare with model simulations of sea surface temper-177

ature and to calculate the ENSO index.178

3 Variations of ocean and land carbon sinks in initialized simulations179

First we examine the ability of reconstructions and initialized predictions to sim-180

ulate observed interannual variations in carbon sinks. Both reconstructions and initial-181

ized predictions at lead time of 2 years appropriately capture multi-year variations of the182

anomalous air-sea flux of CO2 represented in the GCB and data-based SOM-FFN es-183

timates (Fig.1 left). The uninitialized simulations mostly capture only ocean carbon sink184

increases in response to rising carbon emissions and thus follow a smoother temporal evo-185

lution. Furthermore, reconstructions suggest stronger multi-year variations in the ocean186

carbon sink and outperform the uninitialized simulations in GFDL-ESM2, MIROC-ES2L,187

MPI-ESM1.2-HR, and in NorCPM1 (only in comparison to SOM-FFN data). Lower cor-188

relations of reconstruction simulations as opposed to the uninitialized ones in CanESM5,189

IPSL-CM6A-LR, and MPI-ESM-LR can be related to two aspects of the design of our190

analysis. First, the assimilation techniques may not be optimally calibrated to represent191

ocean biogeochemistry in reconstruction (Park et al., 2018; Li et al., 2019). Second, GCB192

and SOM-FFN estimates chosen as the reference here are prone to their own uncertain-193

ties. GCB estimates are essentially an average of various stand-alone hindcast model sim-194

ulations. The neural network approach of SOM-FFN is limited by spatial and tempo-195
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ral gaps in observations. While the different model outputs show a large spread in air-196

sea CO2 flux, they overall fall within the range of the SOCOM data products (Rödenbeck197

et al., 2015). The weakening ocean carbon sink captured in the SOM-FFN data prod-198

uct in the 1990s is revealed by the stronger negative trends in the reconstruction and ini-199

tialized simulations vs. the uninitialized ones, which are more pronounced in some pre-200

dictions systems (in MPI-ESM-LR, MPI-ESM-HR, MIROC-ES2L, and partially in GFDL-201

ESM2). Other models (CanESM5, CESM-DPLE, NorCPM1, IPSL-CM6A-LR) capture202

a lower amplitude of the weakened ocean carbon sink, more consistent with the GCB203

estimate. Starting from the beginning of the 21st century, reconstruction simulations show204

an enhancement of the ocean carbon uptake with a stronger increase in the ocean car-205

bon sink at the beginning of the 21st century as compared to the uninitialized ones. This206

decadal shift in evolution of the ocean carbon sink at the onset of the 21st century is at-207

tributable to climate modulated variability and is consistent with the SOM-FFN data208

estimate (Landschützer et al., 2015).209

The fewer land carbon reconstruction simulations available to us all outperform the210

uninitialized simulations in capturing the major year-to-year variations as indicated by211

higher correlations with GCB (Fig.1 right). This correlation skill with the GCB estimates212

is maintained at lead year 2. Unsurprisingly, uninitialized simulations do not capture the213

timing of air-land CO2 flux variations. Response to the warm and cold episodes of ENSO,214

the major driver of year-to-year variability of the air-land carbon fluxes, is clearly man-215

ifested in the GCB estimates and reconstructions (Fig. S1). It is notable that air-land216

CO2 flux in CanESM5 has the highest correlation with GCB in reconstruction simula-217

tion, supported by the highest of all models correlation in the uninitialized simulation218

(Fig.1d). For NorCPM1 and MPI-ESM-LR assimilation data helps to establish corre-219

lation in reconstruction simulations. While there has been some progress in global mod-220

els over the past decades (Bellenger et al., 2014), representing ENSO still remains a ma-221

jor challenge. Yet, a major improvement in the reconstruction simulations with respect222

to air-land CO2 flux, gives us confidence that initialized prediction systems capture the223

important processes that link the land carbon cycle to ENSO. The reconstruction sim-224

ulations produce a distinct weakening of the land carbon uptake in response to major225

El Niño events, followed by a strong increase in the land carbon sink during La Niña events.226

These variations are not captured in the uninitialized simulations as they are not in phase227

with the observed climate variability.228
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4 Predictability of carbon sinks and atmospheric CO2 growth rate229

We next examine effects of the global land ocean carbon sink variations on the in-230

ferred variability and predictability of atmospheric CO2 growth rate (Fig.2). Note that231

all prediction systems available to us are forced with prescribed evolution of atmospheric232

concentrations of CO2 (rather than with prescribed emissions of CO2) and so the atmo-233

spheric compartments of those models do not respond to land or ocean CO2 fluxes. Here,234

the detrended sum of the global land and ocean carbon fluxes serves as a diagnostic of235

variations in the temporal evolution of the atmospheric CO2 growth driven by climate236

modulated variability of carbon sinks. These variations of a few PgC in the reconstruc-237

tion simulations generally follow the evolution inferred from the GCB estimate (Fig.2a).238

We find predictability of variations in atmospheric CO2 growth at lead times of 2239

years in most models, as indicated by higher correlations with GCB of the initialized sim-240

ulations in comparison to the uninitialized ones (Fig.2 b, c). Given the higher amplitude241

of interannual air-land CO2 flux variability, atmospheric carbon growth rate anomalies242

predominantly follow the land carbon sink evolution, and the ocean carbon sink acts to243

dampen the land modulated interannual variations of atmospheric CO2 (Doney et al.,244

2006; Lee et al., 1998). Indeed, the improved correlation skill of air-land CO2 fluxes with245

the GCB estimates is maintained at lead year 2 and outperforms the uninitialized sim-246

ulations in all models except MIROC-ES2L (Fig.1f).247

We further assess predictability horizons of the global ocean and land carbon sinks,248

as well as of the diagnosed changes in atmospheric CO2 growth represented by the lead249

years with improved predictive skill due to initialization (Fig.3). Predictive skill of the250

ocean carbon sink significantly improves with initialization up to lead year 5 against the251

SOM-FFN data product in MPI-ESM1.2-HR and up to lead year 6 in CESM-DPLE and252

NorCPM1, respectively (Fig.3a). The predictive skill of CESM-DPLE is higher than re-253

ported in a previous study (Lovenduski, Yeager, et al., 2019) mainly because we focus254

on a different time period and use the SOM-FFN observationally based estimates rather255

than reconstruction here. A larger ensemble size of CESM-DPLE relative to the outputs256

from the other prediction systems maintains the predictive skill significance. Consider-257

ing fewer ensemble members degrades its predictive skill significance (as indicated by the258

p-value dependence on ensemble size; Fig. S2). A previous study (Li & Ilyina, 2018) sug-259

gests that a large ensemble size is needed to capture decadal variations in the ocean car-260
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bon sink. Therefore, an increased ensemble prediction size could enhance the predictive261

skill of global carbon fluxes in other prediction systems, as well as in a multi-model en-262

semble.263

Predictive skill due to initialization up to lead year 2 for land carbon sink verified264

against GCB estimates is found in CanESM5, IPSL-CM6A-LR, MPI-ESM, and NorCPM1265

(Fig.3b). This skill, supported by higher coherence between GCB estimates and initial-266

ized simulations at lead time of 2 years in most models (Fig.1f), goes well beyond a sea-267

sonal skill attainable in previous studies. A slightly lower and insignificant skill was found268

for CESM-DPLE because of the initialization of atmosphere and land from a random269

ensemble member of CESM-LE (see Materials and Methods and Lovenduski, Bonan, et270

al. (2019)).271

The atmospheric CO2 growth rate changes induced by land and ocean carbon sink272

variations show predictive skill to lead year 2 (Fig.3) in the same models which have sig-273

nificant 2 year predictive horizons for the land carbon sink (i.e. in CanESM5, IPSL-CM6A-274

LR, MPI-ESM, and NorCPM1). Given the longer predictive horizons of the ocean car-275

bon sink, our results indicate that predictability of the atmospheric CO2 growth in these276

models is limited by the land carbon sink predictability. Analogously, a previous study,277

based on a perfect model framework (Spring & Ilyina, 2020), demonstrates that the pre-278

dictive skill of atmospheric CO2 concentration of 3 years is dampened by land.279

5 Spatial patterns of predictability horizons of CO2 fluxes280

The prediction systems use different initialization techniques and data assimilation281

methods, but do they establish robust spatial patterns of predictability horizons in the282

carbon cycle? To address this question we examine predictability horizons due to added283

value of initialization, represented by the lead years when correlations of the initialized284

simulations are larger than those in the uninitialized ones. We find overall rather con-285

sistent CO2 flux predictability horizons established due to initialization in the different286

prediction systems (Fig.4).287

In some ocean regions, the improved skill is retained for up to 9-10 years, thereby288

going beyond the predictability horizons of the physical climate variables (Séférian et289

al., 2014; Li et al., 2016). We find regional improvements in air-sea CO2 flux predictabil-290

ity due to initialization (as indicated by the difference between the initialized and unini-291
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tialized simulations and consistent spatial patterns of predictive skill at lead year 2 across292

models shown in Fig. S3-S4). These improved regions differ across the models and when293

assessing them vs. the GCB estimates or the SOM-FFN (Fig. S3) and the reconstruc-294

tions (Fig. S4), highlighting the importance of high-quality reference for skillful predic-295

tions of the ocean carbon sink. The air-sea CO2 flux dynamics is regulated by the tem-296

poral gradient of surface ocean pCO2. Because of the fast equilibration of CO2 between297

atmosphere and surface ocean in most areas, pCO2 tracks atmospheric CO2 evolution.298

This feature is fairly well captured in ocean biogeochemical models (Roy et al., 2011).299

Furthermore, our previous findings (Li et al., 2019) suggest that temperature variations300

largely control shorter-term (<3 years) predictability of the ocean carbon sink, while longer-301

term (>3 years) predictability is associated with nonthermal drivers. Coherent repre-302

sentation of the spatial patterns of the air-sea CO2 flux in the different prediction sys-303

tems may be driven by the robust representation of SST variations in the initialized pre-304

dictions considered here (Fig. S5).305

On the land side, statistically significant improvements due to initialization (in CanESM5,306

IPSL-CM6A-LR, MPI-EMS-LR, and NorCPM1) are suggested in regions of the trop-307

ics (e.g. Amazon, West Africa) and extra-tropics (e.g. Middle East, US Great Plains,308

Eastern Russia). These prediction systems represent land carbon fluxes improved due309

to initialization at lead time of 2 years. Less pronounced predictive skill of land carbon310

fluxes is found in CESM-DPLE due to the initialization of atmosphere and land from311

a random ensemble member; see Materials and Methods and Lovenduski, Bonan, et al.312

(2019)).313

6 Conclusions314

One major requirement related to the goal of the Paris Agreement of ”limiting warm-315

ing to well below 2◦C, and pursuing efforts to 1.5◦C”, is to discern the pathways of an-316

thropogenic carbon in the Earth system in order to verify the effectiveness of fossil fuel317

emissions reduction measures. A major scientific challenge in this context will be to pre-318

dict the inter-annual and decadal variations of the natural carbon sinks and the related319

variations in the growth rate of atmospheric CO2, as well as their susceptibility to on-320

going climate change. Thus, predictability of variations of the global carbon cycle is a321

crucial emerging topic requiring fast advance as it relates to the global stocktaking re-322

quirements of the Paris Agreement.323
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Here we provide a first multi-model assessment of the initialized carbon cycle pre-324

dictions, which is an important step towards skillful near-term predictions of the evo-325

lution of the land and ocean carbon sinks and the resulting variations in atmospheric CO2326

growth in response to climate variability and changes in anthropogenic carbon emissions.327

We find improved predictive skill due to initialization in both ocean and land carbon sinks.328

Predictive skill due to initialization for the global air-sea CO2 flux is up to 6 years. There329

is indication of even higher regional skill in single models and regions. Representation330

of air-land CO2 flux improved due to initialization in all models considered in this study.331

We demonstrate predictive horizons of up to 2 years in 4 out of the 6 models considered332

in this study. As year-to-year variations in atmospheric CO2 are largely determined by333

variations of the land carbon sink, the predictability horizon of 2 years found for the at-334

mospheric CO2 growth rate is maintained by predictability of air-land CO2 flux.335

Ongoing challenges in predictions of the global carbon cycle include a lack of ob-336

servationally based products suitable to initialize the ESMs and to verify prediction skill,337

the unavailability of standardized multi-model simulations that include prognostic car-338

bon cycle components, and the insufficient prediction ensemble size that impairs signif-339

icance assessment. Despite these challenges, our analysis provides clear indications that340

further advancement of the physical and biogeochemical components of prediction sys-341

tems and larger ensembles could timely address some of these challenges as new predic-342

tion simulations and updated observational products become available. Our analysis demon-343

strates an emerging capacity of the initialized simulations for skillful predictions of the344

carbon cycle. Thus, such multi-model initialized predictions would offer a powerful tool345

in support of governmental and economical decisions related to verification and efficiency346

assessment of near-term carbon emission reduction pathways.347
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Figure 1. Time series of the global anomalous CO2 flux relative to the climatological mean

in each modeling system into the ocean (left) and land (right) from reconstruction (top), unini-

tialized simulation, (middle) and initialized retrospective prediction (bottom) simulations at

lead time of 2 years. The long-term linear trends are removed for all the time-series. Left panels

include available observation-based estimates from SOM-FFN. Numbers on the legends show

the correlations relative to GCB and correlations relative to SOM-FFN data based estimates

of the CO2 flux into the ocean (shown in brackets). Outputs for air-land CO2 fluxes from the

reconstruction simulation were not available from IPSL-CM6A-LR and CESM-DPLE.
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Figure 2. Time series of the anomalous atmospheric carbon growth rate due to natural vari-

ations of the ocean and land carbon sinks, represented by the reverse sign of the detrended land

and ocean carbon sinks from reconstruction (top), uninitialized simulation, (middle) and ini-

tialized retrospective prediction (bottom) simulations at lead time of 2 years. Numbers on the

legends show the correlations relative to GCB. Outputs for air-land CO2 fluxes from the recon-

struction simulation were not available from IPSL-CM6A-LR and CESM-DPLE, preventing the

computation of the anomalous atmospheric carbon growth rates in these systems.
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Figure 3. Predictive skill of the detrended CO2 flux into the ocean (a), CO2 flux into the

land (b), and variations in the inferred atmospheric CO2 growth (c). Predictive skill is quantified

as anomaly correlation coefficients of the model simulations with the SOM-FFN observation-

based product for the air-sea CO2 fluxes (a), and with GCB2019 for the air-land CO2 flux and

anomalous atmospheric CO2 due to carbon sinks. Significantly improved predictive skill at 95%

level for initialized over uninitialized simulations are marked with filled dots, p-values given in

Table S2. Note that GFDL-ESM2 and MIROC-ES2L hindcasts start earliest from year 1980, so

from lead year 4 the time period is shorter than 1982-2013.
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Figure 4. Predictability horizon of the detrended CO2 flux into the ocean and the land, rep-

resented by the lead years with improved predictive skill due to initialization, i.e., when correla-

tions in the initialized simulations are larger than 0 and also larger than those in the uninitialized

simulations. Skill is quantified with anomaly correlation coefficient for the period 1982-2013.

Predictive skill of the air-sea CO2 flux gained due to initialization is assessed against SOM-FFN,

whereas for the air-land CO2 flux it is assessed against GCB. Crosses show significance at 95%

level for the first 2 years. Note that GFDL-ESM2 and MIROC-ES2L hindcasts start earliest from

year 1980, so from lead year 4 the time period is shorter than 1982-2013.
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