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Key Points:

e Energy balance models adding a degree of complexity to a linear EBM (2-layer, order-2,
2-region, & 2-timescale) are compared

e The 2-region model fits historical global temperature and abrupt and gradual forcing
simulations best, followed closely by the 2-layer model

e The 2-region model’s best-fit parameter values are more plausible for the fit to historical
temperatures than the 2-layer models’

Abstract

Climate energy balance models (EBMs) — simple energy-balance-based models of climate
change — are widely used. The simplest “linear” EBM is deficient in capturing the behavior of
complex climate models, so a “two-layer” model with an additional degree of complexity, i.e.
two vertical layers, is typically used. Other additional degrees of complexity are equally
plausible as well, however, and different approaches to add a degree complexity have not been
compared quantitatively. Here we compare four types of EBMs - two-layer, order-two
(temperature-dependent feedback), two-region (in space), and two-timescale (fast and slow
climate responses) - specifically, their ability to capture historical temperature change and
simulated temperature changes in abrupt (4x) and gradual (1%-ramp) forcing scenarios. The two-
region model outperforms the others. The two-region model’s best-fit parameters to historical
temperatures are also more physically plausible than the next-best-fitting model, the two-layer
model. We therefore conclude that the two-region model is the preferred climate EBM.

Plain Language Summary

State-of-the-art climate models are intensive to run, so for many applications their behavior is
approximated by a simple climate “energy balance model” (EBM). By far the most common
EBM is the “two-layer” model, which is one step up in complexity from the simplest possible
EBM in that it represents the climate system as having two layers: a surface, and a deep ocean.
There are other ways of stepping up complexity from the simplest possible model, however,
which may work better at capturing the behavior of complex climate models or the historical
evolution of global temperature. For example, one might instead represent two regions of the
Earth’s surface, or both a fast and a slow response to anthropogenic forcing, or that the baseline
response changes as a function of temperature. Here we compare the ability of different “level-
two” models, i.e. models each with a different single step up in complexity from the simplest
possible model, to capture complex climate models and historical temperatures. We find that a
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two-region model works best, because it fits the data better than the others, and the next-best-
fitting model, the two-layer model, has unrealistic parameter values for historical temperatures.

1 Introduction

Earth System Models (ESMs) are sophisticated representations of the climate system which are
used to predict how the climate will evolve in response to anthropogenic radiative forcing
(Eyring et al. 2015). ESMs are computationally intensive to run, so for many applications, from
exploring implications of emissions trajectories (Dvorak et al. 2022) to estimating the economic
consequences of climate change (Calel & Stainforth 2017), energy balance models (EBMs) are
used instead. EBMs are simple representations of global climate which approximate the response
of ESMs. A degree of complexity beyond a simple linear response to forcing is required to
capture the behavior of ESMs; by far the most common way to include such complexity is with
the “two-layer” model (Gregory 2000, Held et al. 2010, Geoffroy et al. 2013, Lutsko & Popp
2019; Section 2) which includes the effect of a deep ocean exchanging heat with the Earth’s
surface layer. This model has been used in countless applications and is a core component of
contemporary understanding of Earth’s climate.

However, other options to add such a degree of complexity exist, with associated physical
rationales. Just as the two-layer model considers vertical variation in Earth’s temperature, a
“two-region” model can incorporate horizontal variation. Such horizontal variation could be
particularly important to capture given the importance of horizontal variation in the climate
feedback in setting the global temperature evolution (Armour et al. 2013, Zhou et al. 2017, Dong
et al. 2019). While two-region and two-layer models are mathematically similar (Rohrschneider
et al. 2019 — though see Section 2), they differ in their physical meaning and resulting
implications for projections of warming.

Alternatively, one can consider multiple response timescales (van Hateren, 2013, Proistosescu &
Huybers, Andrews et al. 2015) with a “two-timescale” model, as ESMs and Earth’s climate
respond to forcing over a continuum from fast to slow responses. This response is also likely
dependent on the baseline climate state to which a forcing perturbation is applied, with colder or
warmer climates having a higher climate sensitivity (Bloch-Johnson et al. 2021), so an “order-
two” model may capture the temperature-dependence of the climate feedback. These various
ways of adding complexity to an EBM have not been compared in terms of their ability to
capture ESM behavior, or historical temperatures. One might of course include multiple of these
degrees of complexity, but if only one can be or is chosen, as in many applications, it is worth
knowing which one most accurately and plausibly captures historical and modelled temperature
responses to radiative forcing.

Here we compare these four ways to incorporate additional complexity into an EBM by
evaluating four corresponding “level-two” models’ abilities to capture ESMs’ responses to both
abrupt and gradual forcing, as well as historical temperatures. We find that the two-region model
outperforms the other models, and that the best-fit parameters for the two-region model’s
reproduction of historical temperatures are more physically plausible than those for the next-
best-fitting model, the two-layer model. We thus conclude that the two-region model is the
preferred EBM at this degree of complexity.

2 Energy balance models
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EBMs generally take the form of energy balance models, which utilize conservation of energy to
describe the warming of the Earth’s surface. Arguably the simple such model is the linear energy
balance model (Eq. 1):
d—T =F—-AT —H

c i F
where ¢ [W y m2 K'!] is the heat capacity of the surface layer whose temperature anomaly is T
[K], F [W m] is radiative forcing, A [W m K-!] is the (global and total) climate feedback, and
H[W m™] is ocean heat uptake. Note that here we use a sign convention of a positive 1 being
associated with a stable climate. H is often specified as equal to kT, with k [W m™ K-!] being the
ocean heat uptake efficiency. This model is generally understood not to be sufficiently complex
to capture either the historical evolution of T or the T response of climate models to common
forcing experiments. These are arguably respectably because A has changed in recent decades
thanks to the evolving spatial pattern of global warming setting off different feedback responses
in different regions (Armour et al. 2013, Andrews et al. 2016, Andrews et al. 2022) and because
the climate feedback changes over different response timescales in climate models (Andrews et
al. 2015). It is therefore common to add a degree of complexity to Eq. 1 to capture this more
complex behavior; by far the most commonly used model to do so is the two-layer model (Eq. 2;
Gregory, 2000, Held et al. 2010, Geoffroy et al. 2013):

cE = F AT —ey(T - Tp), cp E2 = (T — Tp)
dt dt

where ¢, [W y m?2 K] and T}, [K] represent a deep-ocean layer, which exchanges heat with the
surface layer proportionally to y [W m2 K™']. € is a dimensionless ‘efficacy’ parameter which is
commonly included to capture changing feedbacks over time, but we note that this parameter is
redundant and only notational; one may multiply both sides of the right-side equation above by €
and get the same dynamics with two free parameters, €y and ecp. The two-layer model therefore
has four free parameters (c, ecp, €y, A which we specify in this notation including € here because
it is more common.

The two-layer model is used so widely because it approximates well the behavior of ESMs (Held
et al. 2010), but other models adding a different degree of complexity may do so just as well. We
evaluate three other “level-two” models here. In each case, for simplicity of comparison we use a
simple enough version of each model to have the same number of free parameters (four) as the
two-layer model (see Section 4). One is an “order-two” model, which captures potential
temperature-dependence of the linear EBM parameters (Eq. 3):

dT
c(1+ MT)E =F-A+rx)A+vD)T

where v [K!] captures the extent to which the climate feedback and ocean heat uptake efficiency
may change with baseline climate state, and u [K'!] captures the same for the effective heat
capacity. Note that it is mathematically equivalent whether x and/or A are specified as
temperature-dependent; this only changes the interpretation of the parameter v. Other potential
order-two models are possible, e.g. with dependence on forcing, but these are less plausible
mechanistically and in terms of their fit to historical records and ESM simulations (Cael et al.
2022, Bloch-Johnson et al. 2021). (Different combinations of forcing- and/or temperature-
dependence were also tried and were found to perform worse than the above, so are not
discussed further; see supporting information (SI) for other tested models.) Another model we
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consider is a “two-timescale” model which captures the fast and slow responses of the climate
(Eq. 4):

Ta(®) = apexp () * F(®), T(6) = Ty () + T(0)

where n = 1,2, a,, [K m? W] is the inverse of a climate feedback, and represents the
convolution operation (Proistosescu & Huybers, 2017). This model is a direct representation of
the multi-timescale response of the climate system; other versions of a multi-timescale response
are possible, e.g. with a slow feedback term within a dynamical system (Goodwin & Cael 2021,
Cael et al. 2022) or a superposition of temperature anomalies with multiple heat capacities, but
Eq. 4 is the most common of such models and do not have the feature of Eq. 4 that the slow
mode remembers past forcing. Slow-feedback terms that integrate temperature backwards in time
as in Cael et al. (2022) or forcing as in Goodwin and Cael (2021), and a superposition of two
temperatures with different heat capacities, were also tested and found to perform slightly worse
than the above, so are not discussed further here; see SI for other tested models.

The last model we investigate is a “two-region” model which splits the surface layer into two
regions (Eq. 5), one with a radiative feedback and one without:
an _p_ 1 arz _ — (1 1_
= F %+6/1T1, & E=F, T(t)= (2 + 5) T, + (2 5) T,

where § [dimensionless] is the excess fractional area in the radiatively active region (region 1),

and ¢; and ¢, [W y m*2 K'!] are the heat capacities of each region. The %term in the left-hand
2
equation is included for ease of interpretation of the parameters, because it makes A correspond

to the globally averaged climate feedback; this term has no impact on the dynamics.

This model captures the spatial variation of two quantities: the climate feedback and the heat
capacity of the ocean’s mixed layer. Estimates made using a Green’s function approach suggest
that the feedbacks associated with surface temperature perturbations in regions of tropical ascent
are an order of magnitude stronger than feedbacks elsewhere (Bloch-Johnson et al., 2023) such
that these smaller feedbacks can be neglected in reconstructions of the global radiative response
(Dong et al. 2019). Conversely, the Southern Ocean and the North Atlantic have far deeper
mixed layers than the rest of the Earth (Manabe et al. 1991, Winton et al. 2010), such that their
surface layers have far larger heat capacities than in other parts of the ocean. These are regions
where radiative feedbacks are particularly weak (Wills et al. 2019).

This model therefore divides the Earth into a region that contains areas of tropical atmospheric
convection with a radiative feedback and a small surface layer heat capacity (region 1), and a
region that contains the high latitude areas of deep ocean heat uptake, with a negligible heat
uptake and a large surface layer heat capacity, with the precise division between these regions
allowed to vary as a free parameter §. Our model is in some ways similar to the MT2 model
from Gregory et al. (2023), though in Gregory et al. (2023) the radiative forcing in region 2 does
not induce any surface warming. Several other versions of this model were tested (e.g. with a
fixed §, including a heat transport term between the two regions, or including multiple feedback
terms; see S for other tested models.) and were found to perform slightly worse than the above,
so are not discussed further here. Note that we neglect energy transport between these two
regions, which can be an important effect (Feldl and Roe 2013) but adds additional complexity
beyond the four-parameter models considered in this paper. Note also that Rohrschneider et al.
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(2019) showed that for every four-parameter two-layer model, there is an equivalent five-
parameter (with nonzero A in region two) two-region model with the same dynamics. This
however does not make the model above equivalent to the two-layer model; it is not true that for
every set of parameters for the above equation there is a set of parameters for the two-layer
model giving the same dynamics, or vice versa.

Altogether Egs. 2-5 represent four ways to add a degree of complexity to an EBM to capture the
more complex response of climate models and historical records to historical forcing than Eq. 1
is capable of doing. Our question here is whether two layers, orders, timescales, or regions are
best to approximate the warming response to radiative forcing.

3 Materials and Methods

We compare the four models in terms of their ability to capture three cases: 1) historical
temperatures over the past 170 years, and the temperature response over 150 years of ESMs in
response to ii) abrupt forcing (i.e. an instantaneous quadrupling of CO> from preindustrial levels)
and iii) gradual forcing (i.e. a 1% per year increase of CO> from preindustrial levels). For (i), we
use the radiative forcing time series ensemble (2237 members) from the Intergovernmental Panel
on Climate Change’s Working Group I contribution to the Sixth Assessment Report (Smith et al.
2021), which is available through 2019, and the HadCRUTS global surface temperature record
(Morice et al. 2021). The temperature anomaly is defined relative to the period 1850-1900 and
the radiative forcing is defined as an anomaly relative to the period 1759-1849. The preferred
HadCRUTS infilled version is used, and its 200-member ensemble is randomly resampled to
generate an ensemble of the same size as that for radiative forcing. (Multiple random
resamplings did not affect the results.) For (ii) and (iii), we use twenty-six ESMs’ simulations
from the CMIP6 ensemble (Eyring et al. 2015), available from github.com/markringer/cmip6
(accessed 13.1.2023). Note that the 4x and 1%-ramp simulations are the most standard CMIP
simulations. For these twenty-six models the forcing associated with an instantaneous
quadrupling of COz, Fax, is calculated from the first 20 years of the simulation using the standard
Gregory method (Gregory et al. 2004), and logarithmic forcing is assumed such that radiative
forcing increases from zero to F4x linearly over 140 years in the 1% per year simulations.

In each case, models are fit to each temperature-forcing pair by finding the parameter values that
globally minimize the root-mean-square-error (RMSE, [°C]) of each models’ fit to each
temperature time-series when initialized with zero warming and then forced with the
corresponding forcing time-series. This simple statistical metric is applicable because each
model has the same number of free parameters, and is preferred over more complicated
approaches because it gives an intuitive understanding of the statistical procedure and the
meaning of the goodness-of-fit. These optimal parameter values are found iteratively via a
random walk in parameter space with a Gaussian distribution of jump sizes (i.e. mostly small and
occasional large jumps); the results are insensitive to altering the initial parameter guesses. In
total this gives, for each model, and for each of 2237 ensemble estimates of the historical forcing
and temperature as well as for each of 26 CMIP6 models’ abrupt and gradual forcing
simulations, a set of parameters and an associated goodness-of-fit statistic. All parameters except
v, 4, and a, are forced to be positive (these three may be negative, corresponding respectively to
an increased climate sensitivity and decreased effective heat capacity at higher temperatures and
an increased climate sensitivity on longer timescales). Not doing so only compounds the findings
in the following section because for the two-layer model fit to historical temperatures, the best-
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fitting A value is negative for most ensemble members (corresponding to an unstable climate in
the sign convention used here).

For Figure 3, the historical cumulative radiative response is obtained by integrating the historical
forcing ensemble in time and subtracting the mean ocean heat uptake estimate from Zanna et al.
(2019).

4 Results and Discussion

We find that the two-region model capture the historical and model time-series better than the
other models. Figure 1 shows the cumulative distribution function (CDF) of the RMSE for each
model in each case. For historical temperatures and abrupt and gradual forcing simulations, the
two-timescale model by and large has the worst fits. The order-two model has substantially
worse fits for model time-series, and slightly worse fits for the historical time-series, than the
two-region model. The differences in the RMSEs of the two-region and two-layer models are
smaller. The two-region model has a lower RMSE than the two-layer model for 21/26 of the
abrupt forcing simulations, 20/26 of the gradual forcing simulations, and >99% of historical
temperature ensemble members, but the mean difference is 0.002°C or less in all three cases. The
poorer performance of the two-timescale model is unsurprising in the context of Proistosescu and
Huybers’ (2017) finding that three timescales were required to capture models’ responses to
abrupt forcing, but a three-timescale model has six free parameters and is thus far more complex
than the two-layer model or the two-region model described in Eq. 5. While the two-timescale
model is conceptually similar to the other models that incorporate multiple timescales via
multiple effective heat capacities (two-layer and -region), it appears these other formulations
yield better performance. The order-two model’s poorer performance is arguably more surprising
given its superior reproduction of historical temperatures in Cael et al. (2022) relative to other
models, albeit none of those considered here, which further underscores the importance of
resolving multiple response timescales (n.b. the two-layer and two-region models implicitly
capture a slower timescale response via a second heat capacity).

Thus the two-layer and two-region models are better able to reproduce historical temperatures
and model responses to forcings, and have similar skill. Another essential aspect of this
reproduction, however, is whether these EBMs are reproducing historical and model
temperatures for the right reasons, i.e. with plausible parameter values. Significant differences in
the parameter values for each case are to be expected given the substantial differences between
historical temperatures and historical ESM simulations; nonetheless, the best-fit parameter
values in each instance may or may not be consistent with basic reasoning about how the climate
system functions. Figure 2 shows the CDF of each parameter’s values for the two-layer (top row)
and two-region (bottom row) models in each case. All four heat capacities are in the right order
of magnitude to represent roughly a global surface ocean boundary layer (approximately the
mixed layer), a global deep ocean layer, a surface ocean boundary layer in regions with shallow
mixed layers, and a surface ocean boundary layer in regions with deeper mixed layers (Gregory
et al. 2023, Cael et al. 2022).

For the two-region model, the fraction of the Earth without a climate feedback is variable but is
~1/3 of the Earth in the historical case and ~1/6" in the ESM cases. This is consistent with region
2 having a similar area fraction to deep ocean heat uptake regions (Manabe et al. 1991, Winton et
al. 2010), suggesting that differences in heat capacity may play a larger role in setting é than
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differences in climate feedback (maps of spatial feedbacks from Dong et al. 2019 and Bloch-
Johnson et al. 2023 suggest that if region 1 only included areas with large stabilizing feedbacks,
then & would be negative). The two-region model’s global total climate feedback 4 is on the
larger side of expectations (~2.5 W m2 K'!) relative to expectations in the historical case,
consistent with the low observed historical warming relative to historical radiative forcing
attributed to the pattern effect, and on the lower side in the model cases, consistent with the fairly
high climate sensitivities in CMIP6 (Zelinka et al. 2020).

In contrast, the heat transport parameter between the surface and deep layers is ~5 W m? K-!, an
order of magnitude larger than expectations (Cael 2022). More importantly the global total
climate feedback in the two layer case is effectively zero, being <0.05 W m2 K-! for 98% of
historical ensemble members. This implies that radiative forcing has been almost entirely
balanced by deep ocean heat uptake, whereas in reality most of the energy incident upon the top
of the atmosphere is returned to space via climate feedbacks. The two-layer’s fit to historical
temperatures is therefore the result of a physically implausible set of parameters. This is

illustrated in Figure 3: the cumulative radiative response, R (i.e. AT integrated over the surface

of the Earth and then integrated in time), is not significantly different between the observations
and the two-region model forced with historical F and using its historical parameter ensemble,
but is almost zero for the two-layer model forced with historical F and using its historical
parameter ensemble.

The two-region model therefore appears to be the preferred “level-two” EBM, because it fits
historical and model temperature responses to radiative forcing best and with a physically
plausible combination of parameters. That this model is preferred is consistent with the key role
of the spatial pattern of warming, i.e. the ‘pattern effect,” for the evolution of global
temperatures. The version analyzed here is the simplest possible version; future work should
consider what level of complexity is optimal for such a model — e.g. whether increasing
complexity by combining some of the models given here or incorporating features like horizontal
heat transport significantly improves the model’s skill. One unsatisfying aspect of the two-region
model presented here is that it does not have a well-defined equilibrium climate sensitivity,
because the second region’s temperature anomaly increases proportionally to forcing. Though
equilibrium behavior is not relevant for most applications of EBMs, this issue is easily resolved
regardless by including a second feedback parameter or a heat transport term between the two
regions. It would also be valuable to identify a set of parameters that optimally fits all three cases
considered here, to use e.g. for integrated assessment modelling, and to analyze the climate
projections of such a model and parameter set. Doing so could improve calculations of
everything from the timing of warming commitments (Dvorak et al. 2022) to the social cost of
carbon (Rennert et al. 2022).
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Figure 1. Cumulative distribution functions of the root-mean-square-error of each model’s fit to
each temperature time-series type.
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Figure 2. Cumulative distribution functions of the best-fit parameter values of each model’s fit to
each temperature time-series type.
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Figure 3. Cumulative radiative response ‘R (i.e. AT integrated over the surface of the Earth and
then integrated in time) for the two-region and two-layer models with their historical parameter
ensembles, compared to a historical estimate. Central lines correspond to ensemble means and
error bars correspond to one ensemble standard deviation.



