AGU  Space-based Remote Sensing Strategies for Tomographic Estimation of Exospheric Hydrogen Density
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Setting up the Geometry ® Avoidance of solar contamination introduces ~10-day _ Moon‘ are based on assumed H densitieg region <8 Re.
® Step 1: Discretize region into data gap per month. from [Cucho and Waldrop., 2019]
spherical voxels/polar pixels. ® Interplanetary background sensing requires off-nadir - Total duration of simulations is
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density function onto v IV. SUMMARY
orthonormal basis functions. ) O I Static Reconstructions for ~14-day ensemble from L1/4/5 platforms :
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(UE) Xpx = Xpph1 + Ki (¥ — LeXpjh_1) Update Estimate (UE) - Target region: 3-30 Re. <10% reconstruction error for of H density over 14 days [3] Zoennchen et. al. (2017), The Response of the H Geocorona between 3 and 8 Re to Geomagnetic
- Ar=1Rg, Ad = 10°. exospheric region < 10Rg ® Static reconstruction vields Disturbances studied using TWINS stereo Lyman-alpha data, Annales Geophysicae, 35, 171 - 179.
(UC) Prje = Frjp—1 — KL L1 Update Covariance (UC) - Simulated measured intensities ~ (Magnetopause) one image per 28 dag
Time update: o _ \d, are.t.basfed onzassumﬁd H ‘ al ©® Higher cadence (3h) acquisition precession period. ACKNOWLEDGMENT
% — F,_.% Project into k+1 (Prj) ensities from [Zoennchen et al., yields <10% reconstruction error for .
(Prj) k+1lk 12k|k 2015] exospheric region out to 20 R This work was supported by NASA HGIP (NNX16AF77G). The authors thanks Dr. Mark Butala and Dr.
Piv1jx = Frp Py kF,Z + Qi X1 ks P 1|k @ = Farzad Kamalabadi for discussion on dynamic tomographic reconstructions.



https://doi.org./10.1029/2019GL084327
https://doi.org/10.1029/2018JA025323

