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Abstract

The Earth surface Mineral dust source InvesTigation (EMIT) is a remote visible to shortwave infrared (VSWIR) imaging spectrom-
eter that will map the mineralogy of Earth’s mineral dust forming regions. EMIT was launched to the International Space Station
in July 2022, beginning a year-long mission. This article describes the EMIT spectroradiometric calibration and on-orbit validation
experiments. EMIT achieves several notable firsts for an instrument of its class. It demonstrates successful on-orbit adjustments of
Focal Plane Array (FPA) alignment with sub-micron precision. It offers spectral uniformity better than 98%. Optical artifacts in the
measurement channels are at least three orders of magnitude below the primary signal. EMIT consists of just six optical elements,
no shutter, and no onboard calibration systems. With this simple and efficient design, EMIT satisfies the stringent needs for the next
generation of VSWIR imaging spectrometers.

1. Introduction

The Visible to Shortwave Infrared (VSWIR) spectral range is sen-
sitive to diverse Earth surface properties making it useful for a wide
range of remote sensing applications. Imaging spectrometers, also
known as hyperspectral imagers, acquire rasters of spectra to map
geophysical phenomena. The first imaging spectrometers were de-
veloped over 40 years ago (Goetz & Srivastava, 1985), but they have
recently reached a new stage of maturity with orbital instruments con-
ducting global investigations. These missions include DESIS (Alonso
et al., 2019), PRISMA (Cogliati et al., 2021), HiSUI (Matsunaga et al.,
2020), and EnMAP (Guanter et al., 2015; Chabrillat et al., 2020). Up-
coming missions like CHIME (Nieke & Rast, 2018) and the Surface
Biology and Geology (SBG) investigation (Cawse-Nicholson et al.,
2021) are anticipated to provide regular coverage of Earth’s entire land

area and coastal waters. Simultaneously, advances in computing en-
able more sophisticated algorithmic analyses, portending a new era of
spectroscopic remote sensing.

State of the art spectroscopic analyses require accurate calibration.
Even when the Earth’s surface reflectance is spectrally smooth, at-
mospheric absorption features are sharp. This makes geophysical re-
trievals sensitive to wavelength miscalibrations at the sub-nanometer
level (Thompson et al., 2021). Atmospheric errors often exceed in-
strument noise as a contribution to measurement uncertainty, and can
introduce atmosphere-dependent errors leading to regional biases in
global maps (Carmon et al., 2020). Precise knowledge of each chan-
nel’s spectral response function is critical to preserve atmospheric ab-
sorption shapes. Moreover, high radiometric accuracy is needed to
remove atmospheric distortions by Rayleigh scattering. High unifor-
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Figure 1: EMIT deployed to the ISS. EMIT is the white box mounted at the
lower left on the ELC1 rack at the top of the image. Credit: NASA.

Figure 2: EMIT optical layout. Red lines illustrate light pathways, and instru-
ment components are in black. A two-mirror telescope images incoming light
onto a slit that limits the field of view to a line across the Earth’s surface. Light
then passes through the Dyson lens, is spectrally dispersed by the grating, trav-
els back through the same Dyson lens, and finally intersects the focal plane
array detector.

mity of both radiometric and spectral calibration is needed for con-
sistent surface property measurements throughout the instrument field
of view. In these and other ways, the performance of remote spec-
troscopy is often limited by systematic calibration uncertainty rather
than instrument noise. Improving spectroradiometric accuracy will be
critical to fulfill the promise of future missions.

This paper describes the on-orbit calibration and validation of
the Earth surface Mineral dust source InvesTigation (EMIT), a
VSWIR imaging spectrometer with high spectroradiometric perfor-
mance. EMIT was sponsored by the National Aeronautics and Space
Administration (NASA) and developed at the Jet Propulsion Labora-
tory (Green et al., 2018, 2020). It is now installed on the Interna-
tional Space Station (ISS, Figure 1), where it is mapping the mineral-
ogy of Earth’s mineral dust forming regions. These measurements will
constrain the composition of the emitted dust, enabling Earth System
Models to predict the capacity of these particles to absorb solar radia-
tion, along with the associated radiative forcing and climate response
(Green et al., 2020; Connelly et al., 2021; Li et al., 2021). The EMIT
Instrument launched to the ISS on July 14, 2022 and was installed on
the port side of the truss structure in the ExPReSS Logistics Carrier-1
(ELC1) rack (Cook, 2004). It measured first light on July 28 and began

Parameter Requirement As measured
Spectral range 410 - 2450 nm 380 - 2500 nm
Spectral sampling < 10 nm < 7.5 nm
Spatial sampling 30-80 m ≈ 60 m
Swath width > 1200 elements > 1240 elements
Spectral response (FWHM) < 13 nm < 8.5 nm
Channel wavelength uniformity > 90% > 98%
FWHM uniformity n/a > 98%
Signal to Noise Ratio (SNR) > 190 at 700 nm > 500 at 700 nm
Stray spectral/spatial response < 0.002 < 0.0001 corrected
Dark current drift n/a < 1 DN / 12 hours

Table 1: EMIT Performance. SNR requirements are defined relative to a stress-
ing case observation at 45 degrees solar zenith with a 20% surface reflectance.
SNR requirements at other wavelengths are exceeded by a similar factor. We
show the stray spectral response requirement for the region 5-81 channels from
center, relative to peak response.

conducting on-orbit checkout procedures. At the time of this writing,
EMIT has acquired thousands of scenes globally.

Table 1 lists the key mission performance requirements derived
from the mineral dust objectives. For example, EMIT must measure
the full VSWIR range to capture minerals’ electronic absorptions in
the visible range and vibrational overtones in the shortwave infrared.
The spatial sampling must be fine enough to map soils in fallow farm
fields. Radiometric precision should be sufficient to identify a 2%
change in the hematite absorption feature, a difference which, if it
appeared throughout North Africa, could change the net contribution
of global dust-related atmospheric forcing from heating to cooling or
vice versa. The spectral calibration should be spatially uniform within
10% to facilitate atmospheric correction and identification of mineral
species in the shortwave infrared. Table 1 constitutes a challenging set
of performance objectives that must be confirmed on-orbit along with
the calibration.

To achieve this performance, EMIT adopts the Compact Wide
Swath Imaging Spectrometer design of Van Gorp et al. (2016). It has
a simple optical layout (Bradley et al., 2020) with a two mirror alu-
minum telescope and a Dyson imaging spectrometer (Figure 2). The
spectrometer uses a calcium fluoride lens and a custom-fabricated grat-
ing produced by the Jet Propulsion Laboratory Microdevices Labora-
tory (Mouroulis et al., 1998). It covers the 380-2500 nm range at ap-
proximately 7.5 nm sampling. Its detector is a 480x1280-format cryo-
genic Mercury Cadmium Telluride array from Teledyne Technologies
Inc., of similar design to their CHROMA series (Sullivan et al., 2017).
During operation, 328 channels of this array are used. EMIT also car-
ries a flight electronics suite: the Focal Plane Interface Electronics-
Analog (FPIE-A), which digitizes signals from the FPA; and the Focal
Plane Interface Electronics-Digital (FPIE-D), a high performance em-
beded computing system (Keymeulen et al., 2022) that processes the
data, and applies onboard cloud screening and compression to reduce
data volumes. Unlike contemporary instruments of its class, EMIT
carries no onboard shutter or calibration mechanism. Its simple design
emphasizes spectral fidelity and radiometric stability to enable on-orbit
calibration with vicarious targets.

This manuscript reports EMIT’s post-launch calibration and per-
formance assessment. It documents our methods and quantifies data
product accuracy. We focus here on the spectral and radiometric char-
acteristics which are central to EMIT’s science objectives. Section 2
discusses spectral calibration, which measures the sensitivity of each
Focal Plane Array (FPA) element to different wavelengths. This in-
cludes the center wavelength position, the spectral response function,
and corrections for stray spectral response. Section 3 describes radio-
metric calibration, which translates instrument digital numbers to units
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of radiance. We describe corrections for optical ghosts, measurement
and validation of radiometric calibration coefficients, measurement of
spatial nonuniformities, and corrections for bad FPA elements. We
then evaluate radiometric performance over several field sites where
ground truth reflectance data are available. Section 4 concludes with
the implications for EMIT science and future missions. EMIT shows
the spectral and radiometric accuracy now achievable by contemporary
instruments, an example that can inform future missions like ESA’s
CHIME and NASA’s SBG.

For reproducibility, all code and data for these experiments are
available from public archives. The radiometric calibration code and
files are available from the public EMIT mission repository (Olson-
Duvall et al., 2022). EMIT mission data is available at the NASA’s
Land Processes Distributed Active Archive Center (LP DAAC) (Green
et al., 2022). EMIT also produces a range of derived data products,
including surface reflectance, mineral maps, and Earth system model
runs. We focus here on the initial calibration, but still use atmospheric
radiative transfer models in several experiments. Code to configure
and run these models is available from the ISOFIT repository (Thomp-
son et al., 2019b). In situ field data is available from the United States
Geological Survey (USGS) (Meyer et al., 2023b,a).

2. Spectral calibration

Imaging spectrometers view the Earth through a range of sharp at-
mospheric absorption features. Analysts model these absorptions to in-
fer the underlying surface reflectance signal (Figure 3). The instrument
spectral resolution is coarser than the atmospheric features, so the cen-
ter wavelength and spectral response of each channel must be known
with high accuracy. This mapping must be uniform in the spatial di-
mension. Any nonuniformities, such as spectral smile or tilt, force the
analyst to either resample the spectra or model cross-track elements
independently. Even these measures cannot correct nonuniformities
completely, making spectral uniformity a critical performance param-
eter (Thompson et al., 2021). The following subsections describe our
procedure for measuring wavelength center calibrations and spectral
response functions, and for quantifying EMIT uniformity.

2.1. Channel center wavelength calibration
The EMIT channel spacing, also known as the dispersion, varies

slightly with wavelength and must be determined from instrument
data. We begin with laboratory measurements, coupling five lasers
at known wavelengths into an integrating sphere. A scan mirror in
the EMIT vacuum chamber translates this stimulus across the EMIT
field of view. We fit a dispersion curve, representing channel spacing
as a function of wavelength, to the laser stimulus at all spatial posi-
tions. We initialize the dispersion curve with EMIT optical models
(Bradley et al., 2020). We then optimize an additive offset and multi-
plicative stretch to the plot of dispersion vs. wavelength, finding the
values which best predict the observed laser lines using a least squares
approach.

The laboratory data are limited by the number and wavelength sta-
bility of the lasers, so we revise them after launch using features of
the Earth’s atmosphere. Unique infrared spectral absorptions, such as
water vapor and oxygen, reveal wavelength calibration (Guanter et al.,
2007; Thompson et al., 2015b; Kuhlmann et al., 2016). Specifically,
we optimize a wavelength shift to fit the modeled absorption features
to the measured radiance. Fitting the spectrum well requires estimating
other parameters of the Earth’s atmosphere and surface. For example,
the underlying surface reflectance varies as a function of wavelength,
with overlapping features that if unmodeled could shift the apparent

positions or shapes of atmospheric features (Gao et al., 1993). More-
over, atmospheric water vapor varies spatially and temporally. Such
free parameters must be optimized simultaneously.

Here, we obtain a simultaneous maximum a posteriori estimate of
surface, atmosphere, and instrument parameters following Thompson
et al. (2018b). We fit a state vector x which includes: the surface
reflectance in each instrument channel; the atmospheric water vapor
concentration in g cm−2; the change in wavelength position versus the
original calibration; and the change in the Full Width at Half Maxi-
mum (FWHM) of the spectral response functions. We represent the
wavelength shift as a function of channel number with a four-knot cu-
bic spline. We place knots at the extrema and at channels 520 and 1790
nm, where our optical models imply inflections in the second deriva-
tive of wavelength dispersion. The instrument spectral response is a
single parameter representing a spectrally-uniform growth or contrac-
tion of the FWHMs relative to the laboratory estimates.

We relate the state vector x to the radiance measurement y using a
forward model F(x) and random noise ϵ such that:

y = F(x) + ϵ (1)

The forward model describes the radiance measurement at the sensor
for any hemispherical directional surface reflectance spectrum ρs using
the following expression (Vermote et al., 1997):

Lobs = F(x) = La +
L↓

1 − s ◦ ρb
◦
[
t↑dir ◦ ρs + t↑dif ◦ ρb

]
(2)

where ◦ is element-wise multiplication and the vinculum is element-
wise division. Here Lobs is the radiance at aperture. The symbol ρb

represents the average reflectance of the terrain outside the pixel. For
the large playa surfaces in the experiments that follow, we assume ρs

and ρb are equal. The other terms are optical coefficients calculated
using the MODTRAN radiative transfer model version 6.0 (Berk et al.,
2014). We configure MODTRAN using the observing geometry, solar
geometry, and atmospheric state, producing the upward direct beam
transmittance t↑dir, the upward diffuse transmittance t↑dif , the spherical
sky albedo at the bottom of the atmosphere s, the path radiance La,
and the downwelling radiance L↓ from a target with reflectance unity
at the bottom of the atmosphere. We use the Fontenla et al. (2011)
model for solar irradiance. We run the radiative transfer model over
a grid of atmospheric state values, filling a multidimensional lookup
table that can be interpolated at runtime to find the atmospheric optical
coefficients for any state vector x.

The best estimate of x is that with the highest a posteriori probabil-
ity, accounting for both the measurement and prior knowledge about
probable state vector configurations. We find this x by minimizing the
following equivalent cost function (Thompson et al., 2018b):

χ(x) = (F(x) − y)TS−1
ϵ (F(x) − y) + (x − xa)TS−1

a (x − xa) (3)

The symbol Sϵ is the covariance of the zero mean observation noise ϵ.
This term penalizes departure of the modeled radiance from the mea-
surement, accounting for the observation noise covariance. For typical
instrument performance with signal to noise ratios (SNRs) in the hun-
dreds, the solution is insensitive to noise magnitude. Consequently, for
these tests we used a diagonal covariance noise matrix with a conser-
vative spectrally-uniform SNR of 200. In later sections, we construct
a more accurate noise model.

The second term of equation 3 penalizes departure of the state vec-
tor from the prior distribution. Here the prior is a multivariate Gaussian
with mean xa and covariance Sa. The atmospheric elements are inde-
pendent from each other and from the surface reflectance elements.
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Figure 3: Accurate estimation of surface reflectance requires accurate spectral calibration. The left panel shows an EMIT measured reflectance spectrum from
a forest in Manchuria (scene ID emit20220820t035232). The right panel shows its simulated radiance spectrum at high resolution (red) and EMIT instrument
sampling (black). Removing atmospheric effects requires modeling the instrument’s sampling of these sharp atmospheric features.

The surface reflectance elements are correlated via a block diagonal
covariance matrix that aims to capture the actual statistics of physical
surface reflectance spectra. We select this prior from a set of multi-
variate Gaussian distributions as in Thompson et al. (2018b). We fit
these distributions using a library of terrestrial spectra from the USGS
Spectral library (Kokaly et al., 2017), and other community libraries
(Herold et al., 2004; Dennison & Gardner, 2000; Thompson et al.,
2019a), all of which had been manually cleaned of artifacts, curated
and uploaded as EMIT mission libraries to the Ecological Spectral In-
formation System (ECOSIS) spectral catalog (Wagner et al., 2018).
At runtime, we calculate an initial guess of surface reflectance using
a band ratio retrieval of water vapor as in Schläpfer et al. (1998). We
then find the Euclidean-nearest Gaussian component to serve as the
prior. This enables the retrieval to account for the unique reflectance
statistics of vegetation and snow, which have overlapping absorptions
in the near infrared range, producing consistent wavelength fit over
heterogeneous terrain. To avoid biasing the reflectance magnitude, all
prior means and covariances are rescaled to match the Euclidean norm
of the initial guess as in Thompson et al. (2018b).

We update the dispersion curve using a scene in North Africa (scene
ID emit20220814t145733) with a clear flat surface. We average the
data cube in the downtrack direction, reducing the image to a single
row. We then fit the wavelength spline function independently to each
spectrum, together with surface reflectance and atmospheric state vari-
ables. Departing from EMIT’s operational atmospheric correction, we
use a dense prior covariance which models cross-correlations between
surface reflectance in all wavelengths from 380 to 2500 nm. This en-
forces reflectance smoothness in all channels so that atmospheric ab-
sorption features can constrain the instrument dispersion across the full
VSWIR interval. The resulting wavelength dispersion curve appears
in Figure 4. The pre-launch and post-launch wavelength calibration
is nearly identical at 500 nm. The discrepancy peaks at about -0.35
nm, about 2% of a channel width, near 1900 nm. We find no signif-
icant change in spectral response functions. The measured sampling
of < 7.5 nm and FWHM of 8.5 nm significantly outperform mission
requirements of 10 nm and 13 nm, respectively (Table 1).

2.2. Channel center wavelength uniformity
We next assessed the spatial nonuniformity of the wave-

length/channel assignments. As before, this process begins in the labo-
ratory with the laser integrating sphere, by measuring the laser centroid
at each cross-track location. Figure 5 shows the result for one of the

more accurate lasers, at 1949 nm. A slight ripple in the measurement
could be instability in the laser or other uncertainty in ground support
equipment. The laser line centroids are consistent to within approx-
imately 0.2 nm at all spatial positions, a uniformity of 98% in pixel
units relative to a requirement of 90% (Table 1). A linear fit shown in
red has no measurable slope, consistent with a properly-clocked FPA.

As in the dispersion fits, the state vector for spatial uniformity in-
cludes parameters for both center wavelength and spectral response
functions. The center wavelength parameterization differs slightly; in-
stead of a multiparameter dispersion spline, we fit a single additive
offset that shifts the wavelength axis horizontally. We fit this offset in-
dependently at each cross-track location, along with the surface and at-
mosphere terms. This parameterization has an advantage that it can be
performed on a subset of the spectrum, facilitating repeat tests on mul-
tiple, distinct atmospheric features. Figure 6 shows wavelength center
channel deviation as a function of cross track position, estimated us-
ing the interval from 785 to 1250 nm which contains multiple water
vapor absorptions. Independent fits of the oxygen A band absorption
at 760 nm yield a similar answer, improving confidence in the result.
The measurement standard error for a single pixel is on the order of
one percent of a channel width. After launch, EMIT shows about 0.15
nm of spectral smile. This is visible as a parabolic deviation in the
wavelength center position. There is also an additional 0.1 nm of tilt,
visible as a slope in the red best-fitting line.

EMIT can dynamically adjust its FPA position by changing the tem-
perature of the mounting components. We used pre-launch tests to
develop a thermomechanical model relating the component tempera-
tures to the FPA position. We used this model to determine a tem-
perature change that would remove the tilt. On August 13 2022 we
commanded the new setpoint, and then re-measured the tilt in a new
scene (ID emit20220813t215020). We find that the initial tilt has been
removed (Figure 7) and the slope is no longer measurable. A subse-
quent test in January 2023 repeated the demonstration, when, after an
instrument thermal cycle, the FPA showed a smaller tilt in the oppo-
site direction. This tilt was also corrected to within our measurement
precision. These tests demonstrate positional control on the order of
200 nm for an instrument of 300 mm in size. To our knowledge, this is
the first demonstration of on-orbit FPA mechanical adjustments by an
imaging spectrometer in flight, and the most spatially-uniform align-
ment yet achieved for an instrument of this class. The center-to-peak
shift of about 0.1 nm satisfies the most stressing measurement needs
of future global spectrometers like SBG (Thompson et al., 2021).
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2.3. Spectral response functions
In addition to the wavelength center position, we characterize the

spectral response function of each channel. This is typically taken to
be Gaussian and constant across all spatial positions, but slight devia-
tions are inevitable. To assess this parameter we first measure the pre-
launch response functions in the laboratory. A monochromator sweeps
a spectrally-narrow stimulus across all wavelengths in sequence. The
rise and fall of this signal at a given channel indicates the widths of its
Full Width at Half Maximum (FWHM).

We re-measure the spectral response functions after launch using
the procedures outlined in Section 2.1, with a single parameter that
expands or shrinks the FWHM at all channels. We do not find any
significant differences beyond the original laboratory calibration, but
when we perform this fit at all spatial positions, a small but measur-
able spatial nonuniformity appears. Figure 8 shows a symmetric “w”
curve in FWHM as a function of spatial position. This feature is con-
sistent with laboratory data. The standard deviation of 0.16 nm is less
than 2% of the FWHM, a level which is unlikely to be noticeable dur-
ing most EMIT investigations. Consequently, EMIT processing uses a
single spectral response function for each channel regardless of spatial
position, an approximation which significantly simplifies science data
processing.

2.4. Stray spectral response
The last spectral calibration activity measures non-Gaussian com-

ponents of the spectral response function. Real instrument spectral re-
sponse is non-Gaussian due to scatter from the grating and other opti-
cal elements in the spectrometer. In particular, the tails of the response
function are slightly super-Gaussian. In the worst case this could cause
distortions such as blurring of the spectrum and inaccurate retrieval of
atmospheric parameters (Thompson et al., 2018a). The response of a
single pixel is similar to the FPA image of a bright single-pixel source.
This fact enables a laboratory measurement based on spatial filters and
a monochromator to supply a sub-channel source. We then average a
large number of frames to reduce noise and resolve the faint tail struc-
ture. We model the extra response with a set of concentric Gaussians.
The model at position p uses the following form:

R(p, µ, ζ1, ζ2, ζ3, σ1, σ2, σ3) =

ζ1e−0.5(p−µ)2/σ2
1 + ζ2e−0.5(p−µ)2/σ2

2 + ζ3e−0.5(p−µ)2/σ2
3 (4)

where µ is the center position of the stimulus, σ1 is the standard de-
viation of the central peak, and σ2 and σ3 are the standard deviations
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Figure 4: EMIT Wavelength dispersion resulting from on-orbit and laboratory
measurements.
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Figure 5: EMIT FPA clocking before launch, as measured at 1949 nm with a
laser source. We report the shift as a linear trend in nm per pixel, plotted as a
red line.
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Figure 6: EMIT FPA clocking after launch, as measured with atmospheric wa-
ter vapor from 800-1200 nm. We report the shift as a linear trend in nm per
pixel, plotted as a red line.
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Figure 7: EMIT on-orbit FPA clocking update, as measured with atmospheric
water vapor. We report the shift as a linear trend in nm per pixel, plotted as a
red line.

0 200 400 600 800 1000 1200
Cross-track position

1.0

0.5

0.0

0.5

1.0

FW
H

M
 d

iv
er

ge
nc

e 
(n

m
)

Figure 8: Cross track deviation of SRFs, as measured with atmospheric water
vapor (scene ID emit20220813t215020).

5



of the Gaussians forming the stray spectral response. The ζ terms are
scaling coefficients on the Gaussian magnitudes. We fit free param-
eters to match the response function in logarithmic coordinates, with
the cost function:

c(µ, ζ1, ζ2, ζ3, σ1, σ2, σ3) =∑
p∈P

[log(x(p)) − log(R(p, µ, ζ1, ζ2, ζ3, σ1, σ2, σ3))]2 (5)

We fit these functions in both the spatial and spectral dimensions, scan-
ning across all spectral channels P at a single field point.

Next, having measured these response functions at each FPA loca-
tion, we develop a correction based on the linear deconvolution process
of Zong et al. (2006), revisited in Brachmann et al. (2016) and Thomp-
son et al. (2018a). This treats the stray spectral response function as
an operator which convolves an additional blurring kernel on the orig-
inal spectrum. We represent the blur as a matrix operator, with rows
containing the stray spectral response. This operator multiplies the
original spectrum to produce the additional blur. We define the mea-
sured radiance spectrum Lobs as a vector with dimensionality equal
to the number of instrument channels n, the ideal radiance LN as a
vector representing the measurement in the absence of stray spectral
response, and the true high spectral resolution radiance at aperture La

with dimensionality m much greater than the number of instrument
channels. We also define two sampling operators, a nominal Gaussian
response matrix H of size n×m, and a stray spectral response function
matrix G of size n× n, with spectral response functions on the rows of
the matrix. We have:

Lobs = GHLA +HLA + ϵ

Lobs = GLN + LN + ϵ

= [G + I]LN + ϵ

= ALN + ϵ (6)

The matrix A contains stray spectral response functions (SSRFs) mea-
sured in the laboratory, with one added to the diagonal elements
(Zong et al., 2006). To estimate the ideal channelized radiance from
a blurred measurement we take the Moore-Penrose pseudoinverse
A+ = (AT A)−1AT which enforces A+A = I. We multiply this cor-
rection operator with the original vector:

L̂obs = A+LM (7)

We perform this procedure independently in spatial and spectral di-
mensions, resulting in two matrix operators applied independently at
runtime to correct the EMIT data.

Figure 9 shows an example. The top panel shows spectral correction
of a laboratory monochromatic source held out of the fitting procedure.
The original response appears in red. Our correction recovers the ideal
Gaussian response, a parabola in logarithmic coordinates (in black).
The bottom panel shows the spatial correction. Even without soft-
ware correction, deviations from Gaussianity are almost three orders
of magnitude below the peak, outperforming mission requirements for
stray response (Table 1). It is considerably better than many historical
grating-based instruments like AVIRIS-NG (Thompson et al., 2018a).
We attribute this improvement to a new grating designed explicitly to
reduce scatter. After the software correction, deviations are no longer
measurable in laboratory data.

Validating the improvement on remote reflectance retrievals is more
challenging, since the magnitude of the correction for EMIT is small
and the differences are easily masked by changes to the retrieved at-
mospheric state. We look to the water vapor feature at 1800-1900 nm,
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Figure 9: EMIT spectral response function (top) and spatial response function
(bottom), before and after correction for stray response.

where absorption is so strong that the lower troposphere is effectively
opaque to remote instruments. These radiance channels should con-
tain only noise that is decorrelated from the surface reflectance signal.
Any visible evidence of surface features in these channels represents
unwanted spectral scatter from neighboring bands. To assess this ef-
fect, we extracted a rectangular region approximately 20x20 km from
an arid-land scene, with high-contrast features that showed a range of
surface albedos (scene ID emit20220807t183301). The image of the
absorbed channel at 1841 nm showed some weak evidence of features
from the surface at a level close to the noise. The correlation coeffi-
cient with the neighboring unabsorbed channel at 1744 nm was 0.29.
After the SSRF correction, surface features were nearly imperceptible
and the correlation coefficient dropped to just 0.13, evidence that the
spectral response correction was achieving the desired effect.

3. Radiometric calibration

EMIT’s radiometric calibration maps the intensity of the sensor re-
sponse, expressed in instrument digital numbers, to radiance at aper-
ture in units of µW nm−1 cm−1 sr−1. Figure 10 shows the steps in the
procedure. Radiometric calibration also requires replacing nonfunc-
tional detector elements in the FPA and correcting any optical artifacts
such as ghosts. We discuss each of these operations in the sections that
follow.

We use a linear model of the observed radiance Lobs with a zero
point d0, gain factors ν, and digital number measurement d. The radi-
ance is a function of FPA row r and column c:

Lobs(r, c) = ν(r, c) [d(r, c) − d0(r, c)] (8)
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Figure 10: Radiometric calibration procedure. Grey boxes correspond to data
inputs, white boxes to procedures.

The gain factors ν can be further decomposed into radiometric cali-
bration coefficients, one per channel, and a flat field image represent-
ing spatial nonuniformities in radiometric response. In practice the
response is nonlinear due to limitations of the detector and amplifier
circuits. Measuring these nonlinearities requires accurate knowledge
of relative illumination. Conventional methods, such as changing in-
tegration times, photodiode standards, or blocking meshes, often have
systematic errors as large as the signal being measured. For this rea-
son, and because the detector and amplifiers are already nearly linear
by design, we do not apply any linearity corrections to the data.

3.1. Zero point estimation
The first step of the calibration finds the zero point for each FPA

element. The zero point is the Digital Number (DN) corresponding
to zero illumination. It changes on different timescales due to var-
ied effects such as the thermal dark current and electronic phenomena.
We measure long-timescale changes with an image of a dark scene
from the same orbit as each EMIT science image. We take the tempo-
ral median of dark frames to find a dark measurement dk. The dark-
subtracted frame is:

dds = d − dk (9)

The EMIT instrument has no shutter, so we acquire dark frames over
the non-sunlit side of the Earth. It is important that these scenes be
truly dark, without city lights or aurora. EMIT has a large dynamic
range, and sources 200000 times weaker than the solar-reflected signal
would cause contamination commensurate with instrument noise. To
prevent contamination, we create a global mask of regions on Earth
that are dark at night time. We average VIIRS Day/Night Band (DNB)
global mosaics over 10 months, and remove any areas within one swath
width of terrain that could contain city lights. We also mask out illumi-
nated ocean areas with nighttime fishing activity or aurora. We further
subset the resulting area to remove areas in twilight where the sun is
less than 20 degrees below the horizon. The remaining ocean surface
is used for dark acquisitions. We ignore moonlight when scheduling

dark acquisitions since the modeled signal from a full moon is below
the instrument noise. Analysis of over 1000 EMIT dark acquisitions
confirms this prediction, showing no measurable correlation between
lunar phase and dark signal level.

The dark level naturally drifts over time with any small temperature
changes in the FPA. The EMIT instrument addresses this with active
cooling to hold the FPA at a stable cryogenic temperature. To assess
the rate of dark current drift, we compare dark measurements on the
non-sunlit side of the Earth spaced approximately 12 hours apart. The
dark drift shows a bimodal distribution, with a population of pixels
drifting higher and another drifting lower. The average drift is -0.16
DN over the 12 hour period, with a standard deviation of 0.67 DN. This
is about an order of magnitude below other noise sources. Moreover,
we typically acquire dark measurements in the same 90 minute orbit
as the associated science data, rather than 12 hours apart. We conclude
that the error induced by dark drift on EMIT observations is negligible.

We must also consider other faster-timescale electronic processes.
Pedestal shift in illuminated FPAs appears as a residual error in the
zero point after the dark frame is subtracted, and can differ slightly
for each spectrum. We estimate this residual using several rows and
columns at the periphery of the array that are blocked from external
illumination. We analyze the masked rows and columns of each dark-
subtracted frame, defining dm(c) to be the median of the masked rows
in dds at column c.

dq(r, c) = dds(r, c) − dm(c) (10)

Similarly, dn(r) is the median of masked rows in dq at row r. The zero
point is:

d0(r, c) = dk(r, c) + dn(c) + dq(r) (11)

Subtracting d0 from d shifts the digital number scale so that numerical
zero corresponds to radiometric zero.

3.2. Bad pixel detection and repair

The next step of radiometric calibration replaces bad pixels in the
FPA. We deal with two kinds of bad pixels: permanently inoperable
detector elements; and elements that are unusable in the current frame
because they are saturated by bright illumination. We identify per-
manently inoperable elements in laboratory data by flagging locations
that are either (a) stuck on a single value, or (b) have a noise standard
deviation which is different from the population of normal pixels. Bad
pixels are easy to spot visually, since they appear as spikes in the oth-
erwise smooth DN curves of laboratory broadband sources. A manual
assessment found several additional pixels that did not trigger our sta-
tistical criterion. At the time of launch, about 120 pixels out of EMIT’s
419840 were unusable, an operability rate better than 99.97%.

In addition to inoperable pixels, we also detect and replace saturated
FPA elements of each frame. Bright targets such as snow at high so-
lar elevations occasionally fill the detector well capacity. EMIT has a
short integration time mode that can limit the photon flux when bright
targets are anticipated. However, we rarely use this mode since it re-
duces radiometric sensitivity. Moreover, predicting saturation in ad-
vance is inconvenient for clouds, specular surfaces, or seasonal snow
cover. Thus, it is common for images to contain a small fraction of pix-
els with saturated channels. We detect these channels based on their
DN counts near the saturation threshold, and flag them as additional
bad pixels for replacement.

Our replacement algorithm follows Chapman et al. (2019). We find
a statistically appropriate replacement for each pixel based on the most
similar pristine spectrum in that frame (i.e. a 1242-pixel line of image
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Figure 11: Procedure for replacing inoperable pixels. The spikes at 650 and
1290 nm are due to order sorting filter seams, which are correct. The spikes at
820 and 900 nm are caused by bad pixels. The replacement strategy effectively
removes the artifacts.
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Figure 12: Procedure for replacing saturated pixels. An EMIT cloud radiance
spectrum is saturated in channels brighter than about 40 µW nm−1 sr−1 cm−2.
The replacement values obey the statistics of cloud spectra in the same frame.

data from a single integration time). We find the most similar spectrum
with a spectral angle metric (Kruse et al., 1993) and fit a linear model
mapping the values from the pristine to the incomplete spectrum. We
use this linear relationship to predict the missing pixels. Figure 11 ap-
plies the replacement process to a laboratory source. The replacement
strategy preserves spikes at 650 and 1290 nm from the order sorting fil-
ter seams, and removes spikes at 820 and 900 nm caused by bad pixels.
A manual survey of images acquired after launch determined that no
additional bad pixels had appeared in the FPA, so no on-orbit update
of the bad pixel map was necessary. Figure 12 shows replacement of
saturated channels in a flight spectrum. We use unsaturated cloud pix-
els in the scene to calculate a statistically appropriate interpolant that is
indistinguishable from a physical cloud spectrum. Since these values
are inferred rather than measured, analysts may wish to downweight
them in surface analyses. The EMIT radiance data products include a
mask indicating which channels of each spectrum have been replaced.

The order sorting filter boundary at 1290 is particularly difficult to
calibrate - its spectral response function and radiometric sensitivity
vary across different acquisitions and substrates. However, this filter
seam is “bad” for all spectra in the frame, so we cannot fix it using
the Chapman et al. (2019) approach. Instead, we interpolate the ra-
diance over the three affected channels using cubic interpolation, and
mark these locations as having high uncertainty for the downstream

processing. Atmospheric correction approaches capable of using this
information can downweight the bad channels appropriately in the re-
flectance solution.

3.3. Radiometric flat field

The third stage of radiometric calibration transforms instrument
DNs to units of radiant energy. The transformation different for ev-
ery pixel on the FPA. For convenience, we decompose it into spatial
and spectral dimensions: a flat field, representing spatial variability of
the FPA response; and a vector of radiometric calibration coefficients,
representing a channelwise translation from digital numbers to radi-
ance units. We first measure the flat field in the laboratory by sweeping
a source with constant illumination laterally across all FPA elements.
We characterize the signal’s rise and fall at each FPA element indepen-
dently, fitting a six-degree polynomial in the time domain. The peak of
this polynomial indicates the “hot spot,” the maximum signal seen by
the FPA element. By repeating this operation at every FPA location,
we find the FPA response as if the field were spatially uniform, even
though the calibration source contains spatial structure. We estimate
the flat field based on the DN values in each channel, proportional to
the average value of radiometric reference regions at the one and two-
thirds field positions.

The flat field can change in flight over multiple spatial and temporal
scales. Over short timescales, electronic drift can change the gain of
each FPA element. Such changes manifest as small independent shifts
in the sensitivity of different FPA elements or columns. Over long
timescales, physical degradation or contamination of optical compo-
nents can cause spatially-broader changes. Even sub-percent errors
in relative radiometry can create visible artifacts in downstream data
products. Consequently, we update the laboratory flat field in flight.
Our first update aims to capture any spatially-broad changes in instru-
ment sensitivity that had occurred since launch. We achieve this by
averaging over 1600 radiance images from the first weeks of opera-
tions. We exclude from this average any pixels which fail the EMIT
reflectance quality criteria due to the presence of clouds or water. We
then normalize each frame of data independently by dividing out the
mean spectrum. The resulting flat field update shows clear changes in
visible wavelengths, but only ambiguous differences in longer wave-
lengths. Thus, our post-launch update only modified visible wave-
lengths less than 550 nm. Figure 13 shows the impact of this update
on an EMIT scene over the Caspian sea. A blue band at the two thirds
position disappears after the change.

Even after the post-launch flat field changes, minor column-to-
column differences persist. This variability at the 0.1% level is most
likely related to drift in electronic state of the detector amplifier cir-
cuits over shorter timescales. It appears visually in images as subtle
vertical stripes. To capture these high spatial frequency differences we
calculate updates to the flat fields for specific time segments. Early
in the mission, we tried fitting a separate flat field to each image with
a statistical destriping algorithm described in Chapman et al. (2019).
It worked adequately for most images, and was used in the first few
months of EMIT data processing. However, we soon found that very
strong vertical image edges could occasionally cause errors in the flat
field. To remedy this, we developed an alternative approach using
longer temporal averages as in Green et al. (2011).

Our procedure considers all images in a small temporal interval
around the scene to be corrected. We use a three day window for
EMIT, which provides hundreds of independent images. The first step
uses spatial filtering to identify homogeneous areas within each im-
age. Specifically, we run a Sobel edge detector followed by morpho-
logical dilation to mask out areas near strong contours. This, and a
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Figure 13: Caspian sea (scene ID emit20220815t042814). Left: Original EMIT
image, RGB channels. Right: After post-launch flat field update.

Figure 14: Arid scene (scene ID 20220828t051941). Left: Original EMIT
image, MNF Bands 4-6, constrast stretched. Right: After daily flat field update.
RGB color assignments are arbitrary.
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Figure 15: Example column of the flat field update showing how a single field
position varies in sensitivity over one and 10 day intervals.
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Figure 16: Flat field drift over time.

threshold to remove the brightest pixels, prevents clouds and edges
in scene content from influencing the flat field. Second, we take the
median of remaining pixels in the downtrack dimension as a robust
estimate of the average frame for each image. Third, we filter these
average frames using a high-pass spatial filter in the cross-track direc-
tion, revealing high spatial frequency variability between neighboring
columns. Fourth, we create image-specific flat fields by ratioing FPA
rows by the radiometric reference area of the FPA. Individual image-
specific flat fields can still be influenced by measurement noise and
scene content, so we combine them in a temporal median over the en-
tire three day window for a robust estimate. For convenience, we apply
this update as a multiplicative factor to each radiance image in post-
processing. This approach may lead to inaccuracies, since the original
flat field operation comes before optical corrections in our calibration
workflow. However, the magnitude of these updates is so small (on the
order of 0.1-0.3%) that any approximation error is negligible.

Figure 14 shows the effect of the flat field update on a typical EMIT
image. The left panel shows three channels of a Minimum Noise Frac-
tion (MNF) transformation, a change of basis designed to identify in-
dependent signals in the image. This representation, similar to Prin-
cipal Components Analysis, tends to accentuate systematic noise and
reveal vertical striping artifacts. Here, we show MNF bands 4-6, where
significant vertical striping is present. The right panel shows bands 4-
6 from a second MNF transformation after the updated flat field has
been applied. The flat field updates improve radiometric uniformity to
a level at which it should not have a major impact on EMIT’s mineral
mapping objectives. Figure 15 shows the magnitude of this update as
a spectrum at a single field position. Flat fields compared with the dif-
ference of a single day are typically consistent to within 0.1%. After
ten days, the gains have drifted a bit more, but are still generally within
0.2%. This suggests that the flat fields contain information about the
average gain drift of EMIT’s FPA. To quantify this drift, we fit a semi-
variogram to several hundred independent FPA pixels over a timespan
of two months. The semivariogram quantifies the differences in any
FPA element as a function of time lag. The square root of the semi-
variogram, plotted in Figure 16, shows the expected drift in pixel sen-
sitivities over time. The median drift in sensitivity is approximately
0.1% over a month. However, in the same timespan, each spectrum
is likely to contain channels that drift by up to 0.25%. These levels
are significant enough to explain the visual striping. This underscores
the value of continual flat field updates to track detector changes and
ensure visual uniformity of EMIT data products.
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3.4. Optical ghosts
EMIT’s Dyson design creates structured stray light artifacts known

colloquially as ghosts. The most significant ghost comes from an un-
wanted reflection from the detector that travels to the grating and back
to the opposite side of the FPA. It appears as a blurred and spectrally
scrambled image of the original signal. Fortunately the effect is consis-
tent and correctable. We follow the correction approach of Zandbergen
et al. (2020). We first identify the axis of symmetry ψ, the cross-track
pixel location which ghosts onto itself. For each pixel at location i, the
ghost spatial location j is given by j = 2∗ψ−i. This allows construction
of a ghost image for any scene using nearest-neighbor sampling. To
find ψ, we acquire a laboratory scene with a spatially-localized source
to clearly show the original and ghost features on opposite sides of the
FPA. We then optimize ψ to maximize the sum of element-wise prod-
ucts between the ghost image pixels and the originals. The spectral
structure of the ghost and original are different, but ψ should be the
same for all wavelengths in a well-aligned instrument. We perform
this analysis independently on each channel and use a robust median
to find the axis of symmetry.

Next, we define a sparse Ghost Location Matrix (GLM) that de-
scribes the mapping of source wavelength channels to ghost channels
on the opposite side of the FPA. Here, the term “channel” refers to
position along the spectral dimension of the FPA. The GLM is identi-
cal at all spatial positions, so we only need to determine it once. We
sweep a strong subpixel source across the EMIT wavelength range us-
ing a monochromator, and measure the channel position of the ghost
reflection on the opposite side of the FPA. Figure 17 shows the result-
ing channel to channel mapping. Red lines show robust linear fits to
each ghost order based on the RANSAC algorithm (Fischler & Bolles,
1981). Often, the signal from a single source wavelength is spread
across multiple channels in the ghost reflection, so careful digital ras-
terization is needed.

Each channel has a different ghost magnitude based on the effi-
ciency of the grating and the other components along its optical path.
We measure these intensities with bright spatially-extended broadband
sources similar to the illumination observed in flight. We illuminate
just one side of the FPA so that both source and ghost can be measured
independently. Several different source channels can project onto the
same ghost channels. For example, in Figure 17, ghost channel 200 is a
combination of reflections of four different orders coming from differ-
ent wavelengths in the source spectrum. To resolve this ambiguity, we
measure the stimulus and ghost spectra of over 20 different spectrally-
distinct sources attenuated by different broadband filters. This collec-
tion of spectrally-diverse stimuli leads to an overdetermined system
of linear equations to find the ghost reflection efficiency coefficients.
To reduce the number of unknowns in this system, we manually split
each linear reflection order in the GLM (i.e. the red lines in Figure 17)
into piecewise linear intensity profiles. We then optimize the slope and
offset of these linear intensity segments to zero out the ghost in a col-
lection of spectrally-diverse sources. A final blurring operation, based
on a concentric Gaussian operator, blurs the ghost image in spatial and
spectral dimensions. This blurring operator is optimized via gradient
descent to zero out the ghost feature in a spectrally-diverse training set.

To summarize, the complete ghost model consists of: the axis of
symmetry; the GLM; an intensity associated with each nonzero GLM
element, defined as a piecewise linear function of source channel num-
ber; and the bandwidth of the final blurring operator. After fitting these
parameters, we use this description to predict the reflected ghost image
for any new observed scene. We then subtract the ghost image from
the original to remove the stray signal. The procedure is slightly cir-
cular in that the signal used to predict the ghost image itself contains
some ghost photons. However, the ghost intensity is less than 1% of
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Figure 17: Ghost Location Matrix (GLM). The horizontal axis shows the orig-
inal channel of the stimulus, while the vertical axis shows the position of the
ghost. Often multiple source channels project onto the same ghost channel.
Each channel has a different and unknown ghost intensity.
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Figure 18: Ghost correction procedure. We predict the ghost associated with
the measured image, and then subtract it from the original.

the signal, so the resulting error is vanishingly small. Figure 18 shows
the result of the ghost correction procedure on a held-out laboratory
source. The ghost appears as a bright stripe opposite the true source.
The correction procedure erases this stripe. Figure 19 shows the asso-
ciated ghost spectrum before and after the correction procedure. The
ghost correction appears to work equally well in flight data; throughout
the early weeks of EMIT operations, we have not found any residual
ghost features in high-contrast regions.

3.5. Radiometric calibration coefficients

The multiplicative translation from digital numbers to radiance units
is stored as a vector of Radiometric Calibration Coefficients (RCCs).
We measure RCCs in the laboratory using a reflective panel illumi-
nated with a source of known intensity and geometry, calculating the
resulting radiance at sensor. Our calibration source is a NIST-traceable
broadband lamp. The radiance prediction incorporates the known
transmittance of other optical components in the chain, such as the
reflectance of a fold mirror and the transmittance of a window into the
vacuum chamber containing EMIT. Since much of the optical chain is
outside the chamber in free air, the radiance measurement is subject to
atmospheric gas absorption. The primary absorbing gas is water vapor,
which has most prominent absorption shapes at 1380 and 1880 nm. We
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Figure 19: Ghost signal, before and after correction procedure.

address this by interpolating radiometric calibration coefficients spec-
trally across these water vapor absorption features.

We anticipated updating radiometric calibration coefficients in flight
for several reasons. First, the instrument sensitivity can change over
time as the FPA ages, and to a lesser degree between thermal cycles
as the FPA accumulates trapped charge. Additionally, the instrument
noise level, which is a small fraction of 1% of the signal for most
targets, is always smaller than systematic errors in our laboratory cal-
ibration, so there will always be a need for refinement. Finally, the
laboratory sources used for radiometric calibration have lower levels
of blue and UV illumination than the sun (Helmlinger et al., 2016),
so any out-of-band response in short wavelength channels can induce
radiometric error when applying the calibration to flight data.

For these reasons, we adjust the radiometric calibration coefficients
on-orbit using a vicarious reference target measured by a ground team
with a field spectrometer. We follow the procedure outlined in Bruegge
et al. (2021), which predicts the radiance at sensor and then uses the
ratio with actual measurement to derive a radiometric calibration up-
date. VSWIR imaging spectrometers are sensitive to small changes
in atmospheric water vapor (Richardson et al., 2021), so reanalysis
models are not sufficient. Instead, we retrieve the atmospheric aerosol
and water vapor from EMIT data itself, along with the surface re-
flectance at the measured location, following the approach of Section
2.1. However, we now fix the instrument parameters to their cali-
brated values. We also retrieve pressure elevation as in Thompson
et al. (2015a), by adding it to the state vector of variables that are
optimized to fit the radiance spectrum. This helps obtain a more accu-
rate Rayleigh correction, which is critical for radiometric calibration of
visible wavelengths. We used data from Black Rock Playa (40.984N,
118.9675W, Figure 20), a large homogeneous playa area in Nevada,
USA. The EMIT overflight took place on 18 August 2022 at approx-
imately 21:00h UTC (scene ID emit20220818t205752). The remote
measurement estimated the atmospheric water vapor content as 2.27
g cm−2. Conditions were observed to be cloud free with an aerosol
optical depth of 0.11 at 550 nm. Then a field team measured the same
playa on 21 August at the same time of day (??). The field team used a
leveled spectralon panel as a reflectance standard, and acquired spec-
tra with continuous traverses across a 240x240 m area of the southwest
corner of the playa. The average spectrum of the area was corrected for
the absorption of the reference panel and minor offsets between detec-
tors in the field spectrometer, and mathematically resampled to EMIT
spectral characteristics. We use the remotely-measured atmospheric
model to transform the in situ spectrum to a top of atmosphere radi-
ance. The complete atmospheric description is a MODTRAN model

Figure 20: Black Rock Playa calibration site used for vicarious radiometric
adjustment.

that includes estimated water vapor and aerosol values as well as all
other major gases with absorption in the VSWIR spectral range, fol-
lowing Thompson et al. (2020). Finally, we calculate the change in ra-
diometric calibration coefficients which would have caused the target
spectrum to be measured. Uncertainties of this process include: uncer-
tainty in the bidirectional reflectance of spectralon itself, which prop-
agates to the in situ measurement; and inaccuracies in the atmospheric
model, which could cause errors in the predicted radiance magnitude.
For these reasons, we perform this adjustment in clear sky conditions
and assess the update carefully with validation sites.

To validate our radiometric update, we apply the new calibration to
other locations where ground truth spectra are available. We first test
an in situ spectrum from the RadCalNet automated test facility at Rail-
road Valley, Nevada, 38.504N, 115.692W (Bouvet et al., 2019). The
in situ spectrum has near perfect temporal coincidence to EMIT. We
extract the EMIT data from this image location, averaging a 3x3 pixel
window around the facility to mitigate the impact of single-pixel vari-
ability or spatial sampling uncertainty on the result. We then estimate
its reflectance. Figure 21 shows the result; the top left panel shows the
remote measurement in black, and the in situ data in red. We blank
out wavelengths above 2300 nm that are not measured by the in situ
spectrometer, and intervals in the shortwave infrared which are opaque
due to atmospheric absorption. The bottom left plot indicates the dif-
ference, underscoring the close agreement between the remote and in
situ data under optimal observing conditions. Outside the deep water
absorption features at 1380 nm and 1880 nm, the mean absolute differ-
ence is just 0.7%. The largest discrepancies at short wavelengths may
be residual calibration error, perhaps caused by aerosol interference
during the vicarious calibration. Alternatively, it is possible they are
caused by atmospheric modeling errors in the railroad valley spectrum
itelf. Other departures at 1500 nm and 2100 nm may be related to
uncertainty in atmospheric modeling of gaseous absorption by water
vapor and CO2.

We observed slightly larger discrepancies in a second ground-
validation spectrum measured by the field team at Smith Creek,
Nevada (39.326N, 117.446W, Figure 21, Right). This site was mea-
sured approximately two days earlier than the overflight, but about
four hours earlier in the day, using the same protocols as Black Rock
Playa (?). The difference in acquisition time, resulting discrepant il-
lumination and change in the bidirectional reflectance, may account
for the larger 2.2% mean absolute difference observed at this location.
Nonuniformity in the playa surface might also play a part. Neverthe-
less, the shortwave infrared mineral features of the playa surface are
well resolved in the remote data.

3.6. Instrument noise performance
We predict the EMIT instrument noise with a radiometric model.

The total noise σtot is a function of scene radiance Lobs given in µW

11



500 1000 1500 2000 2500
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

an
ce

Railroad Valley in situ
EMIT 20220803t201011

500 1000 1500 2000 2500
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

an
ce

Smith Creek in situ
EMIT 20220814t223555

500 1000 1500 2000 2500
Wavelength (nm)

0.2

0.1

0.0

0.1

0.2

R
ef

le
ct

an
ce

 (r
em

ot
e 

- i
n 

si
tu

)

500 1000 1500 2000 2500
Wavelength (nm)

0.2

0.1

0.0

0.1

0.2

R
ef

le
ct

an
ce

 (r
em

ot
e 

- i
n 

si
tu

)

Figure 21: Reflectance comparisons of remote and in situ spectra at the Railroad Valley automated site (Left) and Smith Creek manual site (Right). The Railroad
Valley spectra were nearly simultaneous, while the Smith Creek acquisitions differed in their time of day.

cm−2 sr−1 nm−1.

σtot =

√
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√
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(12)

Where σd represents dark current noise, σq quantization noise, σr

read noise and σe electronic noise. σp(Lobs) is the photon shot noise,
the standard deviation of photons arriving during the integration time.
Typical EMIT spectra are the combination of two sequential integra-
tions coadded by the FPIE-D to make a single pixel. Noise is indepen-
dent over time so the coaddition reduces the noise of each spectrum
by
√

2. The expected number of photons reaching the detector during
each integration time is given by:

σp(Lobs)2 = 106LobsE−1tint∆chnaωT (13)

with photon energy E of hc/λ Joules, where h is Planck’s constant
and c is the speed of light in a vacuum. The integration time is tint,
and the effective channel width in nanometers is ∆chn. The symbol T
represents the total instrument throughput, including the losses due to
the grating, filters and mirrors, and the quantum efficiency. The symbol
aω is a function of detector area adet, and the instrument F number:

aω =
1
4

adetπF−2 (14)

We form the original radiometric model from laboratory measurements
of component efficiencies. on-orbit, we update the noise estimates us-
ing our on-orbit measurements of dark scenes, which suggest about
7.5 Digital Numbers (approximately 155 electrons) of noise in the ab-
sence of illumination. This is better than laboratory predictions with
over 200 electrons of noise. We update the instrument transmittance T
using the new vicarious radiometry, bookkeeping all changes in RCCs

as changes in instrument throughput. Thus revised, the model can pre-
dict the noise experienced for new scenes.

Validating radiometric performance involves measuring noise in il-
luminated scenes, which is challenging due to natural variability in
surface cover. Traditionally, analysts estimate instrument noise over
spatially uniform playas or deserts. Over truly uniform surfaces, any
differences between neighboring pixels are instrument noise (Board-
man & Kruse, 2011). However, even the most homogeneous locations
on Earth appear variable at EMIT’s sensitivity and spatial resolution.
Consequently, we need a new procedure for assessing noise. We be-
gin with a scene that is as homogeneous as possible, and model the
remaining spectral variability using a low-rank Principal Component
(PC) representation. We manually select the number of components
based on the eigenvalue at which an image-space projection of that co-
efficient degrades to spatially-decorrelated noise (Asner et al., 2012).
We treat this PC projection as a de-noised image, and subtract it from
the original dataset to produce an image of “noise spectra.” Some of
the noise leaks into the PC image and is artificially removed by this
subtraction. However, instrument noise is typically isotropic and in-
dependent in each of the 285 channels, so any bias due to removing a
handful of dimensions is on the order of 2% or less. We estimate mea-
surement error using the sample covariance of this noise image. We
analyze a homogeneous patch of the Caspian Sea as a dark scene dom-
inated by read and electronic noise. This open-water scene contained
three eigenvectors of scene signal. We also consider a large patch of
the USGS Libya 4 calibration site (Mishra et al., 2014) as a bright
scene dominated by photon shot noise. It contained six eigenvectors
of scene signal.

Figure 22 shows the result. The measured noise levels lie within
about 10% of the model predictions for both dark and bright scenes.
The departures are largest in the darkest regions of the spectrum, such
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Figure 22: Top: Modeled and measured noise levels for a bright scene. Bottom:
Modeled and measured noise levels for a dark scene.

as the opaque water vapor features at 1880 nm, suggesting the constant
noise terms may still be too pessimistic. Figure 23 translates this noise
level to an SNR for the median Libya spectrum. SNRs are above 500 in
most regions of the spectrum, and above 750 in most of the visible-near
infrared. The SNR is balanced across wavelengths, reflecting design
decisions that allocated grating efficiency to measure features across
the entire spectrum: the visible electronic transitions of iron oxides,
the near infrared atmospheric features used for accurate atmospheric
correction, and shortwave infrared mineral absorption features. Ap-
plying this model to EMIT’s radiometric reference observation, we
find SNR outperforms requirements by a factor of two (Table 1).

4. Discussion

We have completed the first on-orbit characterization of the EMIT
imaging spectrometer. Table 1 summarizes our findings. EMIT’s per-
formance meets mission requirements, providing uniformity and sen-
sitivity to enable high accuracy mineral mapping. EMIT is designed
to detect small changes in mineral spectral feature depths; a change
of a few percent in the depth of the hematite absorption feature, ex-
trapolated globally, is enough to flip the sign of mineral dust radiative
forcing (Li et al., 2021). EMIT’s performance aims to provide statis-
tical confidence in detecting such small changes. On-orbit, we find
that performance generally meets or exceeds laboratory predictions.
SNR exceeds 1000 for bright arid targets. Mean reflectance agree-
ment better than 1% is demonstrated for coincident field data. Noise
predictions match measurements to approximately 10% across diverse
scene types. These results demonstrate that EMIT is ready to begin its
mineral mapping mission.
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Figure 23: SNR at the Libya 4 site.

Notably, EMIT achieves this accuracy with no shutter and no on-
board calibration systems of any kind. Its design philosophy empha-
sizes a simple optomechanical layout with high uniformity and stabil-
ity to enable vicarious calibration. Accordingly, our on-orbit valida-
tion process makes extensive use of opportunistic targets in the Earth’s
surface and atmosphere. Imaging spectrometers are particularly suited
to this strategy. Their spectral resolution can measure sharp atmo-
spheric absorptions across the VSWIR range for spectral calibration.
Spectrally-resolved surface reflectance reveals subtle distortions from
poorly-modeled aerosol or cirrus that could invalidate a vicarious cal-
ibration. We use the same radiative transfer modeling tools for radio-
metric calibration as will be used in the final reflectance product. This
ensures consistency in assumptions and minimizes the impact of any
modeling errors.

Calibration is a process rather than a result. Accordingly, we will
continue to track radiometric accuracy and performance over time as
the mission progresses. We will use bright cloud features, the re-
flectance of which is well-constrained in visible wavelengths, to mon-
itor the calibration in short wavelengths. Repeat overflights of arid re-
gions, in particular psuedo-invariant calibration sites, can also indicate
changes in relative radiometry. Cross-calibration with other on-orbit
instruments can assess the absolute accuracy of these calibrations and
the sensitivities to downstream products. Atmospheric fits can confirm
the wavelength calibration does not change over time with inevitable
instrument thermal cycles. This ensures that EMIT’s mineral identifi-
cation products are consistent over its lifespan.

EMIT has achieved several firsts for an instrument of its class. It has
demonstrated the first on-orbit FPA alignment. Our procedure mea-
sured and then removed a micron-scale FPA tilt. This is important for
mapping mineral band positions, where such nonuniformities could
change geologic interpretations. The same technique could also benefit
future spectrometers, such as SBG, with similarly stringent measure-
ment needs. EMIT has also improved spectral fidelity over previous
grating-based instruments, with a shallow groove design that mitigates
spectral and spatial scatter. This carries benefits for both accurate at-
mospheric correction and mineralogy, both of which rely on sharp high
contrast absorption features. Outside the uncalibrated order sorting fil-
ter seams, we have not yet been able to measure optical artifacts or
infield scatter. Laboratory tests suggest they are at least three orders
of magnitude below the primary signal. This underscores EMIT’s po-
tential for future science investigations beyond mineralogy. EMIT’s
on-orbit performance provides reason for optimism as we enter a new
era of spectroscopic remote sensing of Earth’s surface and atmosphere,
for which this latest generation of sensors is only the vanguard.
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5. Code and Data Availability

The EMIT science data system code, including the level
1b radiance calibration and associated calibration files,
can be found at https://github.com/emit-sds/. Spectral li-
braries used in the surface/atmosphere fits are downloadable
from the ECOSIS library at https://ecosis.org/package/emit-
manually-adjusted-snow-and-liquids-reflectance-spectra,
https://ecosis.org/package/emit-manually-adjusted-vegetation-
reflectance-spectra, and https://ecosis.org/package/emit-manually-
adjusted-water-reflectance-spectra.
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